
1NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

Virtual Machines - history

IBM S/370 – 4381 (1983-1992)

2(Technické muzeum v Brně, 2018)

4381 Model Group 24 (1988): 20 MHz dual CPU, 128KB cache, 64MB RAM, 890K USD (2M USD@2020)

IBM S/370 - 145 (1971, up to 512 KB RAM, ~1M USD)

3(3D Rendering, Oliver.obi, 2013)

IBM S/370 - 145 (1971)

4(3D Rendering, Oliver.obi, 2013)

 The first era of VM

 1972 – IBM VM for S/370

▪ Coexistence of different OSes

▪ Time-sharing and virtual memory
for OSes not implementing them

▪ Debugging of OSes

▪ Including a VM under a VM

 Every tenth S/370 used a VM

 1980... – Gradual decline

▪ Mainframes overcome by cheaper
architectures (minicomputers, PC)

▪ New hardware did not support VM

▪ The growing dominance of Unix

▪ VM is a complication for inter-
process communication

Virtual Machines - history

5NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

VM - requirements

6NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

 Formal Requirements
for Virtualizable Third Generation Architectures

 Gerald J. Popek and Robert P. Goldberg, 1974

 Equivalence / Fidelity

▪ A program running under the VMM should exhibit a behavior essentially identical to
that demonstrated when running on an equivalent machine directly.

 Resource control / Safety

▪ The VMM must be in complete control of the virtualized resources

 Efficiency / Performance

▪ A statistically dominant fraction of machine instructions must be executed without
VMM intervention

7NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

CPU virtualization

Hypervisor

User process

OS kernel

 True virtualization

 Three layers of software

 Guest user processes

▪ Only user-mode CPU instructions

 Guest OS kernel

▪ All CPU instructions

▪ Privileged mode expected

▪ But shall not be granted

 Hypervisor

▪ All CPU instructions

▪ Exclusive control over the hardware

 This picture is misleading

True virtualization

8NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

CPU

virtual CPU

User mode

Privileged
mode

HypervisorUser process OS kernel

 The correct picture
 All levels of the software directly interact with CPU by executing instructions

 OS kernels use privileged instructions
▪ We must not allow their direct execution (Popek-Goldberg: Safety)

▪ We must allow direct execution of the other instructions (Performance)

▪ OS kernel must run with a different privilege setting than the Hypervisor

 Compression of privileges
▪ Mapping of 3 privilege levels onto the 2 levels available in typical CPU

True virtualization

9NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

CPU

User mode Privileged mode instructions

HypervisorUser process OS kernel

 Trap-and-emulate (IBM 1972)
 OS kernels use privileged instructions but run in the user mode

▪ Every privileged instruction in the kernel causes a trap (synchronous interrupt)

▪ The hypervisor emulates the instruction

▪ The emulation allows verification of access rights, virtualization etc.

 Performance considerations
▪ Every syscall goes through hypervisor

▪ Every I/O instruction in kernel is emulated
▪ S/370 had "channel programs" = single I/O instruction started the whole I/O operation

True virtualization

10NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

CPU

Privileged mode instructions

User mode Privileged
mode

HypervisorUser process OS kernel

 Intel/AMD root/non-root modes

 Control transferred between levels

▪ User -> Kernel: Simultaneously with switching CPU to the privileged mode

▪ SYSCALL, some synchronous (software) interrupts

▪ User/Kernel -> Hypervisor: VM Exit event = switch to hypervisor mode

▪ Asynchronous (hardware) interrupts

▪ Some synchronous (software) interrupts (e.g. page faults)

True virtualization

11NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

CPU

User mode Privileged mode

Non-root mode Root mode

CPU Intel VT-x / AMD-V

 Details differ

 „Root“ mode

 Like a CPU without
virtualization

 Usable to run the
host OS

 „Non-root“ mode

 Limited access to
the privileged of the
CPU state

 Unwanted actions
cause „VM exit“

 Mode switch

 A part of the CPU
state is read
from/stored to
memory

 Address-space
switch included

Hardware support for virtualization – a new dimension of privilege

12NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

application
process

guest OS
kernel

application
registers

access
control

(host app)

VMM
(+ host OS

kernel)

privileged
registers

P
L

=
3

P
L

=
0

P
L

=
3

P
L

=
0

ro
o

t
n

o
n

-r
o

o
t

h
o

st
 V

M
C

S
gu

es
t

V
M

C
S

V
M

 e
n

tr
y

V
M

 e
xi

t
V

M
 e

xi
t

Approach to virtualization

13NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

Can the binary code of
an unmodified kernel
run in the user mode?

Is the emulation of
privileged instructions

sufficiently fast?

Does the CPU support
three privilege levels

etc.?

Do we want to modify
the source code of the

kernel?

Para-virtualization
(Xen 2003)

Binary Translation
(VMWare 1999)

Trap and Emulate
(IBM VM 1972)

Hardware-based
Virtualization

(Xen HVM 2005)
(VMWare 2006)

Do we believe that
the kernel can

sufficiently isolate
processes?

Application virtualization
(chroot 1982)

(FreeBSD jail 2000)
(Solaris Containers 2004)

(Docker 2013)

 The x86 is unsuitable for VM

 Legacy of the Intel 80286 CPU

▪ 1982 – still in the first era of VM

 The first mitigation attempts

▪ 2005 – Intel VT-x

▪ 2006 – AMD-V

 Gradually improved performance

▪ Improved HW support

▪ Para-virtualization in critical OS
parts

 Performance loss is now
insignificant for most applications

▪ Variations in performance too big
for Real-Time applications and
performance measurement

Virtualization - history

14NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

 The second era of VM

 1999 – VMWare Workstation

▪ Software virtualization
(Binary Translation)

▪ VMM as an app in Windows NT

 2002 – VMWare ESX Server

▪ VMM replaces the host OS

 2003 – Xen

▪ Para-virtualization

▪ Host OS modified (in source code)

 2007 – Linux KVM

▪ VMM integrated into the OS kernel

 2008 – Microsoft Hyper-V

▪ VMM cooperates with the host OS

▪ Non-cooperating guest OS possible

15NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

VMM implementation

PA1

OS kernel A

 Para-virtualization

 Lower layers of OS
kernels are modified

 Instead of controlling
hardware, these
layers call the
hypervisor

 Hypervisor (VMM)

 Creates an illusion of
a machine dedicated
for each kernel

 The illusion is not
perfect; difficult parts
replaced by
cooperation of the
modified kernel

 VM controller

 Provides
administrator control

 VM OS kernel

 Provides file and
network services for
the controller and
hypervisor

Para-virtualization

16NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

CPU

PA2 PB1 PB2
VM

Controller

Hypervisor

“machine A” “machine B”

OS kernel B VM OS
kernel

modified modified

Hypervisor

PA1

OS kernel A

 True virtualization

 OS kernels directly
work with virtual
CPUs and other HW

 Hypervisor (VMM)

 Creates an illusion of
a machine dedicated
for each kernel

 The illusion is perfect,
emulating every bit of
CPU and other HW

 Modern physical
CPUs help creating
this illusion

 VM controller

 Provides
administrator control

 VM OS kernel

 Provides file and
network services for
the controller and
hypervisor

True virtualization

17NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

CPU

PA2 PB1 PB2
VM

Controller

“machine A” “machine B”

OS kernel B
VM OS
kernel

virtual CPU virtual CPU virtual CPU

Hypervisor

PA1

OS kernel A

 Hardware support
makes CPU
virtualization “easy”

 Negligible overhead

 Implementing a
hypervisor is still a
tremendous task

 This does not apply
to most other HW

 OS kernels
“modified” by the
means of device
drivers

 Actions forwarded
to the VM OS

 Fast communication
infrastructure

 Implemented in the
Hypervisor

Reality: Mixed true and para-virtualization

18NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

CPU

PA2 PB1 PB2
VM

Controller

“machine A” “machine B”

OS kernel B

VM OS
kernelvirtual

device
drivers

virtual
device
drivers

virtual CPU virtual CPU virtual CPU

19NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

Virtualization of Virtual Memory

 All code works in a virtual address space, including the OS kernel

 OS defines the mapping of virtual to physical addresses (including for itself)
 Intel/AMD: 2 to 5 levels of page tables, stored in the physical memory

▪ CPU translates addresses using the TLB in most cases

▪ On a TLB miss, the CPU will read the page tables to fill the TLB

▪ On a page-table miss, the CPU will wake-up the OS by executing a synchronous interrupt

Virtual memory in a physical computer

20NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

AED

Physical address space

XOS

Virtual address space of a process

A B DC E

Y Z U

 The hypervisor must allow co-existence of several VMs

 The physical address space of each VM is virtualized

 The mapping is defined by the hypervisor

 An equivalent of page mapping by an OS

Memory as seen by the hypervisor

21NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

Guest physical address space

Host physical address space

 A composition of two mappings

 The mapping defined by the guest OS for a process

 The guest-host mapping defined by the hypervizor

Virtual memory in a VM

22NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

AED

Guest physical address space - virtualized

XOS

A D

Host physical address space

OS

Guest process virtual address space

A B DC E

Y Z U

Y Z

 The CPU holds two mappings and performs the composition
 Each (guest-physical) address in the GPT (starting with the CR3) must be

translated by the NPT (to a host-physical address)
▪ For 5 levels, 25 memory-accesses required!

 The TLB stores the composed mapping

Virtual memory in a VM – EPT (Intel) / NPT (AMD)

23NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

24NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

Virtualization of I/O

app
process

OS kernel

 App processes must
perform I/O by
invoking an kernel
syscall

 The OS kernel
communicates with
the I/O device

 I/O instructions
(privileged), or

 Memory-mapped
I/O device
(protected by virtual
memory mapping)

I/O access in a physical computer

25NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

CPU

I/O
device

 Privileged I/O
instructions cause
synchronous
interrupts

 Executed by an
instruction emulator
in the VMM

 Besides the I/O
device, the related
interrupt system
and/or DMA
controller must also
be virtualized

 Exclusive mode

 Only one VM can
access the device

I/O access in a VM – exclusive mode

26NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

I/O
device

app
process

OS kernel

VMM

CPU

 When the
communication with
the device (including
the DMA etc) is
possible using non-
privileged
instructions

▪ Memory-mapped
devices, or

▪ configurable access
into I/O address
space

 Exclusive mode

 Only one VM can
access the device

 Suitable for the
host-OS running in a
privileged VM

I/O access in a VM – exclusive mode

27NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

I/O
device

app
process

OS kernel

VMM

CPU

 Access to the I/O
device caught and
emulated by the
VMM

 The emulation state
is independent for
each VM

 The emulated type
of hardware does
not have to exactly
match the physical
device

 Shared mode

 VMM extracts
logical actions from
the emulated virtual
devices

 The logical actions
are performed by
the physical device

I/O access in a VM – shared mode

28NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

VMM

app
process

virtual
I/O

device

OS kernel

CPU

I/O
device

 Guest OS modified

 Modified source
code, or

 a device driver for a
non-existent device

 Advantages

 The modified guest
OS sends logical
commands instead
of physical I/O

 Emulation of I/O
instructions not
needed

 Single logical
command instead of
a sequence of I/O
instructions

 Synchronization of
logical commands
from different VMs
is simpler

I/O access in a VM – shared mode, para-virtualization

29NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

app
process

modified
OS kernel

VMM

CPU

I/O
zařízení

 Non-privileged
access to I/O

 Configurable I/O
space protection
required

 Shared mode

 The I/O device
presents itself more
than once in the I/O
space - ports

 The I/O device
maintains an
independent state
for each port

 The I/O device
synchronizes logical
commands from the
ports on the shared
physical device

 Expensive hardware

▪ Mostly NICs

I/O access in a VM – multi-port I/O device

30NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

app
process

OS kernel

VMM

CPU

I/O
device

I/
O

 p
o

rt
I/

O
 p

o
rt

31NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

VM-VMM Communication
(Example: Microsoft Hyper-V)

Microsoft Hyper-V

32NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

Guest-to-Hypervisor Interface (Microsoft Hyper-V)

33NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

 Partition

 A set of virtual processors and other hardware, plus its configuration

 Root partition – typically used to run the Host OS and VM Management

 Inter-partition messaging
 The hypervisor supports a simple message-based inter-partition

communication mechanism.

 Messages can be sent by the hypervisor to a partition or can be sent from one
partition to another.

 Guest Physical Address Space
 The GPA mappings are defined by the partition’s parent.

▪ At the time they are mapped, they are specified in terms of the parent’s GPA space.

 Guest Virtual Address Space

 The hypervisor exposes operations to flush the TLB (on one virtual processor).

Guest-to-Hypervisor Interface (Microsoft Hyper-V)

34NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

 Virtual MSRs
▪ Physical MSRs used by Kernels to read/alter CPU configuration

 VMM emulates additional Machine Status Registers (MSR) not present in HW

▪ VMM-aware VM Kernel can read/write virtual MSRs to exchange configuration
information with VMM

 Emulation too slow for real communication

 Hypercall
 Call Hypervisor from Guest (privileged mode)

 Exposed as procedure call to a special guest-physical page

▪ Provided by Hypervisor on request from Guest (via a virtual MSR)

▪ VM Kernel must map the guest-physical page to a guest-virtual page

▪ The page contains either special instructions or nothing – both cases cause VM exit

 Arguments passed/returned in registers or VPAP

 Virtual Processor Assist Page (VPAP)
 Special guest-physical page per virtual processor (core/logical thread)

▪ Both Hypervisor and Guest can read/write

Guest-to-Hypervisor Interface (Microsoft Hyper-V)

35NSWI150 Virtualization and Cloud Computing - 2023/2024 David Bednárek

 Hypercall

 Call Hypervisor from Guest (privileged mode)

 Exposed as procedure call to a special guest-physical page

 Arguments passed/returned in registers or VPAP

 One Hypercall may serve several logical requests

▪ Chained into an array of arguments

 All Hypercalls return within 50 microseconds

▪ Avoids blocking in the Hypervisor (giant lock?)

▪ Longer requests serviced in continuation-style

▪ The Hypercall return address is set before the instruction that invoked it

▪ Arguments adjusted to indicate that part of the request is already done

▪ On the next VM Entry, the Hypercall is entered again

	Slide 1: Virtual Machines - history
	Slide 2: IBM S/370 – 4381 (1983-1992)
	Slide 3: IBM S/370 - 145 (1971, up to 512 KB RAM, ~1M USD)
	Slide 4: IBM S/370 - 145 (1971)
	Slide 5: Virtual Machines - history
	Slide 6: VM - requirements
	Slide 7: CPU virtualization
	Slide 8: True virtualization
	Slide 9: True virtualization
	Slide 10: True virtualization
	Slide 11: True virtualization
	Slide 12: Hardware support for virtualization – a new dimension of privilege
	Slide 13: Approach to virtualization
	Slide 14: Virtualization - history
	Slide 15: VMM implementation
	Slide 16: Para-virtualization
	Slide 17: True virtualization
	Slide 18: Reality: Mixed true and para-virtualization
	Slide 19: Virtualization of Virtual Memory
	Slide 20: Virtual memory in a physical computer
	Slide 21: Memory as seen by the hypervisor
	Slide 22: Virtual memory in a VM
	Slide 23: Virtual memory in a VM – EPT (Intel) / NPT (AMD)
	Slide 24: Virtualization of I/O
	Slide 25: I/O access in a physical computer
	Slide 26: I/O access in a VM – exclusive mode
	Slide 27: I/O access in a VM – exclusive mode
	Slide 28: I/O access in a VM – shared mode
	Slide 29: I/O access in a VM – shared mode, para-virtualization
	Slide 30: I/O access in a VM – multi-port I/O device
	Slide 31: VM-VMM Communication (Example: Microsoft Hyper-V)
	Slide 32: Microsoft Hyper-V
	Slide 33: Guest-to-Hypervisor Interface (Microsoft Hyper-V)
	Slide 34: Guest-to-Hypervisor Interface (Microsoft Hyper-V)
	Slide 35: Guest-to-Hypervisor Interface (Microsoft Hyper-V)

