
1NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

David Bednárek
Computing in virtual environments



virtual

2NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

 virtual
▪ Merriam-Webster dictionary

 very close to being something without actually being it
 existing or occurring on computers or on the Internet
 from Latin virtus - strength, virtue

▪ from vir - man



Virtual – examples outside computing (2009)

3NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek



4NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

Virtual elements in computing



Virtual elements in computing infrastructure

5NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

 Virtual memory
 1962; in daily use since 1970s (IBM S/370 and many others)

 Always implemented in hardware, controlled by OS

 Virtual machines
 1972 (IBM S/370), abandoned before 1990

 Revived in 1999 (VMWare at Intel/AMD x86)

 Originally implemented purely in software

▪ But co-developed with hardware in IBM S/370

▪ Specific hardware support in Intel/AMD CPUs since 2005

 Virtual disks
 1974 (Unix)

 Originally implemented as block-device drivers (RAM-disks etc.)

 High-performance versions implemented in dedicated HW (RAID controllers)

 Virtual NICs, VLANs, VPNs, …



Virtual execution environments

6NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

 Virtual execution environment

 An environment in which a piece of software runs

 Different from the native environment for which the software was designed

▪ Even if the software developers know that they are developing for a virtual 
environment, they want to ignore the complexity of the target environment, 
pretending that they develop for the plain old physical world

 Built upon some or all of the previously existing virtual technologies:

▪ Virtual memory (always)

▪ Virtual machines (sometimes; always in clouds) and/or containers

▪ Virtual disks or virtual file systems

▪ Virtual NICs (always)

▪ VLANs, VPNs (in large installations and clouds)



7NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

Motivation for virtualization



Multi-tenant environments

8NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

 Tenant – a person/corporation using a set of services

 Different from the owner of the hardware

▪ A completely different (legal) person (a customer), or

▪ An organizational unit using services supplied by an IT department, etc.

 Multi-tenant environments

 Hardware resources shared among multiple tenants

 Tenants are not able to share resources voluntarily

▪ They usually do not know each other

▪ They don’t want to negotiate on resources

▪ Their software cannot be sufficiently customized to share resources

 Granularity of multi-tenant sharing
 A physical computer is often too big

▪ Load balancing may require fragments of the power of a physical computer

 It is too difficult to reassign a physical computer to a different tenant

▪ Even if automated, such a reassignment may take hours



Dependency hell

9NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

 A piece of software is not a single file or folder
 Executables are linked to dynamically-loaded libraries

▪ Referenced by a short name like “libcrt.so”

 An application is often divided into communicating processes

▪ Often because some parts of code cannot coexist inside the same executable

▪ Linked by named pipes or IP sockets, identified by file names, port numbers

 There are resources, configurations, data, multimedia, ...

▪ Stored as files somewhere, identified by relative/absolute file names

▪ Different systems have conflicting conventions

 All the constituents must have the same or compatible version

 Coexistence of two versions of the same software
 Needed if software A and B require different versions of software C

 A and B shall be configured so that they find different versions of C under the same 
name

▪ Preparing such configurations is difficult

▪ Such configurations would deviate from system conventions (like /etc/*)

▪ Complex configurations may degrade performance (copying of large environments)

▪ There is often no configuration option at all



Motivation for virtualization

10NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

 Problems

 Multi-tenancy

▪ Different tenants cannot share the same machine

 Dependency hell

▪ Often, different software of the same tenant cannot share the same machine

 At the same time, load-balancing requires sharing the same 
machine between different tenants and/or software

 Solution: Virtualization
 Disconnect the notion of machine from the physical hardware

▪ A hardware machine may host multiple virtual machines

▪ Virtual machines may migrate across hardware machines

▪ Virtual machines may be easily stopped, created, destroyed, ...



Virtualization granularity

11NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

 In the plain non-virtualized world, people think about machines 
(physical computers)

▪ "I want to log into computer X"

▪ "I want to install software Y at computer X"

 The naming, addressing, configuration is mostly machine-centric

▪ machine:port addressing in TCP/UDP

▪ /usr/bin or "c:\Program Files" installations of software

▪ /etc/* or HKEY_LOCAL_MACHINE registry configurations of software

▪ machine-wide scope of "ps", /proc/*, ...

 This could have been done differently, but it was not

▪ Nobody is going to modify all the software built in the machine-centric era

▪ The people will not change either

 Result: we want to virtualize machines
▪ Creating an illusion of a complete computer



Process 1

OS kernel

 Naïve picture

 In reality

 Processes directly 
interact with CPU 
and memory

 I/O devices may 
directly interact with 
memory

 There may be more 
than one CPU in the 
system

Plain Old Execution Environment

12NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

CPU

I/O devices

outer world

Process 2

so
ft

w
ar

e
h

ar
d

w
ar

e



Process 1

OS kernel

Plain Old Execution Environment

13

 Without virtualization, the separation 
between processes is deemed insufficient

 Operating systems (since Unix) are built to 
facilitate inter-process communication

 Processes on the same machine compete 
for resources (memory, CPUs)

 Processes share global name spaces (file 
names, port numbers, UIDs, …)

 In theory, communication, competition 
and access are limited by priority, 
environment, and access-rights 
mechanisms

 Nobody believes that these old 
mechanisms are sufficient against modern 
risks

 Access rights cannot solve naming conflicts

▪ Cannot have two web servers on port 80

▪ Cannot have two gcc versions with the same 
/usr/include

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

CPU

I/O devices

outer world

Process 2



14NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

Flavors of virtualization



Process

OS kernel

Virtualization at different layers

15

 Containerization

 OS kernel improved so that it now offers 
different views (via the same interface) for 
different processes

 Para-virtualization

 Lower layers of OS kernel modified so that 
multiple kernels may coexist on the same 
CPU

 (True) virtualization

 Hardware support in CPU and/or emulation 
by software enables coexistence of multiple 
unmodified OS kernels on the same CPU

 Originally, these were three independent 
approaches

 Today, the three approaches may share 
some underlying hardware and/or 
software technology

 They may coexist on the same machine

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

CPU

(true) virtualization

para-virtualization

containerization



P1

OS kernel

Virtualization at different layers

16

 Outcome of virtualization

 A set of processes lives in an illusion that 
they are alone at a hardware machine

 In containerization, this illusion is created 
by the OS kernel

▪ The same kernel may be shared by several 
such sets of processes

 In para- and true virtualization, also the OS 
kernel lives in this illusion

▪ OS kernels always need to feel alone

▪ In para-virtualization, this applies only to the 
upper, unmodified majority of the kernel

▪ Each such set of processes has its own kernel

 For software developers, the outcome is 
almost identical for the three approaches

 For system maintenance, there is huge 
difference between containerization and 
virtualization

 Think about updates to the kernel(s)

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

CPU

(true) virtualization

para-virtualization

containerization

P2



P1

OS kernel

Virtualization at different layers

17

 Containers vs. virtual machines

 Originally, containerization and 
virtualization were completely independent 
techniques

 Now, they often share parts of the 
underlying technology

▪ Some container systems use hardware-based 
isolation developed for virtual machines

▪ Some virtual machine systems use software
tricks developed for containers

▪ There are interfaces/libraries/apps capable of
controlling both containers and virtual 
machines

 There is still a fundamental difference:

 Containers

▪ Only one instance of OS kernel per hw
machine

▪ Shared among all containers

 Virtual machines

▪ Each virtual machine has its own instance of
OS kernel

▪ More memory required

▪ In addition, there may be a host OS kernel

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

CPU

(true) virtualization

para-virtualization

containerization

P2



Virtual Machine A Virtual Machine B

Type 1 (Bare Metal) Hypervisor
Example: VMWare ESXi

Type 2 (Hosted) Hypervisor
Example: VMWare Workstation Player

 Hypervisor on bare metal

 Hypervisor directly performs all 
hardware access (CPU 
configuration, I/O)

▪ Requires device drivers

▪ Complex but fast

 Hypervisor above an host OS

 Hypervisor is a (privileged) process

▪ Often one per VM

▪ I/O access performed by host kernel

▪ CPU control requires support from 
the host kernel (debugging services)

Types of Virtual Machine Systems

18NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

Process Process Process Process

Kernel A Kernel B

VMM (Virtual Machine Manager)
a.k.a. Hypervisor

CPU, I/O hardware

VM A VM B

Process Process Process Process

Kernel A Kernel B

CPU, I/O hardware

Host Kernel

HypervisorProcess Hypervisor



Beware

19NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

 Pictures like this are misleading

VM A VM B

Process Process Process Process

Kernel A Kernel B

CPU, I/O hardware

Host Kernel

HypervisorProcess Hypervisor



Beware

20NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

 The host kernel actually sees 
this:

VM A

Process ProcessKernel A

CPU, I/O hardware

Process
Hyper
visor

VM B

Process ProcessKernel B

 The CPU sees this:

Process ProcessKernel A
Host 

Kernel
Process Process ProcessKernel B

Hyper
visor

Hyper
visor

Hyper
visor

CPU, I/O hardware

Host Kernel



VM 0Virtual Machine A Virtual Machine B

Traditional
Example: VMWare ESXi

With root partition (Microsoft terminology)

Example: Microsoft Windows + Hyper-V

 Hypervisor performs I/O
▪ Requires device drivers tailored for 

the hypervisor

▪ Too costly development

 Hypervisor only controls CPU

 VM 0 aka Root partition

▪ Allowed to directly access I/O 
hardware

▪ Standard OS with device drivers

 Hypervisor forwards I/O requests

Flavors of Type 1 Hypervisors

21NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

Process Process Process Process

Kernel A Kernel B

VMM (Virtual Machine Manager)
a.k.a. Hypervisor

CPU, I/O hardware

VM A VM B

Proc Proc

Kernel B

VMM (Virtual Machine Manager)
a.k.a. Hypervisor

Proc Proc

Kernel AKernel 0

VM
ctrl

Proc Proc

CPU, I/O hardware



Implemented in user-space
Example: VMWare Workstation Player

Implemented in a kernel
Example: Linux KVM

 Hypervisor integrated in kernel

 Fast

▪ No need to indirect CPU control via 
kernel service

 Complex and dangerous

▪ Kernels were not designed for this

Flavors of Type 2 Hypervisors

22NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

VM A VM B

Proc Proc Proc Proc

Kernel A Kernel B

CPU, I/O hardware

Host Kernel (includes Hypervisor)

Proc

 Hypervisor above an host OS
 Hypervisor is a (privileged) process

▪ Often one per VM

▪ I/O access performed by host kernel

▪ CPU control requires support from 
the host kernel (debugging services)

VM A VM B

Process Process Process Process

Kernel A Kernel B

CPU, I/O hardware

Host Kernel

HypervisorProcess Hypervisor

VM 
Ctrl

Proc



Traditional type 1 hypervisor
Example: VMWare ESXi

Type 2 implemented in a kernel
Example: Linux KVM

 Hypervisor implanted in kernel

 CPU control, time sharing, and I/O 
in the same project

 Complex and dangerous

Where is the difference? Only in the history.

23NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

VM A VM B

Proc Proc Proc Proc

Kernel A Kernel B

CPU, I/O hardware

Host Kernel (includes Hypervisor)

Proc
VM 
Ctrl

Proc

Virtual Machine A Virtual Machine B

 Hypervisor does everything

 CPU control, time sharing, and I/O 
in the same project

 Complex and dangerous

Process Process Process Process

Kernel A Kernel B

VMM (Virtual Machine Manager)
a.k.a. Hypervisor

CPU, I/O hardware



Virtual Machines Containers

 Inherent safety
▪ Kernel-HW interface was not 

designed for Kernel-Kernel 
communication

▪ VMM adds well-controled holes 
into a natural barrier

 Limited safety
▪ Process-Kernel interface was 

designed for Process-Process 
communication

▪ Containerization requires blocking 
existing communication channels

Virtual Machines vs. Containers

24NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

Process 
A1

Process 
A2

Process 
B1

Virtual Machine A

Process 
B2

Kernel A

Virtual Machine B

Kernel B

VMM (Virtual Machine Manager)
a.k.a. Hypervisor

Process 
A1

Process 
A2

Process 
B1

Container A

Process 
B2

Kernel

Container B



Container BContainer AVirtual Machine BVirtual Machine A

Virtual Machines Containers

 Each VM is a complete OS
▪ Each VM runs its services in specific 

settings

▪ User (admin) processes (e.g. install 
scripts) can control services (edit 
/etc/..., run systemctl, ...)

 Container is not a complete OS

 Services shared among containers

▪ Dependency hell still present

▪ Processes inside containers usually 
cannot control services outside 
containers - their install scripts 
cannot run inside containers

Virtual Machines vs. Containers

25NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

init serv

Kernel A Kernel B

VMM (Virtual Machine Manager)
a.k.a. Hypervisor

Kernel

ices proc esses init serv ices proc esses init serv ices proc esses proc esses



Container BContainer A

Plain Containers System Containers

 System container resembles a 
complete OS

 Each container contains its service 
manager (init)

▪ Install scripts work inside containers

 The illusion is not yet complete

▪ Certain privileges/capabilities/roles 
are hardwired in Linux kernel and 
denied for containers

Plain vs. System Containers

26NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

Kernel

init serv proc esses proc esses

Container BContainer A

 Container is not a complete OS

 Services shared among containers

▪ Dependency hell still present

▪ Processes inside containers usually 
cannot control services outside 
containers - install scripts cannot 
run inside containers

Kernel

init serv ices proc esses proc esses init serv init serv


	Slide 1: David Bednárek Computing in virtual environments
	Slide 2: virtual
	Slide 3: Virtual – examples outside computing (2009)
	Slide 4: Virtual elements in computing
	Slide 5: Virtual elements in computing infrastructure
	Slide 6: Virtual execution environments
	Slide 7: Motivation for virtualization
	Slide 8: Multi-tenant environments
	Slide 9: Dependency hell
	Slide 10: Motivation for virtualization
	Slide 11: Virtualization granularity
	Slide 12: Plain Old Execution Environment
	Slide 13: Plain Old Execution Environment
	Slide 14: Flavors of virtualization
	Slide 15: Virtualization at different layers
	Slide 16: Virtualization at different layers
	Slide 17: Virtualization at different layers
	Slide 18: Types of Virtual Machine Systems
	Slide 19: Beware
	Slide 20: Beware
	Slide 21: Flavors of Type 1 Hypervisors
	Slide 22: Flavors of Type 2 Hypervisors
	Slide 23: Where is the difference? Only in the history.
	Slide 24: Virtual Machines vs. Containers
	Slide 25: Virtual Machines vs. Containers
	Slide 26: Plain vs. System Containers

