
1NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

David Bednárek
Computing in virtual environments



virtual

2NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

 virtual
▪ Merriam-Webster dictionary

 very close to being something without actually being it
 existing or occurring on computers or on the Internet
 from Latin virtus - strength, virtue

▪ from vir - man



Virtual – examples outside computing (2009)

3NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek



4NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

Virtual elements in computing



Virtual elements in computing infrastructure

5NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

 Virtual memory
 1962; in daily use since 1970s (IBM S/370 and many others)

 Always implemented in hardware, controlled by OS

 Virtual machines
 1972 (IBM S/370), abandoned before 1990

 Revived in 1999 (VMWare at Intel/AMD x86)

 Originally implemented purely in software

▪ But co-developed with hardware in IBM S/370

▪ Specific hardware support in Intel/AMD CPUs since 2005

 Virtual disks
 1974 (Unix)

 Originally implemented as block-device drivers (RAM-disks etc.)

 High-performance versions implemented in dedicated HW (RAID controllers)

 Virtual NICs, VLANs, VPNs, …



Virtual execution environments

6NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

 Virtual execution environment

 An environment in which a piece of software runs

 Different from the native environment for which the software was designed

▪ Even if the software developers know that they are developing for a virtual 
environment, they want to ignore the complexity of the target environment, 
pretending that they develop for the plain old physical world

 Built upon some or all of the previously existing virtual technologies:

▪ Virtual memory (always)

▪ Virtual machines (sometimes; always in clouds) and/or containers

▪ Virtual disks or virtual file systems

▪ Virtual NICs (always)

▪ VLANs, VPNs (in large installations and clouds)



7NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

Motivation for virtualization



Multi-tenant environments

8NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

 Tenant – a person/corporation using a set of services

 Different from the owner of the hardware

▪ A completely different (legal) person (a customer), or

▪ An organizational unit using services supplied by an IT department, etc.

 Multi-tenant environments

 Hardware resources shared among multiple tenants

 Tenants are not able to share resources voluntarily

▪ They usually do not know each other

▪ They don’t want to negotiate on resources

▪ Their software cannot be sufficiently customized to share resources

 Granularity of multi-tenant sharing
 A physical computer is often too big

▪ Load balancing may require fragments of the power of a physical computer

 It is too difficult to reassign a physical computer to a different tenant

▪ Even if automated, such a reassignment may take hours



Dependency hell

9NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

 A piece of software is not a single file or folder
 Executables are linked to dynamically-loaded libraries

▪ Referenced by a short name like “libcrt.so”

 An application is often divided into communicating processes

▪ Often because some parts of code cannot coexist inside the same executable

▪ Linked by named pipes or IP sockets, identified by file names, port numbers

 There are resources, configurations, data, multimedia, ...

▪ Stored as files somewhere, identified by relative/absolute file names

▪ Different systems have conflicting conventions

 All the constituents must have the same or compatible version

 Coexistence of two versions of the same software
 Needed if software A and B require different versions of software C

 A and B shall be configured so that they find different versions of C under the same 
name

▪ Preparing such configurations is difficult

▪ Such configurations would deviate from system conventions (like /etc/*)

▪ Complex configurations may degrade performance (copying of large environments)

▪ There is often no configuration option at all



Motivation for virtualization

10NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

 Problems

 Multi-tenancy

▪ Different tenants cannot share the same machine

 Dependency hell

▪ Often, different software of the same tenant cannot share the same machine

 At the same time, load-balancing requires sharing the same 
machine between different tenants and/or software

 Solution: Virtualization
 Disconnect the notion of machine from the physical hardware

▪ A hardware machine may host multiple virtual machines

▪ Virtual machines may migrate across hardware machines

▪ Virtual machines may be easily stopped, created, destroyed, ...



Virtualization granularity

11NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

 In the plain non-virtualized world, people think about machines 
(physical computers)

▪ "I want to log into computer X"

▪ "I want to install software Y at computer X"

 The naming, addressing, configuration is mostly machine-centric

▪ machine:port addressing in TCP/UDP

▪ /usr/bin or "c:\Program Files" installations of software

▪ /etc/* or HKEY_LOCAL_MACHINE registry configurations of software

▪ machine-wide scope of "ps", /proc/*, ...

 This could have been done differently, but it was not

▪ Nobody is going to modify all the software built in the machine-centric era

▪ The people will not change either

 Result: we want to virtualize machines
▪ Creating an illusion of a complete computer



Process 1

OS kernel

 Naïve picture

 In reality

 Processes directly 
interact with CPU 
and memory

 I/O devices may 
directly interact with 
memory

 There may be more 
than one CPU in the 
system

Plain Old Execution Environment

12NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

CPU

I/O devices

outer world

Process 2

so
ft

w
ar

e
h

ar
d

w
ar

e



Process 1

OS kernel

Plain Old Execution Environment

13

 Without virtualization, the separation 
between processes is deemed insufficient

 Operating systems (since Unix) are built to 
facilitate inter-process communication

 Processes on the same machine compete 
for resources (memory, CPUs)

 Processes share global name spaces (file 
names, port numbers, UIDs, …)

 In theory, communication, competition 
and access are limited by priority, 
environment, and access-rights 
mechanisms

 Nobody believes that these old 
mechanisms are sufficient against modern 
risks

 Access rights cannot solve naming conflicts

▪ Cannot have two web servers on port 80

▪ Cannot have two gcc versions with the same 
/usr/include

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

CPU

I/O devices

outer world

Process 2



14NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

Flavors of virtualization



Process

OS kernel

Virtualization at different layers

15

 Containerization

 OS kernel improved so that it now offers 
different views (via the same interface) for 
different processes

 Para-virtualization

 Lower layers of OS kernel modified so that 
multiple kernels may coexist on the same 
CPU

 (True) virtualization

 Hardware support in CPU and/or emulation 
by software enables coexistence of multiple 
unmodified OS kernels on the same CPU

 Originally, these were three independent 
approaches

 Today, the three approaches may share 
some underlying hardware and/or 
software technology

 They may coexist on the same machine

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

CPU

(true) virtualization

para-virtualization

containerization



P1

OS kernel

Virtualization at different layers

16

 Outcome of virtualization

 A set of processes lives in an illusion that 
they are alone at a hardware machine

 In containerization, this illusion is created 
by the OS kernel

▪ The same kernel may be shared by several 
such sets of processes

 In para- and true virtualization, also the OS 
kernel lives in this illusion

▪ OS kernels always need to feel alone

▪ In para-virtualization, this applies only to the 
upper, unmodified majority of the kernel

▪ Each such set of processes has its own kernel

 For software developers, the outcome is 
almost identical for the three approaches

 For system maintenance, there is huge 
difference between containerization and 
virtualization

 Think about updates to the kernel(s)

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

CPU

(true) virtualization

para-virtualization

containerization

P2



P1

OS kernel

Virtualization at different layers

17

 Containers vs. virtual machines

 Originally, containerization and 
virtualization were completely independent 
techniques

 Now, they often share parts of the 
underlying technology

▪ Some container systems use hardware-based 
isolation developed for virtual machines

▪ Some virtual machine systems use software
tricks developed for containers

▪ There are interfaces/libraries/apps capable of
controlling both containers and virtual 
machines

 There is still a fundamental difference:

 Containers

▪ Only one instance of OS kernel per hw
machine

▪ Shared among all containers

 Virtual machines

▪ Each virtual machine has its own instance of
OS kernel

▪ More memory required

▪ In addition, there may be a host OS kernel

NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

CPU

(true) virtualization

para-virtualization

containerization

P2



Virtual Machine A Virtual Machine B

Type 1 (Bare Metal) Hypervisor
Example: VMWare ESXi

Type 2 (Hosted) Hypervisor
Example: VMWare Workstation Player

 Hypervisor on bare metal

 Hypervisor directly performs all 
hardware access (CPU 
configuration, I/O)

▪ Requires device drivers

▪ Complex but fast

 Hypervisor above an host OS

 Hypervisor is a (privileged) process

▪ Often one per VM

▪ I/O access performed by host kernel

▪ CPU control requires support from 
the host kernel (debugging services)

Types of Virtual Machine Systems

18NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

Process Process Process Process

Kernel A Kernel B

VMM (Virtual Machine Manager)
a.k.a. Hypervisor

CPU, I/O hardware

VM A VM B

Process Process Process Process

Kernel A Kernel B

CPU, I/O hardware

Host Kernel

HypervisorProcess Hypervisor



Beware

19NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

 Pictures like this are misleading

VM A VM B

Process Process Process Process

Kernel A Kernel B

CPU, I/O hardware

Host Kernel

HypervisorProcess Hypervisor



Beware

20NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

 The host kernel actually sees 
this:

VM A

Process ProcessKernel A

CPU, I/O hardware

Process
Hyper
visor

VM B

Process ProcessKernel B

 The CPU sees this:

Process ProcessKernel A
Host 

Kernel
Process Process ProcessKernel B

Hyper
visor

Hyper
visor

Hyper
visor

CPU, I/O hardware

Host Kernel



VM 0Virtual Machine A Virtual Machine B

Traditional
Example: VMWare ESXi

With root partition (Microsoft terminology)

Example: Microsoft Windows + Hyper-V

 Hypervisor performs I/O
▪ Requires device drivers tailored for 

the hypervisor

▪ Too costly development

 Hypervisor only controls CPU

 VM 0 aka Root partition

▪ Allowed to directly access I/O 
hardware

▪ Standard OS with device drivers

 Hypervisor forwards I/O requests

Flavors of Type 1 Hypervisors

21NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

Process Process Process Process

Kernel A Kernel B

VMM (Virtual Machine Manager)
a.k.a. Hypervisor

CPU, I/O hardware

VM A VM B

Proc Proc

Kernel B

VMM (Virtual Machine Manager)
a.k.a. Hypervisor

Proc Proc

Kernel AKernel 0

VM
ctrl

Proc Proc

CPU, I/O hardware



Implemented in user-space
Example: VMWare Workstation Player

Implemented in a kernel
Example: Linux KVM

 Hypervisor integrated in kernel

 Fast

▪ No need to indirect CPU control via 
kernel service

 Complex and dangerous

▪ Kernels were not designed for this

Flavors of Type 2 Hypervisors

22NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

VM A VM B

Proc Proc Proc Proc

Kernel A Kernel B

CPU, I/O hardware

Host Kernel (includes Hypervisor)

Proc

 Hypervisor above an host OS
 Hypervisor is a (privileged) process

▪ Often one per VM

▪ I/O access performed by host kernel

▪ CPU control requires support from 
the host kernel (debugging services)

VM A VM B

Process Process Process Process

Kernel A Kernel B

CPU, I/O hardware

Host Kernel

HypervisorProcess Hypervisor

VM 
Ctrl

Proc



Traditional type 1 hypervisor
Example: VMWare ESXi

Type 2 implemented in a kernel
Example: Linux KVM

 Hypervisor implanted in kernel

 CPU control, time sharing, and I/O 
in the same project

 Complex and dangerous

Where is the difference? Only in the history.

23NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

VM A VM B

Proc Proc Proc Proc

Kernel A Kernel B

CPU, I/O hardware

Host Kernel (includes Hypervisor)

Proc
VM 
Ctrl

Proc

Virtual Machine A Virtual Machine B

 Hypervisor does everything

 CPU control, time sharing, and I/O 
in the same project

 Complex and dangerous

Process Process Process Process

Kernel A Kernel B

VMM (Virtual Machine Manager)
a.k.a. Hypervisor

CPU, I/O hardware



Virtual Machines Containers

 Inherent safety
▪ Kernel-HW interface was not 

designed for Kernel-Kernel 
communication

▪ VMM adds well-controled holes 
into a natural barrier

 Limited safety
▪ Process-Kernel interface was 

designed for Process-Process 
communication

▪ Containerization requires blocking 
existing communication channels

Virtual Machines vs. Containers

24NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

Process 
A1

Process 
A2

Process 
B1

Virtual Machine A

Process 
B2

Kernel A

Virtual Machine B

Kernel B

VMM (Virtual Machine Manager)
a.k.a. Hypervisor

Process 
A1

Process 
A2

Process 
B1

Container A

Process 
B2

Kernel

Container B



Container BContainer AVirtual Machine BVirtual Machine A

Virtual Machines Containers

 Each VM is a complete OS
▪ Each VM runs its services in specific 

settings

▪ User (admin) processes (e.g. install 
scripts) can control services (edit 
/etc/..., run systemctl, ...)

 Container is not a complete OS

 Services shared among containers

▪ Dependency hell still present

▪ Processes inside containers usually 
cannot control services outside 
containers - their install scripts 
cannot run inside containers

Virtual Machines vs. Containers

25NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

init serv

Kernel A Kernel B

VMM (Virtual Machine Manager)
a.k.a. Hypervisor

Kernel

ices proc esses init serv ices proc esses init serv ices proc esses proc esses



Container BContainer A

Plain Containers System Containers

 System container resembles a 
complete OS

 Each container contains its service 
manager (init)

▪ Install scripts work inside containers

 The illusion is not yet complete

▪ Certain privileges/capabilities/roles 
are hardwired in Linux kernel and 
denied for containers

Plain vs. System Containers

26NSWI150 Virtualizace a Cloud Computing - 2019/2020 David Bednárek

Kernel

init serv proc esses proc esses

Container BContainer A

 Container is not a complete OS

 Services shared among containers

▪ Dependency hell still present

▪ Processes inside containers usually 
cannot control services outside 
containers - install scripts cannot 
run inside containers

Kernel

init serv ices proc esses proc esses init serv init serv


	Slide 1: David Bednárek Computing in virtual environments
	Slide 2: virtual
	Slide 3: Virtual – examples outside computing (2009)
	Slide 4: Virtual elements in computing
	Slide 5: Virtual elements in computing infrastructure
	Slide 6: Virtual execution environments
	Slide 7: Motivation for virtualization
	Slide 8: Multi-tenant environments
	Slide 9: Dependency hell
	Slide 10: Motivation for virtualization
	Slide 11: Virtualization granularity
	Slide 12: Plain Old Execution Environment
	Slide 13: Plain Old Execution Environment
	Slide 14: Flavors of virtualization
	Slide 15: Virtualization at different layers
	Slide 16: Virtualization at different layers
	Slide 17: Virtualization at different layers
	Slide 18: Types of Virtual Machine Systems
	Slide 19: Beware
	Slide 20: Beware
	Slide 21: Flavors of Type 1 Hypervisors
	Slide 22: Flavors of Type 2 Hypervisors
	Slide 23: Where is the difference? Only in the history.
	Slide 24: Virtual Machines vs. Containers
	Slide 25: Virtual Machines vs. Containers
	Slide 26: Plain vs. System Containers

