
1NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

Containers

Containers

2NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Motivation

 Give each process its own environment

▪ Environment variables alone are not sufficient to solve the Dependency hell

▪ Incompatible versions of installed libraries

▪ Incompatible behavior of installed executables

▪ Unexpected system configuration stored in user-accessible files

▪ Some applications come from a different ecosystem

▪ Different conventions regarding the filesystem

▪ Different flavor of the OS

 Improve isolation between processes

▪ Processes may refuse to work with limited privileges

▪ Create an illusion that they have privileges they actually have not

▪ Avoid conflicts on well-known ports, implant a firewall between local processes

▪ Create virtual networks and link processes to virtual NICs

 Linux Containers are not the first attempt
 At least for some of the goals

3NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

Subsystems in Microsoft Windows

Microsoft Windows NT 3.1 (1993)

4NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

Containers in Windows

5NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 (Windows) NT kernel was created to support several kinds of apps
 (IBM) OS/2

 (Microsoft) Windows 3.1 (binary compatible with non-NT “kernels”)

 Legacy 16-bit Windows and DOS

 POSIX

 The NT kernel always included support for namespace isolation and
resource limiting
 In limited use before 2016

 Windows Subsystem for Linux (WSL, bash.exe) – 2016
 Emulates Linux syscalls on a Windows kernel

▪ Does not emulate Linux namespaces and cgroups – cannot support Linux containers

 Windows Containers – 2016
 Part of the Docker team acquired by Microsoft in 2014

 Docker-like images and containers for running Windows processes

 Two modes of container execution

▪ Process Isolation – the Windows kernel provides isolation

▪ Hyper-V Isolation – each VM runs its own Windows Server kernel

Containers in Windows

6NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Windows Subsystem for Linux
 WSL 1 (2016) - Emulates Linux syscalls on a Windows kernel

▪ Does not emulate Linux namespaces and cgroups – cannot support Linux containers

▪ Uses NTFS – lower performance than Linux, faster sharing with Windows

 WSL 2 (April 2020) – Runs a true Linux kernel in a Hyper-V virtual machine
▪ Can support Linux containers

▪ Native unix FS – faster local files, slower access to host Windows files than in WSL 1

 Windows Containers
 Inside a container, only Windows Server environment is supported

 Process Isolation - the Windows kernel provides isolation
▪ Supported by Windows Server (since 2016), Windows 10 (since April 2020)

 Hyper-V Isolation – each VM runs its own Windows Server kernel
▪ Supported by Windows Server (since 2016), Windows 10 (since September 2018)

 May be managed by Azure versions of Docker, Kubernetes, etc.
▪ Management almost identical to Linux containers (when run inside Azure)

 Not nearly as successful as Linux containers
▪ 28K Windows vs. 3.5M Linux containers on hub.docker.com (October 2020)

7NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

Containers
(Linux)

PA1

OS kernel

 Namespace
separation

 The upper layer of
the OS kernel filters
the syscalls and
maps all the
identifiers from
process-specific to
system-wide naming
spaces

 Resource separation

 The kernel maintains
resource usage
statistics for each
set of processes and
restricts them

 Container runtime

 Optional

 Privileged process
used to setup the
kernel maps and
react to events

Containerization

8NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

CPU

PA2 PB1 PB2
container
runtime

“machine A” “machine B”

ID/name map ID/name map

container Y container Zcontainer X

PA1

OS kernel

Containerization – machines vs. containers

9

 Container (simplified definition)

 a file system plus a configuration

 when started, a configured command is
executed

▪ it starts an executable from the internal file
system

▪ this executable may later spawn more
processes (via fork/exec/system)

 a running container may contain more than
one process

 OS kernel can map several containers to
the same system resources

 podman pod = set of containers

▪ all containers in a pod share the same NIC
(and some other namespaces)

▪ each container has its own filesystem

 Some container systems allow direct
access to host NIC

 no virtual network/NAT = faster

 decreased safety and isolation

NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

CPU

PA2 PB1 PB2

“machine A” “machine B”

ID/name map ID/name map

Linux namespaces

10NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Linux namespaces

 A namespace defines the mapping of identifiers

▪ from the local view of the process

▪ to the global identifiers used inside the kernel

▪ applied on each SYSCALL to translate local ids to global and back

▪ it may also define how new ids are created

▪ some namespaces (NET, CGROUP) also configure the behavior of the kernel

 cgroups

 A cgroup defines a unit of accounting

▪ Processes in a cgroup share the same pool of resources

▪ A cgroup may also define a policy applied by the kernel

 Both namespaces and cgroups form a hierarchy

 The root namespace is the 1:1 mapping applied to the init process and others

 The root cgroup represents all the resources of the machine and kernel

Linux namespaces

11NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 The most important types of namespaces (in the order of appearance)
▪ Mount - mounts, i.e. the complete filesystem

▪ Linux 2.4.19 – August 2002

▪ UTS - machine name, OS version, etc.
▪ Linux 2.6.19 – November 2006

▪ IPC - ids of message queues, semaphores, shared memory
▪ Linux 2.6.19 – November 2006

▪ USER - user and group ids (numeric)
▪ Linux 2.6.23 – October 2007

▪ changed semantics in Linux 3.5 - Jul 2012, finished in Linux 3.8 - Feb 2013

▪ PID - process and thread ids (numeric)
▪ Linux 2.6.24 – January 2008

▪ Network - the complete configuration of networking (NICs, ports, routing,
forwarding)
▪ Linux 2.6.29 – April 2009

▪ Cgroup - resource-sharing pool and the associated cgroup configuration
▪ Linux 4.6 – May 2016

▪ Time - adjustments to monotonic clock (to make container migration possible)
▪ Linux 5.6 - March 2020

Linux namespaces

12NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 cgroup version 1 was abandoned, version 2 is now in use

 a cgroup is a set of controllers and their configuration

▪ io – accessible bandwidth of block device I/O (since Linux 4.5)

▪ memory – process/kernel/swap memory (since Linux 4.5)

▪ pids – max number of processes/threads created (since Linux 4.5)

▪ perf_event – performance monitoring (since Linux 4.11)

▪ rdma – access to DMA resources in the kernel and the hardware (since Linux 4.11)

▪ cpu – CPU time allotment (since Linux 4.15)

▪ cpuset – set of CPU or NUMA nodes available (since Linux 5.0)

▪ freezer – suspending/restoring all processes in a cgroup (since Linux 5.2)

▪ hugetlb – allocation of huge TLB pages (since Linux 5.6)

 other features attached to a cgroup

▪ access to I/O devices

▪ packet filtering may be based on the id of the originating cgroup

Process (Linux)

13NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 A Linux process consists [mainly] of

 pid, parent pid

 effective uid, gid, capabilities, etc.

 attached namespaces (one namespace per each type of namespace)

 file descriptors (open files, pipes, semaphores, etc.)

 virtual memory

 state, CPU registers

 Processes are created by syscalls:

 fork – copy everything (except pid/parent pid and the return value from fork)

 clone – each of the constituents may be shared or copied or created new

▪ behavior controlled by flags

▪ example: sharing everything (except CPU registers) creates a thread

 The exec syscall is the only way to load an executable file
▪ it replaces actual virtual memory with the new code and data, resets state

▪ effective uid/gid/capabilities may change if the executable file has suid bit set

Linux namespaces

14NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Linux namespaces are created by these syscalls:

 clone – for the namespace types selected by flags, new namespaces are
created for the child process (the other types are shared)

 unshare – for the namespace types selected by flags, new namespaces are
attached to the calling process (the previous namespaces are detached but
continue to exist)

 The new namespaces

▪ set as owned by the user namespace that

▪ was created by the same syscall (if there was one)

▪ was attached to the calling process before the syscall (otherwise)

▪ user and pid namespaces are permanently set as children of the namespaces of the
same type attached to the calling process before the call

▪ the contents of the new namespaces after clone/unshare:

▪ user, network, and ipc namespaces are empty

▪ after clone, pid namespaces contain the newly created process with pid=1

▪ other namespace types (mount etc.) are copies of their parents

Linux namespaces

15NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Namespace is discarded when
 No attached processes exist

 No child namespaces exist (for user and pid namespaces)

 No owned namespaces exist (for a user namespace)

 No bind mount exist that represents the namespace
▪ Namespaces are represented by /proc/<pid>/ns/* virtual files, these may be

duplicated by bind-mounting elsewhere

 Setting the contents of the new namespaces
 may be performed by processes attached to

▪ the parent namespace of the same type

▪ the same namespace

 usually performed between clone/unshare and exec calls, i.e. by the same
code that called clone/unshare
▪ this code is aware of both the existing parent and the desired child identifiers

 often performed by manipulating /proc/<pid>/* files
▪ other, namespace-specific ways exist (e.g. the MOUNT syscall)

Linux procfs

16NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 procfs filesystem (since 1984)
 usually mounted at /proc

▪ the contents reflects the pid namespace of the process that called mount

▪ must be mounted again inside a container

 contains virtual folders and files

▪ enables communication between the kernel and user processes
▪ reduces the number of syscalls required

▪ allows passing more than the 6 64-bit parameters/results of a syscall

▪ any access to /proc/* is done using universal OPEN/READDIR/READ/WRITE syscalls
▪ standard mechanism of file access rights applies

▪ READ/WRITE have a mechanism for large data transfers between process and kernel

 in procfs, each filename has its own READ/WRITE handler

▪ READ converts some kernel data to file contents, often in tab-separated decimal form

▪ WRITE (if enabled) analyzes the text and sets the kernel data
▪ often limited to single OPEN-WRITE-CLOSE syscall sequence

▪ disadvantage: the kernel contains code for producing/parsing text and numbers

 majority of the contents (but not all) presented as /proc/<pid>/*

▪ some folders/files are presented relative to the calling process, e.g. /proc/self

 example: the ps utility works by reading the virtual files in /proc

Linux namespaces – capabilities

17NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Each process has a bit mask of (about 40) capabilities
▪ A fine-grained replacement (since 1999) for testing effective uid==0

▪ However, majority of privileged actions are still controlled by the CAP_SYS_ADMIN capability

▪ The capabilities are bound to the user namespace attached to the process
▪ Applicable to actions on and in namespaces owned by this user namespace

▪ The process that enters (by clone/unshare) a newly created user namespace
▪ Automatically holds all capabilities (wrt. this user namespace)
▪ It may propagate these capabilities to child processes
▪ It will loose the capabilities on exec, unless its effective uid (in its namespace) is zero

 User namespaces
▪ Any process can create a user namespace

▪ CAP_SETUID in the parent user namespace is required to setup a non-trivial user mapping
▪ CAP_SETUID normally allows impersonation of anyone in the same namespace (e.g. by sshd)
▪ the impersonation can also happen by mapping a user from a child user namespace

▪ non-CAP_SETUID-equipped processes can only setup a trivial user mapping
▪ map one (arbitrary) child uid to the effective uid of the process that created the namespace

 Non-user namespaces
▪ CAP_SYS_ADMIN is required to create a non-user namespace

▪ if a new user namespace is created by the same call, the capability is automatically assumed
▪ otherwise, the invoking process must have had that capability before

▪ A specific capability is required when
▪ The id mapping associated with a namespace is defined (e.g. pid generators)
▪ Objects in the namespace are created (e.g. network devices) or modified (e.g. firewall rules) in such a way

that may affects all processes in the namespaces

Linux namespaces – mapping uids and gids

18NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Technically, uid and gid mapping is limited to a (small) set of intervals of uids/guids
mapped linearly from the child to the parent

▪ The mapping is defined by writing /proc/<pid>/{uid_map|gid_map}

▪ Unmapped child-namespace uids/gids cannot be used in any syscall (like setuid or chown)

▪ Unmapped parent-namespace uids/gids (e.g. from a file system) cannot be presented to
processes in the child namespace
▪ Mapped as 65534 (usually decoded as "nobody" by /etc/passwd and /etc/group)

 Non-privileged processes may directly map only one child uid/gid
▪ This child uid/gid may be 0 ("root")

▪ It must be mapped to the effective uid/gid of the process that created the user
namespace

 Indirect setup using newuidmap and newgidmap utilities
▪ Available to any user for any user namespace created by this user

▪ These executables have CAP_SETUID capability attached and may therefore setup
arbitrary uid/gid mappings

▪ However, these utilities allow only mappings that
▪ Map at most one child uid/gid to the uid/gid of the calling user
▪ All the other child uid/gid must map into the range(s) defined for the calling user by the

/etc/subuid and /etc/subgid files
▪ In default settings, each standard user has 65536 additional uids and gids reserved by the

/etc/sub*id files
▪ The rules ensure that different standard users can never use the same parent uids/gids
▪ The additional uids/gids are not present in the (parent mount namespace) /etc/passwd or

/etc/groups; therefore, they are displayed numerically by utilities like ls

Linux namespaces – unshare utility

19NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 unshare utility can launch a new process into new namespaces

 Namespace creation controlled by command-line options

 User namespace - trivial mapping to self
[bednarek@rocky ~]$ unshare -c

 The above command launches bash into a new user namespace
[bednarek@rocky ~]$ ps -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
0 S 1000 344957 344929 0 80 0 - 2267 - pts/3 00:00:00 bash
4 S 1000 350824 344957 0 80 0 - 2265 do_wai pts/3 00:00:00 bash
0 R 1000 350881 350824 0 80 0 - 2521 - pts/3 00:00:00 ps

▪ This namespace has trivial mapping of the current UID/GID to itself
[bednarek@rocky ~]$ cat /proc/$$/uid_map
 1000 1000 1

▪ There is no new mount namespace - we can see the global filesystem
[bednarek@rocky ~]$ ls -ld /home/bednarek
drwx------. 15 bednarek bednarek 4096 Oct 25 10:27 /home/bednarek

▪ However, unmapped global UIDs/GIDs are shown as nobody
[bednarek@rocky ~]$ ls -ld /root
dr-xr-x---. 5 nobody nobody 4096 Sep 20 22:56 /root

Linux namespaces – unshare utility

20NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 User namespace - trivial mapping of local root to global self
[bednarek@rocky ~]$ unshare -r

 All the global user's processes are now shown with local UID=0

▪ We can see the parent bash because there is no new PID namespace
[root@rocky ~]# ps -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
0 S 0 344957 344929 0 80 0 - 2267 - pts/3 00:00:00 bash
4 S 0 351664 344957 0 80 0 - 2265 do_wai pts/3 00:00:00 bash
0 R 0 351707 351664 0 80 0 - 2521 - pts/3 00:00:00 ps

▪ This namespace has trivial mapping of local 0 to the global UID/GID of the user
[root@rocky ~]# cat /proc/$$/uid_map
 0 1000 1

▪ This user's files are now shown as owned by (local) root

▪ Actually, this is local UID/GID 0 incorrectly mapped through the global /etc/{passwd,group}
[root@rocky ~]# ls -ld /home/bednarek
drwx------. 15 root root 4096 Oct 25 10:27 /home/bednarek

▪ The true global root is shown as nobody
[root@rocky ~]# ls -ld /root
dr-xr-x---. 5 nobody nobody 4096 Sep 20 22:56 /root

Linux namespaces – unshare utility

21NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

[bednarek@rocky ~]$ unshare -U

 Creates a new user namespace with no mapping
[nobody@rocky ~]$ cat /proc/$$/uid_map

▪ Even the actual user is mapped to UID=65534 (nobody)
[nobody@rocky ~]$ ps -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
0 S 65534 344957 344929 0 80 0 - 2267 - pts/3 00:00:00 bash
0 S 65534 352808 344957 0 80 0 - 2265 do_wai pts/3 00:00:00 bash
0 R 65534 352872 352808 0 80 0 - 2521 - pts/3 00:00:00 ps

 The mapping must be defined from the parent process
▪ We need the SETUID capability in the global user namespace

▪ We can map only to global UIDs/GIDs defined by /etc/{subuid,subgid}
[bednarek@rocky ~]$ grep bednarek /etc/subuid
bednarek:100000:65536

▪ The SETUID capability is attached to the newuidmap/newgidmap utilities
[bednarek@rocky ~]$ newuidmap 352808 0 1000 1 1 100001 999
[bednarek@rocky ~]$ newgidmap 352808 0 1000 1 1 100001 999

 Back in the local namespace, the new maps are visible
[nobody@rocky ~]$ cat /proc/$$/uid_map
 0 1000 1
 1 100001 999
[nobody@rocky ~]$ ls -ld /home/bednarek
drwx------. 15 root root 4096 Oct 25 10:27 /home/bednarek

Linux namespaces – unshare utility

22NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

[bednarek@rocky ~]$ unshare -U

▪ Creates a new user namespace with no mapping

▪ The mapping must be defined from the parent process

▪ Back in the local namespace, the new maps are visible
[nobody@rocky ~]$ cat /proc/$$/uid_map
 0 1000 1
 1 100001 999

▪ Note: The "nobody" is still here because the bash was not told to update the prompt

▪ We can now use all local UIDs between 0 and 999
[nobody@rocky ~]$ mkdir test
[nobody@rocky ~]$ chown mail:mail test

▪ We can execute chown because we are local UID=0 and have the local SETUID capability
[nobody@rocky ~]$ ls -ld test
drwxr-xr-x. 2 mail mail 6 Oct 25 11:18 test

▪ Again, "mail" is mapped through global /etc/{passwd,group} to local UID=8, GID=12
[nobody@rocky ~]$ grep mail /etc/{passwd,group}
/etc/passwd:mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
/etc/group:mail:x:12:postfix

 In the global namespace, the folder is seen with the global UID/GID
[bednarek@rocky ~]$ ls -ld test
drwxr-xr-x. 2 100008 100012 6 Oct 25 11:18 test

▪ If the local UID=8, GID=12 were not mapped, the chown above would have failed

Linux namespaces – root-full vs. root-less containers

23NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Root-full container
▪ The initial process of the container runs with uid/gid == 0 (as seen inside the

container)
▪ It also has all capabilities (wrt. objects in its namespaces)

 Created by root (sudo) user (of the parent namespace)
▪ 1:1 uid/gid mapping or no user namespace at all

▪ Dangerous, the only scenario available in the past

 Created by a non-privileged user
▪ uid/gid 0 in the container maps to the creator user/group

▪ other uids/gids in the container (if any) map to the creator's subuid/subgid set

 Root-less container
▪ All the processes of the container run with the same uid/gid != 0

▪ They have no capabilities (therefore unable to create/impersonate other uids/gids)

 Created by root (sudo) user (of the parent namespace)
▪ The only uid/gid mapped to a selected user/group

 Created by a non-privileged user
▪ The only uid/gid mapped to the creator user/group

Containers (Linux)

24NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 The namespaces and cgroups are relatively old mechanism of the kernel

 Some parts were significantly redefined only recently

▪ PIDS, capabilities, ...

 Many container systems use older, less general kernel mechanisms

▪ Instead of using the mechanism of owner namespaces, docker does this:

▪ docker executable forwards the commands via a named pipe to the dockerd daemon

▪ dockerd daemon uses root privileges to manipulate the namespaces and cgroups

▪ Consequently, the safety of the system relies on the correctness of dockerd

 Red Hat reacted by implementing podman, which implements docker
commands through the modern kernel mechanisms, bypassing any daemon

Containers (Linux)

25NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 There are conflicting philosophies with respect to containers

 Docker, Inc.: Containers are lightweight entities
▪ A container shall typically contain only one process

▪ Any connection between processes shall be handled outside the containers
▪ Use Kubernetes to orchestrate these connections

▪ To update the software in a container, drop the container and start another
▪ Due to robustness and load-balancing requirements, the container must survive this anyway

 Red Hat, Inc.: Containers are like computers
▪ Many applications consists of several processes

▪ apache, mysql, java, cron, ...

▪ The applications are published with a sophisticated installation script
▪ Nobody is going to rewrite installation scripts into Kubernetes configurations

▪ Installation scripts shall work inside containers

▪ Typical installation procedures shall work inside containers:
$ sudo yum install gcc
$ sudo yum upgrade
$ sudo systemctl enable sshd

Containers (Linux)

26NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 PID namespace

▪ This happens in a lightweight container without pid namespace, executing "bash":
systemctl status

Failed to connect to bus: Operation not permitted

sudo systemctl status

sudo: /etc/sudo.conf is owned by uid 65534, should be 0

sudo: /etc/sudo.conf is owned by uid 65534, should be 0

sudo: error in /etc/sudo.conf, line 0 while loading plugin "sudoers_policy"

sudo: /usr/libexec/sudo/sudoers.so must be owned by uid 0

sudo: fatal error, unable to load plugins

ls /etc/sudo.conf -ln

-rw-r-----. 1 65534 65534 1786 Apr 24 2020 /etc/sudo.conf

grep root\\\|65534 /etc/passwd

root:x:0:0:root:/root:/bin/bash

nobody:x:65534:65534:Kernel Overflow User:/:/sbin/nologin

▪ The process PID=1 has two special roles
▪ it controls daemons – published via a named pipe as the systemctl command

▪ it collects zombies

▪ Inside a typical container, PID=1 is the main executable, often a shell
▪ it cannot respond to the systemctl request

▪ sudo refuses to work because the true owner of sudo.conf does not exist inside the USER
namespace of the container

▪ the root of the container namespace is not configured to have sufficient privileges

Linux namespaces – unshare utility - pid namespace

27NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

▪ Creating a new pid namespace - unsuccessful attempts
[bednarek@rocky ~]$ unshare -p
unshare: unshare failed: Operation not permitted

▪ Creating any namespace other than user namespace requires CAP_SYS_ADMIN

▪ We can acquire this capability by entering a new user namespace (here with -r)
[bednarek@rocky ~]$ unshare -r -p
-bash: fork: Cannot allocate memory
-bash-5.1# echo $$
373218

▪ A pid namespace requires a really new process, not just unsharing
[bednarek@rocky ~]$ unshare -r -p --fork
basename: missing operand
Try 'basename --help' for more information.
[root@rocky ~]# echo $$
1

▪ We are in the new pid namespace with PID=1
[root@rocky ~]# ps
 PID TTY TIME CMD
 344957 pts/3 00:00:00 bash
 373102 pts/3 00:00:00 unshare
 373103 pts/3 00:00:00 bash
 373148 pts/3 00:00:00 ps

▪ But ps is implemented using /proc, so we actually see the global processes

▪ Our bash with local PID=1 maps to global PID=373103

Linux namespaces – unshare utility - pid namespace

28NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

▪ Creating a new pid namespace - the correct way
[bednarek@rocky ~]$ unshare -r -p --fork --mount-proc

▪ The --mount-proc switch mounts a new instance of procfs to /proc

▪ Before that, the utility created a new mount namespace
[root@rocky ~]# echo $$
1

▪ Our bash is running with local PID=1
[root@rocky ~]# ps -el
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
4 S 0 1 0 0 80 0 - 2265 do_wai pts/3 00:00:00 bash
0 R 0 33 1 0 80 0 - 2521 - pts/3 00:00:00 ps

▪ We can't see any other processes than the PID=1 and the ps utility itself

 This is the minimum that a modern container system must do
▪ At least when system container (with PID=1 and UID=0) is required

▪ Create a user namespace and map UID=0 to the parent user

▪ Create a mount namespace
▪ Real containers would map their own filesystems here

▪ Fork a new process into a new pid namespace
▪ Mount a new procfs into /proc

▪ Real containers usually also create a network namespace

OS kernel

network NS-1

network
root-NS

network NS-2

PA1

Containerization – network namespaces

29

 Network namespaces are created empty
 Devices, routing and firewall rules are bound to a NS

 veth – a pair of virtual Ethernet devices
 packets sent through one side are received on the other

 usually installed across network NS boundary

▪ privileges required in both namespaces

▪ non-root users must provide network access
differently

 The outer side of the veth pair
 Usually connected to a virtual bridge

▪ More than one container may reside in the virtual LAN

▪ Example: podman pod

▪ Unrestricted connections between such containers

▪ Restrictions may be set by firewall rules in NSs

 Router mode

▪ Host linux kernel (root network NS) acts as the router

▪ Routing with NAT (usually the default)

▪ Containers have private addresses

▪ External access requires port forwarding

▪ Routing without NAT

▪ Containers have public addresses

▪ External access may be blocked by host firewall

 Bridge mode

▪ Host physical network is attached to the bridge

▪ Containers have public addresses

▪ No routing/firewall provided by the host

▪ Non-IP LAN connectivity may be provided

NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

PA2 PB1 PB2

ID/name map ID/name map

veth2alo1 veth1a

cbr0

eth0

lo2

veth2bveth1b

NAT

OS kernel

network NS-1

network
root-NS

network NS-2

PA1

Containerization – network namespaces for non-privileged creators

30

 Network namespaces are created empty

 Devices, routing and firewall rules are
bound to a NS

 Non-privileged creator cannot create a veth
pair

▪ due to insufficient privilege in the root NS

 Non-privileged creator can create a TAP
adapter

▪ using root privileges in the child NS

▪ the TAP adapter is connected to user-space
stack

 slirp4netns

▪ an utility developed from slirp (1996)

▪ not seriously secure!

▪ receive/send Ethernet packets via a TAP

▪ send/receive unencapsulated TCP/UDP traffic

▪ using unprivileged TCP/UDP ports

▪ cannot use port < 1024

▪ in effect, similar to a NAT router

▪ but implemented quite differently

▪ no container-to-container traffic

▪ root-less container systems invoke this
daemon automatically

NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

PA2 PB1 PB2

ID/name map ID/name map

tap2lo1 tap1

eth0

lo2

slirp4netnsslirp4netns

TCP/UDP sockets

TCP/UDP traffic
encapsulated in Ethernet frames
received/sent through file descriptor

xkcd 2347

31NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

Containers (Linux)

32NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 The userspace layer of containers

 docker, podman, ...

 An image is essentially a read-only filesystem

▪ Plus some defaults and interface declarations

 A container is an image plus

▪ A writable layer above the image filesystem

▪ This is destroyed when the container is deleted (but survives stops)

▪ A set of mounts used to access some folders outside the container

▪ This can survive deleting and recreating the container (e.g., from an updated image)

▪ A set of ports mapped via virtual networks to the outside world

 A running container is

▪ A set of processes living in the namespace of the container

▪ Created by forking from a single process, usually the ENTRYPOINT defined in the image

▪ Optionally, stdin/stdout/stderr pipes attached to the processes

Containers (Linux)

33NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 The image is created by adding layers
▪ To another image or to an empty filesystem ("FROM SCRATCH")

 Each layer can be
 A set of files copied from elsewhere

▪ e.g., docker can download and unzip something

▪ This way the underlying Linux distro is applied

 The result of a command executed inside the container
▪ A writable filesystem layer is added to the container

▪ The command is executed inside an environment similar to a container
▪ Usually inside a restrictive namespace but without port remapping

▪ When done, the writable layer is frozen to read-only

 The layers are combined using a kind of union filesystem
 A filesystem combining two other filesystems (e.g. overlayfs)

▪ Whiteout: deleting in the upper filesystem hides a file from the lower filesystem

 The container manager may reuse a layer in more than one image/container
▪ If the layers were created by the same commands or have the same hash

▪ Significantly lowered disk space consumption (but hardly predictable)

Containers (Linux)

34NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 The layers are combined using a kind of union filesystem
 A filesystem combining two other filesystems (e.g. overlayfs)

 Each layer may be
 A subtree of a physical (host) file system

 A separate file system over a virtual block device
▪ Usually implemented in a binary file

 Overlay FS, layer filesystems and virtual block devices
 Implemented in kernel when set up by privileged users

▪ Permissions and owner UID/GIDs stored within FS
▪ Container images cannot be shared between different host users

 Implemented in userspace when set up by root-less users
▪ Using Linux FUSE - FS requests redirected from kernel to user processes

▪ Permission checking delegated to the userspace component
▪ Container images may be shared if the layer FS is container-aware

 Layers may be flattened into one before running the container
 Used in performance-oriented container systems (e.g. charliecloud)

syntax=docker/dockerfile:1

FROM python:latest

WORKDIR /data

ENV TZ=Europe/Prague

ENV FLASK_APP=app.py

ENV FLASK_RUN_HOST=0.0.0.0

COPY code/requirements.txt requirements.txt

RUN pip install -r requirements.txt

VOLUME ["/data"]

EXPOSE 5000

EXPOSE 9876/udp

CMD ["bash", "run_both.bash"]

 Dockerfile
 script to create a container image

▪ placed at the source folder

 direct filesystem modifications
▪ FROM - base image

▪ COPY - copy from source folder

 indirect filesystem modifications
▪ RUN

▪ create a writable layer on top

▪ run the specified command in
WORKDIR

▪ freeze the writable layer

 setting startup process
▪ ENV – process environment

▪ CMD/ENTRYPOINT - command

 metadata
▪ VOLUME – mount points

▪ EXPOSE – port list

Dockerfile

35NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 docker build

 read Dockerfile and other files

 pull base image from a registry

 produce container image

 docker image push/pull

 push/pull image to/from a registry

 docker create

 create a writable layer above an image

 link mount points as specified

 connect ports as specified

 the result is a stopped container

 docker start

 start the startup process

 docker exec

 implant another process into the
container namespaces

 docker stop/kill

 image

 a combined filesystem

▪ sequence of layers (binary blobs)

▪ multiple images may share (lower)
layers if created by the same
commands

 environment, startup command,
mounts, ports

 created by freezing a container

 container
 similar to an image

▪ the top filesystem layer is writable

 may be running as a subtree of
processes

 namespaces and cgroups ensure
the required execution
environment

docker

36NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

Containers and the outside world

37NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

 Mount-points (VOLUME)
 When started, the internal mount-points are linked to files/folders on the host

▪ Specified by options for docker create etc.

 Main purpose: Long-term persistency of data

▪ Software in containers is usually updated by creating a new container from an updated
image
▪ The updated image may be created from the same Dockerfile

▪ FROM and RUN commands may produce different outcome

▪ The writable layer of a container cannot be reattached to different underlying image

 Ports (EXPOSE)
 Usually, each container has its own virtual NIC (usually called Bridge mode)

▪ When started, the internal ports (associated to a virtual NIC of the container) are linked
(via NAT) to the specified host NIC ports
▪ Specified by options for docker create etc.

 Alternatively, the container may directly use the host NIC (deprecated)

 More complex arrangements may exist (not directly exposed by docker)

 IPC
 Host’s named pipes, devices etc. may be exposed to the container

 stdin/stdout/stderr of the container may be connected to host

version: "3.9"

services:

web:

build: .

ports:

- "5500:5000"

- "9876:9876"

volumes:

- "./my_data:/data"

environment:

FLASK_ENV: development

image: "repository.local:5555/thermocont"

 docker-compose

 Built above docker

 Config: docker-compose.yml

 Building and testing containers

 Repository operations

 Combining more containers
together (services)

docker-compose

38NSWI150 Virtualizace a Cloud Computing - 2023/2024 David Bednárek

	Slide 1: Containers
	Slide 2: Containers
	Slide 3: Subsystems in Microsoft Windows
	Slide 4: Microsoft Windows NT 3.1 (1993)
	Slide 5: Containers in Windows
	Slide 6: Containers in Windows
	Slide 7: Containers (Linux)
	Slide 8: Containerization
	Slide 9: Containerization – machines vs. containers
	Slide 10: Linux namespaces
	Slide 11: Linux namespaces
	Slide 12: Linux namespaces
	Slide 13: Process (Linux)
	Slide 14: Linux namespaces
	Slide 15: Linux namespaces
	Slide 16: Linux procfs
	Slide 17: Linux namespaces – capabilities
	Slide 18: Linux namespaces – mapping uids and gids
	Slide 19: Linux namespaces – unshare utility
	Slide 20: Linux namespaces – unshare utility
	Slide 21: Linux namespaces – unshare utility
	Slide 22: Linux namespaces – unshare utility
	Slide 23: Linux namespaces – root-full vs. root-less containers
	Slide 24: Containers (Linux)
	Slide 25: Containers (Linux)
	Slide 26: Containers (Linux)
	Slide 27: Linux namespaces – unshare utility - pid namespace
	Slide 28: Linux namespaces – unshare utility - pid namespace
	Slide 29: Containerization – network namespaces
	Slide 30: Containerization – network namespaces for non-privileged creators
	Slide 31: xkcd 2347
	Slide 32: Containers (Linux)
	Slide 33: Containers (Linux)
	Slide 34: Containers (Linux)
	Slide 35: Dockerfile
	Slide 36: docker
	Slide 37: Containers and the outside world
	Slide 38: docker-compose

