
Slide 108

SISAL
Introduction to Networking (2022) 108

Filesystem sharing

• Connecting a foreign filesystem transparently into local one

• Network File System (NFS)

– originally developed at Sun Microsystems, today IETF

– current version 4.1, RFC 8881, port 2049 (UDP, TCP)

– source identification: server:path

– authentication: Kerberos

– note: relation (RPC) and presentation (XDR) layer

• Server Message Block (SMB)

– originally developed at IBM, later adopted by Microsoft

– open implementation Samba (UNIX)

– source identification: UNC (\\server_name\source_name)

– authentication: usually username and password

The last group of application protocols we will talk about are protocols that usually
remain somewhat hidden from users.

A very important communication tool is the ability to connect a disk from another
computer to your computer and work with it as if it were a local disk. The most used
technologies for this purpose include NFS and SMB.

The Network File System protocol was born at Sun Microsystems, but over time it
has become an open protocol described as RFC. It is still one of the most widely
used systems of its kind in the UNIX world, unless the local environment requires a
more sophisticated file permission system than the traditional UNIX system (in which
case NFS is replaced e.g. by AFS, Andrew File System). NFS refers to a mounted
disk as a server: path pair. For users this connection is transparent and they see a
mounted disk as part of the local directory tree. Kerberos is usually used as the
authentication mechanism. The NFS protocol works over UDP by default, although it
can also be run over TCP. An interesting fact is that the internal structure of the
protocol copies the OSI model in more detail and we can isolate the relational layer
(Remote Procedure Call, RPC) and the presentation layer (Exchange Data
Representation, XDR). RPC is a general mechanism used by other services – a
client sends a request to a server to call a function, including a list of arguments, and
the server performs the operation and sends a response to the client.

The Server Message Block protocol also comes from the commercial sphere,
specifically from IBM. Its development was later taken over by Microsoft, so it was not
published in the form of an RFC. However, an effort to connect the world of UNIX and
Microsoft Windows led the Samba project to reverse engineer this protocol and their
free implementation of SMB actually enabled such a connection: clients from both

families of systems can mount a disk from servers running on any system. A disk that
is mounted via SMB is referred to using a notation \\server\path; authentication is
performed by the system itself using a username and password.

Slide 109

SISAL
Introduction to Networking (2022) 109

Network Time Protocol

• Time synchronization among network nodes

– file timestamp consistency

– comparing logs from different machines

• Current version 4, RFC 5905, port 123 (UDP)

• Client contacts servers listed in its configuration

• Sources are classified due to accuracy and loop prevention

– stratum 0 device: atomic clock, GPS clock

– stratum N server: driven by stratum N-1 source

• Problem: server responses have (different) delay

– using timestamps, the most probable interval for the time
response from every server is computed

– Marzullo's algorithm is used for choosing the best
intersection of intervals

A very important feature of a local network is the synchronization of time on individual
nodes. It is not necessary for the proper functioning of a network – if that were the
case, then any desynchronization, which can occur very easily, would lead to a
network breakdown. However, time synchronization is essential from the user's point
of view, especially in two situations:
• If users transfer files between network nodes (and especially when sharing disks),

it is essential that both computers have the same time. Otherwise, a file stored on
one computer will be considered out of date on the other. Such a discrepancy
could cause e.g. repeated update attempts or repeated unnecessary compilations
of modules that have already been compiled modules, etc.

• Network administrators very often solve problems by comparing log records from
different computers. If these records are written on machines with asynchronous
clocks, it is a nightmare if for each line, the administrator must think about how
many minutes he must add or subtract to which time to reconstruct the correct
sequence.

One of the protocols that perform synchronization is the Network Time Protocol. The
basis of the protocol is the fact that somewhere there are sources with absolutely
accurate time (e.g. an atomic clock). These are called the source of stratum 0. From
them, the time is taken by other servers (the source of stratum 1), which again serve
as a source for the next level. The idea of marking a source according to its "logical
distance" from an absolutely accurate source serves both to estimate the degree of
accuracy of a particular source and as a protection against loops (the stratum N
source will ignore the time from the stratum N + 1 source). A typical configuration for
a LAN is based on running one or more NTP servers, they are synchronized with the
NTP server(s) provided by the ISP, and all clients in the local network are
synchronized using these servers.

Network latency must be taken into account when implementing the calculation
algorithm. A client cannot simply take a time that it receives in a response verbatim
because a certain amount of time elapses between sending a time and receiving it.
The client calculation therefore uses timestamps from the response, which determine
an interval in which the actual time probably lies. Using a technique called Marzullo’s
algorithm, these intervals are used for the calculation of the most accurate time with
the highest possible probability. Since each client is not able to determine the time
exactly, inaccuracy increases between the individual levels of NTP servers. From a
practical point of view, however, these inaccuracies are fairly below the resolution of
users.

Slide 110

SISAL
Introduction to Networking (2022) 110

BOOTP and DHCP

• Bootstrap Protocol, RFC 951, was developed for automatic
configuration of diskless stations

– client sends (to all) a request with MAC address

– server finds proper answer and sends IP address, name...

– if separated by router, it must do BOOTP forwarding

• Replaced by DHCP (Dynamic Host Configuration Protocol)

– compatible message form

– besides the static address allocation, also dynamic one

– limited lease time

– more servers may co-operate

• IPv4: RFC 2131, UDP ports 67 (server) a 68 (client)

• IPv6: RFC 8415, UDP ports 546 (server) a 547 (client)

• Client chooses the best offer (by address, lease time,...)

The last technical application protocols we will deal with are BOOTP and DHCP. They
are used by clients connecting to a network for obtaining an IP address that they can
use and other information about the local network.

BOOTP, the Bootstrap Protocol was developed a long time ago, at a time when it was
economically advantageous to acquire diskless workstations, i.e. computers that had
no devices for permanent data storage (disks were relatively expensive at the time).
It was not possible to save the configuration, including the IP address, anywhere on
such a machine. The BOOTP protocol allowed each workstation to send an address
assignment request, which the dedicated BOOTP server checked and possibly
replied to. The server considered each request by verifying its MAC address against
a whitelist – the MAC address was the only data that the client knew and that it could
use for identification, because it was burned into its network card. If the client was on
the whitelist, the server determined the IP address to be sent to it (the address
assignment was fixed at that moment) and sent a response. Once the client received
the response, it could start using the address.

From a technical point of view, it is important to mention that the client must send its
request unaddressed, because it has no information about the addresses in the
network where it is located. It will therefore use the so-called limited broadcast as the
destination IP address, which means that the request will reach all nodes in the
network (but they will ignore it). In order to prevent such requests from spreading
meaninglessly throughout the Internet, routers do not pass them outside the network
where they originated. This causes a small complication if we have a more complex
subnet structure in the LAN, separated by routers. Then we must either have a
BOOTP server in each subnet, or run so-called BOOTP forwarding on the routers,

where the BOOTP router forwards queries from the network where they originated to
a certain BOOTP server and then forwards its response back to the client.

Over time, it turned out that sending just an IP address is not enough. We have
already seen several examples of additional information useful for clients: addresses
of routers, name servers, NTP servers, mail forwarders, etc. The protocol gradually
expanded several times, until in a major change it evolved into DHCP, the Dynamic
Host Configuration Protocol. The main DHCP extensions include:
• Dynamic address allocation. Fixed address assignment has lost its security

significance today due to rewritable MAC addresses. In addition, network
management often does not even know about all clients. And last but not least,
with dynamic allocation a network can offer significantly fewer addresses than the
number of potential clients.

• Limited rental time. Due to dynamic allocation, it is necessary to restrict clients'
access to addresses for a certain period of time. The client therefore receives its
address only for a certain period of time, the so-called lease-time, and after its
expiration it must stop using this address.

• Cooperation of multiple servers. Multiple DHCP servers can operate in a network;
they can differ in their purpose and the range of addresses provided, and the client
may choose from their offers.

DHCP is backward compatible with BOOTP, which allows BOOTP clients to
communicate with and receive the necessary information from DHCP servers.

Today, DHCP is the most common way clients connect to a network. For instance, on
Microsoft Windows systems, this option can be found under the somewhat obscure
name "obtain IP address automatically".

Slide 111

SISAL
Introduction to Networking (2022) 111

DHCP process

DHCPDISCOVER

DHCPOFFER: SRV=10.0.0.1, IP=10.1.1.1

DHCPREQUEST: SRV=10.0.0.1, IP=10.1.1.1

DHCPACK

4/8 DHCPREQUEST: SRV=, IP=

DHCPACK

DHCPREQUEST: SRV=, IP=

DHCPREQUEST: SRV=, IP=

DHCPDISCOVER

4/8

7/8

8/8

DHCPOFFER: SRV=10.0.0.2, IP=10.1.2.1

lease

Example of communication in DHCP:
• The client sends a DHCPDISCOVER request using the limited broadcast

address.
• All DHCP servers in the network send their offers (DHCPOFFER).
• The client waits for a specific timeout, collects and checks responses.
• It chooses the best offer it has received. The specific algorithm may vary from

client to client, but usually the client primarily prefers if a server offers an address
that the client already uses (or has recently used). If it does not receive such an
offer, it usually chooses according to the length of the lease-time.

• The client sends a DHCPREQUEST message that contains the address it has
chosen. This message is still a broadcast because all servers must receive it.
After sending their offer, they block the offered address for a while, so that they do
not offer it to two clients. If a client has not chosen their offer, they must unblock
the address again.

• The server, whose offer the client has chosen will then confirm with a DHCPACK
message that the address is really still available.

• From this moment, the lease-time period begins.
• However, halfway through this time, the client should send a DHCPREQUEST

message, this time only to the selected server, to make sure the address is still
available.

• If it receives a response, a new lease-time period is started.
• If the client does not receive a response, it sends a new DHCPREQUEST within

seven eighths of the lease-time period, but this time again by a broadcast.
• If it still does not receive an address, it must start the procedure again from

scratch after the leas-time period has expired.

Slide 112

SISAL
Introduction to Networking (2022) 112

Presentation layer (OSI 6)

• Idea of a general model describing all encoding

– data types: integers, strings,...

– data structures: arrays, records, pointers,...

• Very complicated in general: who and when en/decrypts

• Implementation attempt: ASN.1

• TCP/IP suppressed the need of a general model:
the format definitions are included into the application
protocols, conversions must be done by every application

• Practical problems:

– textual line endings: CRLF (0x0D, 0x0A)

– byte order: big endian (1 = 0x00, 0x00, 0x00, 0x01),
e.g. Intel has little endian (1 = 0x01, 0x00, 0x00, 0x00)

We move from the application layer to the OSI model layer number 6, the
presentation layer.

The intent of the design was to create a general mechanism to shield the specific
architecture of the network node from the format used by the lower layers. However,
creating such a mechanism for completely general data communications, i.e.
encoding various data types or structures, is relatively complicated. One of the
attempts to solve it was ASN.1, which we talked about in connection with H.323. As
we mentioned at the time, in terms of description it was a good attempt, but the
implementation as a universal tool was far less successful due to its enormous
complexity.

Therefore, the TCP/IP design did not go that way and embedded the necessary
coding directly into the application protocols, so it moved the concern for encoding
and decoding to the application implementation. Fortunately for the programmer,
there are simple tools to do this. The most crucial differences between platforms lie in
two aspects:
• Different operating systems use different characters or combinations of characters

to indicate the end of text lines. Microsoft DOS followed the principle used by
teletypewriters, mechanical typewriters and old printers: to establish a new line, it
was necessary to move the so-called carriage to the beginning of the line and then
turn the cylinder by one line. The result was the use of a pair of characters CR
(carriage return, hex code 0x0D) and LF (line feed, hex code 0x0A) at the end of
the each line. Microsoft Windows continues this tradition. The authors of UNIX
evaluated the impracticality of this combination and introduced the use of only a LF
character. For interest, we can mention old Apple systems, which, on the other
hand, used only the CR character. Unfortunately, TCP/IP protocols began to use

the CR + LF model. This has some annoying consequences – e.g. how should a
node behave when a counterparty sends the CR character? Should it wait to see if
a LF will arrive as well? How long?

• Different hardware architectures use different byte orders for multi-byte values to
store them in memory. With the exception of some obscure alternatives, there are
two basic approaches: either the bytes are stored by placing the least significant
byte first ("little end" first) and then the next, or vice versa ("big end" first). TCP/IP
protocols use a big-endian system, i.e. the first byte of an IP address goes
through the network first. Libraries may help a programmer to perform an
appropriate conversion if the compilation is performed on a little-endian system.

Slide 113

SISAL
Introduction to Networking (2022) 113

Session layer (OSI 5)

• Idea of a general dialog model

– one dialog can consist of more connections

– one connection can carry more dialogs

• TCP/IP suppressed the need of a general model:
the dialog principle has been included directly into the
application protocols, e.g.:

– within one SMTP connection a client can send several
mails to the server

– SIP initializes dialog using more partial media data
channels

The relational layer met a similar fate as the presentation layer. The idea of a
general tool that can control the dialogue of communicating parties for all types of
application protocols has not proved to be practically realizable, although we can find
this functionality in some protocols (like RPC in NFS).

In the TCP/IP model, therefore, the functions of OSI 5 as well as OSI 6 are integrated
directly into the application protocol. Examples of situations where the logical dialog
of the communicating parties does not correspond to one connection can be found in
SMTP (the client transmits several separate messages to the server within the same
TCP connection) or in SIP (one video call can be realized by one control connection
and two data channels for audio and video). All application protocols then describe
the actual control procedure of the dialog flow.

Slide 114

SISAL
Introduction to Networking (2022) 114

Transport layer (OSI 4)

• Layer functions:

– is responsible for end-to-end data transfer

– mediates network services for application protocols having
various requirements to the transfer channel

– allows running of multiple applications (both clients and
servers) on the same network node

– (optionally) guarantees data transfer reliability

– (optionally) segments data for smoother transfer and puts
them back together in proper order for applications

– (optionally) provides data flow control (e.g. “egress speed”)

A task of the transport layer is to provide applications with a communication channel
for the transfer of data units between applications running on end devices. It can be
implemented using different protocols, which differ in the scope of services provided.

The interface between the transport and application layers generally gives an
application the ability to send a block of data to the counterparty; the specific
parameters and conditions depends on the needs of the application. The
fundamental difference between various transport layer protocols lies in the delivery
guarantee. Some protocols (such as TCP) provide a so-called reliable service, which
means that the interface function returns a value that indicates whether the data was
delivered successfully or not. Some protocols (such as UDP) provide an unreliable
service, so the function returns only the result of sending, not delivering data.
Delivery detection and possible response to a delivery failure must be handled by the
application itself.

An obvious function of the layer is multiplexing, in this case access to the network for
various connections between local and remote sockets (clients and servers). The
individual communication channels are distinguished via ports.

Some protocols (e.g. TCP again) perform data segmentation. They can receive
blocks exceeding the size of data units that can be sent over the connected network,
divide the data into smaller blocks (segments) and send them separately. The
receiving side reassembles them into their original form and informs the sending
party whether the data has arrived, so that it is able to resolve a possible failure of a
segment.

An additional protocol function may be flow control, a mechanism for changing the
data transmission rate so that the communication channel is used efficiently without
congestion.

Slide 115

SISAL
Introduction to Networking (2022) 115

Transport layer in TCP/IP

• TCP (Transmission Control Protocol):

– used for connection-oriented services

– client starts a connection, data is sent via a stream

– the connection (relation) is driven by TCP, not application

– big overhead, TCP itself is complicated

– less-fluent but lossless delivery

• UDP (User Datagram Protocol):

– used for connectionless services

– no “connection” exists in UDP, data is sent in messages

– low overhead, IP and UDP are simpler

– fluent data flow, but data loss may occur

• Some modifications/combinations: SCTP, DCCP, MPTCP

The major protocols used at the TCP/IP transport layer are TCP and UDP.

TCP is used for connected applications. To illustrate, a connected application can
be compared to a phone call. The caller dials the number, his telephone operator
establishes a connection to the target device, and as soon as the call is connected,
the user starts an "application", i.e. starts talking and listening. The application has a
very simple job: it does not have to worry about whether individual sentences arrived
and whether they arrived in the correct order. Applications working over TCP behave
similarly – the client establishes a connection and a so-called stream is created, a
channel through which data flows in both directions. TCP is reliable, which means
that if an application does not receive an error return code, it is sure that all data has
arrived in order. The overhead for this guarantee is fully on the TCP side, and is
therefore quite complicated and robust; applications, on the other hand, can be
relatively simple. Of course, TCP overhead (acknowledging delivery, waiting for
acknowledgements, forwarding lost data) reduces logical transmission capacity and
can cause fluctuations in delivery frequency. A disadvantage of TCP is also that an
application has a very little ability to react to the state of the network – once it calls a
transfer function, it has no choice but to wait until the data is transferred or the
appropriate timeouts expire and the function announces a failed delivery.

UDP is used for connectionless applications. An analogy is communication using
traditional mail. If we drop a letter into a mailbox, it corresponds to calling the UDP
send function and the result is only “succeeded to send" or "failed to send". If we
send more letters, we have no guarantee that they will all arrive and that they will
arrive in the correct order (and in the computer world it may even happen that some
messages will be delivered twice). If we want to build a reliable channel in this way,
we (the "application") must take control. In UDP, separate messages are sent; UDP

itself handles only transmission, so it has very little overhead. All overhead is
transferred to the application, which also has the advantage that the application can
respond more flexibly to the current state of the network. Unlike TCP, data in UDP
can flow more regularly, and any loss must be resolved by the application – either it
should arrange the retransmission itself, or it must be able to work without the
missing part of the data.

Slide 116

SISAL
Introduction to Networking (2022) 116

UDP datagram structure

Source Port Destination Port

Length Checksum

Data

From the previous description it is clear that UDP does not need to add a lot of
information to the data from the application layer for its work and the encapsulation of
application data into the PDU of the transport layer is very simple.

In the UDP header, only multiplexing information, i.e. a source and destination port,
and control information (length and checksum) are transmitted.

Slide 117

SISAL
Introduction to Networking (2022) 117

TCP packet structure

Source Port Destination Port

Sequence Number

Acknowledgement Number

Data

Offset
(rsvd) Flags Window

Checksum Urgent Pointer

Options

Data

The TCP header contains a number of additional information fields compared to UDP.

In order for TCP to guarantee the completeness of the transmission, a unique
identification number must be added to each segment. Roughly said, each segment
contains a relative offset to the beginning of the stream (in the header we see the so-
called Sequence number). In order to be able to confirm delivery as well, we need an
analogous field for the opposite direction (the Acknowledgement number).

The Flags field contains flags, most of which we will discuss immediately.

The Urgent pointer field is used for an out-of-band transfer function. The application
can mark certain data as urgent with the URG flag. For instance, the command by
which a FTP client wants to interrupt a data transfer is sent as urgent. Such data is
then inserted into the normal communication and its relative address within the data
block is written in this field.

We will get to the other important fields of the header in more detail later.

Note: I present the structure of the TCP packet here to demonstrate its functions; I
am definitely not going to examine the position of individual fields.

Slide 118

SISAL
Introduction to Networking (2022) 118

TCP window

00

00

00

10

10

20

20

20

30

30 40

00

10

20

30

40

ACK 20

20 30 40 50 50

20

ACK 60

Let's take a closer look at how delivery acknowledgment and data flow control are
handled in TCP.

As already mentioned, TCP acknowledges the delivery of data. The recipient
acknowledges the delivery of a block by sending a packet to the sender with the ACK
flag set and the Acknowledgement number value set to the end of the data offset that
was delivered. However, if these acknowledgements were sent for each packet in a
separate packet, it would make unnecessary traffic. Therefore, it is possible to pack
the confirmation (flag + offset) into some other data that the recipient needs to send
back. The usual implementation is that a computer will wait a certain amount of time
before sending an ACK as long as another data item that will need to be sent to the
other side does not appear to connect the ACK to. If this does not happen within a
given limit, it sends the ACK separately.

Similarly, the communication channel would be used inefficiently if the sender had to
wait for confirmation of the previous packet before sending any new packets.
Therefore, TCP allows both parties to agree on a range of data that the sender may
send without waiting for confirmation. This limit is called a window size, and a node
may announce a proposed size in the Window field in the TCP header.

Consider a situation where one side of the connection starts sending blocks with a
data size of 10 bytes (in reality, of course, larger blocks are used) with a window size
set to 40 bytes. The sender starts sending blocks without waiting for confirmation, but
monitors the maximum window capacity. If a delivery receipt arrives in the meantime,
it moves the "window" to the position it contains. For instance, if the acknowledged
offset was 20, it can now send data up to offset 60. If no further acknowledgement
arrives by then, it must stop sending and start waiting for a new acknowledgement. If

the acknowledgement does not arrive, it must resend the first unconfirmed block of
data.

Slide 119

SISAL
Introduction to Networking (2022) 119

Connection initialization and termination

• TCP connection initialization (“three-way handshake”):

• Connection closure (one-way closure):

SYN Seq# c Ack# 0

SYN, ACK Seq# s Ack# c+1

ACK Seq# c+1 Ack# s+1

FIN Seq# x Ack# y

ACK Seq# y Ack# x+1

The partner (immediately, or later) closes his side, too.

The term "TCP connection" refers to a situation where the client and server have
confirmed their willingness to communicate with each other and have agreed on the
sequence numbers to be used. In fact, sequential numbers do not start from zero, for
security reasons, but from a random number chosen by the sending party.
Therefore, it is necessary to send the initial value to the counterparty. This agreement
takes place at the beginning of the connection using three special packets that have
an empty data part and carry information only in the header, and is called a three-way
handshake.

The first of these packets has the SYN (synchronization packet) flag set and has the
initial value selected by the client as the Sequence number; let's call it c. The server
acknowledges receipt by sending a packet with the ACK flag and the
Acknowledgement number set to c + 1. At the same time it generates its initial value
of the sequence number (s) and adds the SYN flag as well. The client then completes
the procedure by sending a packet in which it acknowledges receipt by sending an
ACK with a value of s + 1.

From now on, both parties can send data and gradually increase the values of the
sequence numbers by the data length.

If either party wants to end the connection, it sends a packet containing the FIN flag.
This tells the other party that the sender no longer intends to send any data. Usually,
the other party immediately sends a FIN packet as well, but if it does not want to
terminate the connection, it can continue to send its data. In that case, the party that
FIN has already sent will have to forward its ACK packets so that the connection
does not break. We can easily imagine this situation in HTTP, for example. After a
client sends its request, it can close the connection and just wait for a server to

respond. This condition is called a half-closed connection and is valid, although not
fully recommended, as various control mechanisms along the way can consider the
connection as dead and terminate it. Therefore, for example, the mentioned HTTP
client should leave the connection open and close it only when it has already
received the entire response.

Slide 120

SISAL
Introduction to Networking (2022) 120

TCP flags

• SYN - packet for segment numbers synchronization
(„Sequence number“ initialization)

• ACK - packet acknowledges delivery of all packets up
to „Acknowledgement number“ (not inclusive);
packet can but need not to contain also data

• PSH - informs that the delivered block is completed
and can be passed to the application („push“)

• FIN - sender closes own side of the connection,
no more data will be sent

• RST - sender refuses to accept the connection, or
immediately terminates the connection („reset“)

• URG - packet contains urgent (out-of-band) data,
the address is in „Urgent pointer“

In addition to the already mentioned flags URG, SYN, ACK and FIN, the following are
also important:
• PSH (push) - With this flag, the sending party notifies the other party of the last

segment of a data block. For the recipient, this means that if it has already
received all the other segments of the block, it can pass the block on to the
application for further processing.

• RST (reset) - With this flag, the sender notifies the other party that it does not
intend to continue communication. The flag can be used by a server during the
three-way handshake as a response in case it does not want to accept the
connection, or by either party at any time during the communication. Unlike
termination with FIN, RST means an immediate termination without waiting for
confirmation or for FIN from the counterparty.

Slide 121

SISAL
Introduction to Networking (2022) 121

Sample of tcpdump output

10.1.1.1.5471 > 1.2.3.4.25: Flags [SYN],

seq 1620916916, win 8192

1.2.3.4.25 > 10.1.1.1.5471: Flags [SYN,ACK],

seq 2525839733, ack 1620916917, win 65535

10.1.1.1.5471 > 1.2.3.4.25: Flags [ACK],

ack 1, win 64240

1.2.3.4.25 > 10.1.1.1.5471: Flags [PSH,ACK],

seq 1, ack 1, win 65535, length 48

10.1.1.1.5471 > 1.2.3.4.25: Flags [ACK],

ack 49, win 64192, length 0

10.1.1.1.5471 > 1.2.3.4.25: Flags [PSH,ACK],

seq 1, ack 49, win 64192, length 14

1.2.3.4.25 > 10.1.1.1.5471: Flags [PSH,ACK],

seq 49, ack 15, win 65535, length 46

relative SEQ

window
change

real SEQ

 220 alfik.ms.mff.cuni.cz ESMTP Sendmail 8.15.2

 HELO betynka

 250 alfik Hello betynka, pleased to meet you

If we want to look at a TCP/IP communication in more detail, we can use a program
that can capture and display it in a readable form (e.g. tcpdump, Wireshark,
WinPcap). Let's look at an example of the output of the first of these programs…

• The first packet is the first packet of a three-way handshake, which we can

recognize by the fact that it carries only the SYN flag. At the beginning of the line,
we see the source IP address and the dot-separated port number, and after the
arrow, the destination IP address and port. This is port 25, so this will obviously be
the first packet of an SMTP connection. We also see the initial sequence number
(seq) and the window size (win).

• The second packet is the server's response (it carries the SYN and ACK flags);
we see the confirmed client sequence number (ack) and also a proposal of a
larger window.

• In the last three-way handshake packet we already see the value of the
Acknowledgement number relatively. Tools such as tcpdump display sequence
and acknowledgement numbers as offsets relative to the beginning of the
communication (subtracting the initial value) for better readability.

• The next packet is the server's introductory message. For the first time, we see a
data length printed (length, 48 characters) and the PSH flag (push), because the
line is complete.

• The client apparently lingered a bit with the sending of its first command, so the
TCP software sent a separate delivery acknowledgement for the start line from
the server, in the fifth packet. It used the initial value plus the length of the
previous data (in relative numbers 1 + 48 = 49) as the Acknowledgement number
value.

• In the sixth packet, we see the first client command.

• The seventh packet contains the server's response. In addition to the data itself, it
also carries the ACK flag and a value that confirms to the client’s TCP layer the
receipt of the previous 14 bytes (in relative numbers 1 + 14 = 15). The server
therefore combined the sending of the acknowledgement with its own data.

Slide 122

SISAL
Introduction to Networking (2022) 122

Existing sockets listing

C:\Users\forst> netstat -an

Active Connections

Proto Local Address Foreign Address State

TCP 0.0.0.0:135 0.0.0.0:0 LISTENING

TCP 0.0.0.0:623 0.0.0.0:0 LISTENING

TCP 127.0.0.1:49209 127.0.0.1:49210 ESTABLISHED

TCP 127.0.0.1:49210 127.0.0.1:49209 ESTABLISHED

TCP 192.168.28.73:139 0.0.0.0:0 LISTENING

TCP 192.168.28.73:49167 195.113.19.78:22 ESTABLISHED

TCP 192.168.28.73:49183 195.113.19.78:80 ESTABLISHED

UDP 0.0.0.0:3702 *:*

UDP 127.0.0.1:1900 *:*

UDP 192.168.28.73:1900 *:*

TCP connection: local address / port remote address/ port

listening server

If we want to get an idea of what connections are currently open on our computer, we
can use the netstat command. With the -a parameter, it lists all TCP and UDP
servers and open TCP connections (there are no connections in UDP).

For TCP as a state protocol, the listing also contains the state of the connection in
the last column; in the example we see LISTENING (a listening server) and
ESTABLISHED (an open connection), but a number of other states exist.

In the second column we have the address of the local socket; there we see either
the actual address of a network interface or the address 0.0.0.0, which means that
the server is listening on all interfaces that are on our computer.

The third column is the socket address of the counterparty, here is either the actual
address and port of the remote socket, or in the case of the server the value 0.0.0.0
or *, which means that any client can connect.

In the case of UDP, we only have running servers in the list, because UDP has no
connections, so netstat has no information about the exchange of messages
between clients and servers.

Slide 123

SISAL
Introduction to Networking (2022) 123

Network layer (OSI 3)

• Main function: the transport of data passed down by the
transport layer to the target host

• Essential operations:

addressing - network layer protocols define the format and
structure of communicating partners’ addresses

encapsulation - control data needed for the transfer (namely
addresses) must be included into PDU

routing - searching the best way to the target through
intermediate networks

forwarding - passing the data from the input network interface
to the output one

decapsulation - unpacking the data and passing to the
transport layer

• Protocol examples: IPv4, IPv6, IPX, AppleTalk

The task of the network layer is to find a path to a destination computer so that it is
possible to deliver data passed by the transport layer regardless of technologies
used in the lower layers.

The layer stands on two basic pillars:
• Address scheme – a way to identify individual nodes in the network so that it is

possible to distinguish which network they belong to.
• Routing – a way to find a valid path from a source to a destination network based

on the address.

Other features of the layer include encapsulation, which we have mentioned before,
and forwarding; that is the principle that a router can receive a packet even though it
is not the packet’s final destination and tries to deliver it one step further to the
destination as if the packet originated directly on the router.

Slide 124

SISAL
Introduction to Networking (2022) 124

Internet Protocol (IP)

• Properties:

– connectionless (datagrams are delivered independently)

– best effort (unreliable, logic delegated to higher layers)

– media independent (higher layers need not to bother with it)

• Addresses:

– contain network address part and node address part

– IPv4: 4 bytes, IPv6: 16 bytes

• Assignment:

– central: IANA (Internet Assigned Numbers Authority),
department of ICANN

– regions: RIR (5x, Europe: RIPE NCC)

– further: ISP

– local network: network management (manually/automatically)

In the TCP/IP protocol suite, the Internet Protocol (IP) is used at the network layer.
This service is
• connectionless – individual datagrams are delivered independently, no formal

connections are created,
• unreliable – the network layer does not guarantee delivery (as we have seen with

UDP, which takes this property from IP),
• independent of the medium – the transport layer generally does not have to deal

with the details of the technology used (except for the MTU, which we will talk
about later).

There are currently two versions of the protocol: version 4 has an address length of 4
bytes, and in version 6 is it 16 bytes. For both versions, there is a method to
determine the network address part (which is responsible for routing) and the host
address part (which is responsible for delivery to the destination node) of any
address.

Each node that wants to communicate in a TCP/IP network must have an IP address.
The method of assigning addresses to connected end stations is decided by the
network administration. Each network uses certain ranges of addresses for its nodes
– either private ones (these are chosen by the network administration itself) or public
ones (these are assigned by the ISP that connects the network to the Internet). ISPs
receive blocks of addresses from superior ISPs; at the top of the hierarchy is IANA
(the Internet Assigned Numbers Authority, part of ICANN), which has five regional
registries under it:
• RIPE NCC manages Europe, Russia and West Asia
• APNIC manages the rest of Asia, Australia and Oceania
• ARIN administers the USA, Canada, Antarctica and part of the Caribbean

• LACNIC manages Latin America and the rest of the Caribbean
• AFRINIC manages Africa.

Slide 125

SISAL
Introduction to Networking (2022) 125

IPv4 datagram structure

Vers. Header

Length

Service Type

(priority, QoS)

Packet Length

Fragment Identification Flags Fragment Offset

Time-to-live Protocol Header Checksum

Source IP Address

Destination IP Address

Options Padding

Data

Encapsulation at the network layer adds an IP header that contains information
important for delivery. In the case of the version 4 protocol, the header contains the
following information:
• Version. Half a byte is reserved for the version, so a different format will be needed

for IP version 16.
• Header length. It takes up the second half of the first byte. Looking at the diagram,

it is probably clear that a maximum value of 15 would not be enough for the entire
length. This is really the case, which is why the length is given in 32-bit words and
not in bytes. This means that the maximum length of the header is 60 bytes, and if
its content is not a multiple of 4 bytes, it must be padded.

• The second byte contains QoS information and the rest of the first word is filled
with the length of the entire datagram.

• The second word is dedicated to fragmentation. This is a procedure that applies
when the network layer receives a packet so long that when it is encapsulated, we
would get a frame longer than the maximum allowed for a given link layer (the so-
called Maximum Transmission Unit, MTU). In this case, the network layer must
fragment the packet into multiple datagrams and send them sequentially.
Fragmentation is an unnecessary complication if it can be avoided. This is the
case with TCP, which segments the data itself, so it is possible to instruct it to use
a correct segment size. Therefore, a Path MTU search method is used – packets
are sent with the Do not fragment flag, thanks to which the sender learns about
possible problems with the size of the MTU along the path and can correctly
determine the segment size to be passed to the transport layer.

• The third word contains the Time-to-live value, to which we will return, the protocol
number that is encapsulated in the datagram, and the checksum of the header.

• This is followed by the IP addresses of the sender and recipient.
• Additionally, the header may contain options.

Note: I present the structure of the TCP packet here to demonstrate its functions; I
am definitely not going to examine the position of individual fields.

Slide 126

SISAL
Introduction to Networking (2022) 126

IPv4 addresses

A

B

C

D

E

126

~16 k

~2 M

~16 M

~64 k

254

10

110

1110

1111

net

net

net

net

host

host

host

Class byte 1 Nets

multicast

experimental

1-126

128-191

192-223

224-239

240-255

1st byte

0

byte 2 byte 3 byte 4

– Originally: one byte

– 1975 (RFC 687): three bytes („This expansion is adequate for
any foreseeable ARPA Network growth.“)

– 1976 (RFC 717): one byte (network) + three bytes (host)

– 1981 (RFC 791): classes A, B and C

Hosts

The situation in which computer networks began to be built is nicely illustrated by the
fact that originally a single byte was reserved for the computer address! Even the
authors of the original proposal clearly could not imagine how far our daily lives will
be affected by what they were just beginning to build.

In 1975, it was decided that the address should be extended. The new length was set
to three bytes, and RFC 687 contains a note that this extension was considered
adequate for any foreseeable growth of the network, which is amusing from
today's perspective!

A year later, the address size has expanded again. Not that the addresses were
running out so quickly, but addresses were supplemented with a section for a
network address (1 byte) and the original 3 bytes remained for a host address.

Another five years later, the number of networks turned out to be growing much faster
than expected, the original model was refined and three classes of addresses were
created for networks of various sizes. Class A covers the lower half of the address
space and uses the original 1:3 division. Class B occupies the third quarter of the
space and each class B address is divided into 2-byte portions. Class C occupies the
penultimate eighth of the address space and divides addresses by a ratio of 3:1,
which means that it offers about 2 million networks each containing a maximum of
254 computers.

Note: You might expect 256 instead of 254 for the number of addresses on a C
network, but the first and last addresses on each network are reserved.

The last eighth of the address space was reserved for further development, and in
1986 class D for so-called multicast addresses was separated from it. Class D
addresses completely lack a host address part, because they are used to address a
group of recipients – for special services (e.g. NTP uses the address 224.0.1.1),
video conferencing, etc.

Slide 127

SISAL
Introduction to Networking (2022) 127

Special IPv4 addresses (RFC 5735)

• Special addresses „by design“

– this host (used only as source one): 0.0.0.0/8

• an interface with so far unassigned address

– loopback (RFC 1122): 127.0.0.1/8

• the address of local host, enables loop creation

– network address: <network address>.<all 0s>

– network broadcast (RFC 919): <network address>.<all 1s>

• „to all within the net“, normally delivered to the target network

– limited broadcast (RFC 919): 255.255.255.255

• „to all within this net“, not allowed to leave the network

• Special addresses „by definition“ (not allowed to leave the network)

– private addresses (RFC 1918):
10.0.0.0/8, 172.16-31.0.0/16, 192.168.*.0/24

• for the local network traffic only, assigned by a network administrator

– link-local addresses (RFC 3927): 169.254.1-254.0/16

• for connections within local segment only, a host chooses it by itself

Some IP addresses have a special meaning according to the protocol definition:
• An address with all zeros is used as the source in a situation where we need to

communicate but we do not yet know our address.
• The address 127.0.0.1/8 is reserved for a special interface existing on each node

of the network and representing "this computer", the so-called loopback address.
When we need to establish communication between a client and a server both
running on our computer, they can both use this address.

• An address with an all-zeros host part is the network address.
• The last IP address in the address block of a (sub)network represents a network

broadcast, an address that we can use if we want to address all computers in the
network.

• In addition to the network broadcast address, which is normally delivered across
networks, there is also a limited broadcast (255.255.255.255) that must not leave
the network where it originated.

In addition to these special addresses, there are two categories of addresses whose
meaning is assigned by an organizational decision, not by the IP architecture:
• The first group are private addresses, which include one class A network, 16 class

B networks and 256 class C networks. As we already know, these are used in local
networks and a packet with a private address can only leave the network in special
cases. Otherwise, address translation (NAT) must be used

• The second group are link-local addresses. These addresses are freely usable;
each computer can take any of these addresses and start communication on the
network segment where it is connected. Unlike private addresses, however, they
cannot be used to communicate outside the network at all.

Slide 128

SISAL
Introduction to Networking (2022) 128

• Network splitting by expanding network part of address:

using so called network mask (netmask),
in this case 255.255.255.224:

• Subnets "all-zeros" and "all-ones“ are not recommended,
so we have here just 6 x 30 addresses (70%)

• Non contiguous mask is possible, but usually not used

• Nowadays, the classes are often ignored (classless mode),
using only the prefix length in bytes (e.g. 193.84.56.71/27)

• The term variable length subnet mask (VLSM) describes
situation when various masks are used in a network

• Moving the border in opposite direction: supernetting

Subnetting

net host
sub
net

1111111111111111 0000011111111111

Over time, it turned out that even a finer division into classes was not fine enough,
and especially in local networks, it is necessary to move the boundary between the
two parts of the address even further "rightward", to create several subnets from one
network. In this case, however, it is not enough to set an address when configuring a
network interface; you must also specify the network size. One way to do this is to
add a so-called netmask, a number that contains ones just where the network
address is. For example, if we want to shift the network boundary of a class C
address by three bits, we use the value 255.255.255.224. The choice of input method
is quite logical – if we have a host address and want to know if it belongs to our
network, we just take the netmask and the host address, perform a bit AND
operation, and if the result is our network address, the host address is "ours".
However, calculating a netmask is a bit complicated, so today it is often replaced by
the so-called classless format, where we write only the number of bits that make up
the network address part after a slash.

Using subnetting allows you to divide a network into smaller parts, but reduces the
number of addresses available. Since the use of a subnet numbers with only zeros
and only ones is not fully recommended, a subnet mode in our example will reduce
the network to 6 subnets of 30 computers.

Moreover, this division is again very rough, and if we need a more flexible division,
we will not be able to do with one mask. For instance, if one of our 6 subnets has
more than 30 computers, but two have at most 14 computers, one class C address
will not be enough for us with subnetting using a fixed mask. We will have to use the
so-called Variable Length Subnet Mask (VLSM) mode and use the /28 mask in two
small subnets, and /26 in the large network.

The natural question is whether the border can also be moved in the opposite
direction, i.e. to join networks instead of dividing them. This is useful e.g. in a
situation where I have more than 254 computers in a LAN and I have two class C
networks for them. If I did not use supernetting and connect them to one network with
the /23 mask, I would have to deal with unnecessary complications when
communicating between two computers which, although in one LAN, happen to have
addresses from different class C networks.

Fortunately, private addresses are used extensively in LANs today, where there are a
sufficient number of networks of all classes, so subnetting does not need to be
addressed as often.

Note: If we are handling an IP address that does not belong to our network, of
course, we cannot know what subnetting its local network uses. But that doesn't
matter, because we don't care about it. From the point of view of routing, we
communicate with a foreign address as if it does not use any subnetting – our task is
to deliver the packet to the target network and the final delivery is already fully under
control of that network.

Slide 129

SISAL
Introduction to Networking (2022) 129

Internet crisis

• Routing tables growth

– Nature of the problem: large number of non contiguously
assigned blocks overfills routing tables

– Partial solutions: address reallocation, CIDR (Classless
InterDomain Routing) aggregation

• Address space exhaustion

– Nature of the problem: due to rough space
fragmentation large wasting occurs

– Partial solution: classless address blocks assigning,
recycling of unused blocks, private addresses + NAT

– End of IPv4: APNIC 2011/04, RIPE NCC 2012/09,
LACNIC 2014/06, ARIN 2015/09, AFRINIC 2017/04

The general feeling of IP address sufficiency in the spirit of the daring sentence from
RFC 687 meant that IP address allocation was not governed by any strict rules at
that time. At the turn of the 80s and 90s, however, it began to appear that this was
beginning to bring problems in two ways.

Tables of central routers began to overflow. This could be prevented by the approach
that if in reality some networks were adjacent to each other and they also had
adjacent numerical values, it was possible to aggregate their records on most
routers, i.e. actually do supernetting over them and combine both records into one
with a shorter network mask. This principle is the so-called Classless InterDomain
Routing (CIDR), but its effective implementation had to be preceded by massive
renumbering of many networks on the Internet, so that they could be effectively
aggregated at all.

At the same time, it became clear that allocating arbitrary ranges to any network
would sooner or later lead to exhaustion of the IPv4 address space. ISPs started to
save addresses, renumber networks, allocate blocks that did not correspond to IP
classes, etc. Fortunately, the use of private addresses and NAT began to be
massively introduced, which dramatically reduced the need for public IP addresses (a
network with one thousand computers needs with NAT only one address instead of
one thousand).

In spite of that, however, it was clear that these methods are able only to postpone
the problem, not to solve it, and intensive work began on the preparation of the so-
called IP next generation (IPng).

Slide 130

SISAL
Introduction to Networking (2022) 130

IP version 6

• Long development, adopted additional instruments from IPv4

• Final address format: 128 bits (16 bytes)

• Notation: fec0::1:800:5a12:3456/64

• Address types:

– unicast - address of one node; special ones (RFC 8200):

• Loopback (::1/128)

• Link-Scope (fe80::/10), formerly link-local

• Unique-Local (fc00::/7), formerly site-local,

analogy of private addresses in IPv4

– multicast (ff00::/8) - address of group of nodes (interfaces)

– anycast - formally unicast address, assigned to more nodes;
routing solves delivery; intention: server distribution worldwide

– no analogy of broadcast

• Migration is facilitated by various tunneling between IPv4 and IPv6

The creation of a new version of IP took quite a long time, as well as its subsequent
introduction into various operating systems and debugging problems. Fortunately,
CIDR and NAT postponed the problem, so even before IPv6 could actually be
deployed, both the protocol and network software was well prepared. In addition, the
long co-existence of both versions was expected and the transition is facilitated by
various variants of IPv6 tunneling to IPv4 and vice versa. In addition, the authors of
IPv6 took a number of additional tools and features from the previous version and,
after a thorough analysis, modified them and incorporated them directly into the IPv6
design.

In its final form, an IPv6 address has 16 bytes and is normally written in 16-bit words
in hexadecimal with CIDR mask notation. In order to be able to shorten the notation
of current addresses containing long sequences of zeros, a single series of null
words can be omitted (so that there are two colons in a row in the notation).

In terms of address types, we find many identical and different features in IPv6.
Basic, unicast addresses include, in addition to public ranges, a loopback address,
link-local addresses and unique-local addresses. The latter group is a certain analogy
of private addresses in IPv4. Multicast addresses play a greater role than in IPv4.
IPv6 lacks broadcast addresses and they are de facto replaced by the multicast
address ff02::1 ("All IPv6 devices").

Anycast addresses are a complete novelty. They are used in various situations where
a resource is available in geographically separated locations and we would like the
network to choose the most suitable resource by itself. One anycast address can be
set for all affected computers, and a packet sent to that address will be routed to the
nearest destination without the client having to explicitly select it.

Slide 131

SISAL
Introduction to Networking (2022) 131

Summary 6

• Why and how is time synchronized on hosts on the network?

• What is DHCP for?

• How does TCP/IP deal with the missing presentation layer?

• Explain the difference between TCP and UDP.

• What is TCP window for?

• What is a three-way handshake?

• How are the IPv4 classes, subnetting, and CIDR related?

• Why are there only 254 host addresses in a class C network?

• What types of broadcast addresses do we know about?

