
1NPRG054 High Performance Software Development- 2016/2017 David Bednárek

Programovací jazyky a výkonnost

Programovací jazyky pro numerické aplikace 2

Numerické a příbuzné aplikace

 FORTRAN

• Velká konkurence mezi překladači

• Relativně slabý jazyk dovolující agresivní optimalizace

 C/C++

• Téměř stejně kvalitní překladače

• Úspěšnější standardizace

• Agresivní optimalizace vyžadují rozšíření jazyka

• restrict/__restrict

• #pragma omp/#pragma acc

 Oba jazyky jsou relativně obtížné pro začátečníky

• Ne-informatici žádají snadný start

Existují jiné jazyky než FORTRAN a C/C++? 3

Fortra

n
Julia Python R Matlab Octave

Mathe-

matica

Java-

Script
Go LuaJIT Java

fib 0.70 2.11 77.76 533.52 26.89 9324.35 118.53 3.36 1.86 1.71 1.21

parse_i

nt
5.05 1.45 17.02 45.73 802.52 9581.44 15.02 6.06 1.20 5.77 3.35

quickso

rt
1.31 1.15 32.89 264.54 4.92 1866.01 43.23 2.70 1.29 2.03 2.60

mandel 0.81 0.79 15.32 53.16 7.58 451.81 5.13 0.66 1.11 0.67 1.35

pi_sum 1.00 1.00 21.99 9.56 1.00 299.31 1.69 1.01 1.00 1.00 1.00

rand_ma

t_stat
1.45 1.66 17.93 14.56 14.52 30.93 5.95 2.30 2.96 3.27 3.92

rand_ma

t_mul
3.48 1.02 1.14 1.57 1.12 1.12 1.30 15.07 1.42 1.16 2.36

jednovláknový kód, implementace v C = 1.00

zdroj: MIT CSAIL, julialang.org

Existují jiné jazyky než FORTRAN a C/C++? 4NPRG054 High Performance Software Development- 2016/2017 David Bednárek

Zdroj: Morandat et al., Evaluating the Design of the R Language, ECOOP 2012

Existují jiné jazyky než FORTRAN a C/C++? 5NPRG054 High Performance Software Development- 2016/2017 David Bednárek

Existují jiné jazyky než FORTRAN a C/C++? 6NPRG054 High Performance Software Development- 2016/2017 David Bednárek

Příklad: (Ne-)výkonnost jazyka R 7NPRG054 High Performance Software Development- 2016/2017 David Bednárek

Jazyk R by mohl být překladači optimalizován snadněji než

C

 Převládá funkcionální charakter

 Lazy evaluation

 Žádné ukazatele, aliasy etc.

 Imutabilní datové struktury teoreticky umožňují snadnou (de)alokaci

Jiné části R jsou však pro překladače neřešitelné

 dynamické typy

 netypický mechanismus tříd

 eval

 ohyzdnosti jako super-assignment

Některé úlohy se v R programují velmi obtížně

 Mutabilní datové struktury

• Hashovací tabulky, AVL stromy, ...

 Nevýpočetní části: I/O, GUI, ...

8NPRG054 High Performance Software Development- 2016/2017 David Bednárek

Rozšíření C++ pro řízení optimalizací

(pro jednovláknový kód)

Integrace procedur 9NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Intel
• #pragma inline/forceinline/noinline [recursive]

 The forceinline pragma indicates that the calls in question should be
inlined whenever the compiler is capable of doing so.

 The inline pragma is a hint to the compiler that the user prefers that the
calls in question be inlined, but expects the compiler not to inline them if
its heuristics determine that the inlining would be overly aggressive and
might slow down the compilation of the source code excessively, create
too large of an executable, or degrade performance.

 The noinline pragma indicates that the calls in question should not be
inlined.

gcc
• void f() __attribute__((always_inline))

 For functions declared inline, this attribute inlines the function
independent of any restrictions that otherwise apply to inlining. Failure
to inline such a function is diagnosed as an error.

• void f() __attribute__((flatten))

 Generally, inlining into a function is limited. For a function marked with
this attribute, every call inside this function is inlined, if possible.
Whether the function itself is considered for inlining depends on its size
and the current inlining parameters.

• void f() __attribute__((noinline))

Ignorování potenciálních závislostí 10NPRG054 High Performance Software Development- 2016/2017 David Bednárek

pragma ivdep
• Intel

• #pragma ivdep

• gcc

• #pragma GCC ivdep

 The ivdep pragma instructs the compiler to ignore assumed vector

dependencies.

 The proven dependencies that prevent vectorization are not ignored,

only assumed dependencies are ignored.

 In addition to the ivdep pragma, the vector pragma can be used to

override the efficiency heuristics of the vectorizer.

void example(int *a, int k, int c, int m) {

#pragma ivdep

for (int i = 0; i < m; i++)

a[i] = a[i + k] * c;

}

Ignorování potenciálních aliasů 11NPRG054 High Performance Software Development- 2016/2017 David Bednárek

SolarisCC (Oracle)
• #pragma noalias (pointer, pointer [, pointer]…)

• #pragma may_not_point_to (pointer, variable [, variable]…)

C99 (gcc, Intel, MSVC)

 __restrict (C++ MSVC)
void copy(int * restrict a, int * restrict b, int m) {

for (int i = 0; i < m; i++)

a[i] = b[i];

}

Vynucená vektorizace 12NPRG054 High Performance Software Development- 2016/2017 David Bednárek

Intel
• #pragma vector always

• #pragma simd

 Asks the compiler to vectorize the loop if it is safe to do so, whether

or not the compiler thinks that will improve performance.

OpenMP
• #pragma omp declare simd

gcc
• void f() __attribute__((simd))

 This attribute enables creation of one or more function versions that

can process multiple arguments using SIMD instructions from a

single invocation.

13NPRG054 High Performance Software Development- 2016/2017 David Bednárek

Parallelization/vectorization/optimization in C++

C++17 execution control 14NPRG054 High Performance Software Development- 2016/2017 David Bednárek

C++17
• already in TS 19570:2015 as experimental

 <execution> - namespace std::execution

• Types (tags)

• class sequenced_policy { /* unspecified */ };

• class parallel_policy { /* unspecified */ };

• class parallel_unsequenced_policy { /* unspecified */ };

• Constants – instances of tags used as arguments to functions

• inline constexpr sequenced_policy seq { /* unspecified */ };

• inline constexpr parallel_policy par { /* unspecified */ };

• inline constexpr parallel_unsequenced_policy par_unseq { /*

unspecified */ };

 Additional execution policies may be provided by a standard library

implementation (possible future additions may include

std::parallel::cuda and std::parallel::opencl)

C++17 execution control 15NPRG054 High Performance Software Development- 2016/2017 David Bednárek

Example – for_each

 Old version (C++98, semantics changed in C++11)

• template< class InputIt, class UnaryFunction >

UnaryFunction for_each(InputIt first, InputIt last,

UnaryFunction f);

• Applies the given function object f to the result of dereferencing every

iterator in the range [first, last), in order.

• UnaryFunction must meet the requirements of MoveConstructible. Does

not have to be CopyConstructible

 C++17

• template< class ExecutionPolicy, class ForwardIt, class

UnaryFunction2 >

void for_each(ExecutionPolicy&& policy,

ForwardIt first, ForwardIt last, UnaryFunction2 f);

• Applies the given function object f to the result of dereferencing every

iterator in the range [first, last) (not necessarily in order).

• The algorithm is executed according to policy.

• UnaryFunction2 must meet the requirements of CopyConstructible.

C++17 execution control 16NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Effect of the tags
 sequenced_policy

• Parallel algorithm's execution may not be parallelized.

• The invocations of element access functions in parallel algorithms invoked with this policy
(usually specified as std::execution::seq) are indeterminately sequenced in the calling thread.

 parallel_policy
• Parallel algorithm's execution may be parallelized.

• The invocations of element access functions in parallel algorithms invoked with this policy
(usually specified as std::execution::par) are permitted to execute in either the invoking
thread or in a thread implicitly created by the library to support parallel algorithm execution.

• Any such invocations executing in the same thread are indeterminately sequenced with
respect to each other.

 parallel_unsequenced_policy
• Parallel algorithm's execution may be parallelized, vectorized, or migrated across threads

(such as by a parent-stealing scheduler).

• The invocations of element access functions in parallel algorithms invoked with this policy are
permitted to execute in an unordered fashion in unspecified threads, and unsequenced with
respect to one another within each thread.

• Unsequenced execution policy is the only case where function calls are unsequenced with
respect to each other, meaning they can be interleaved. In all other situations in C++, they
are indeterminately-sequenced (cannot interleave).

• Because of that, users are not allowed to allocate or deallocate memory, acquire
mutexes or perform any other vectorization-unsafe operations when using this policy
(vectorization-unsafe functions are the ones that synchronize-with another function, e.g.
std::mutex::unlock synchronizes-with the next std::mutex::lock)

 During the execution of a parallel algorithm with any of these three execution policies,
if the invocation of an element access function exits via an uncaught exception,
std::terminate is called, but the implementations may define additional execution
policies that handle exceptions differently.

C++17 execution control 17NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Parallel versions of algorithms
• execution_policy argument added

• adjacent_difference adjacent_find all_of any_of copy copy_if copy_n count
count_if equal fill fill_n find find_end find_first_of find_if find_if_not generate
generate_n includes inner_product inplace_merge is_heap is_heap_until
is_partitioned is_sorted is_sorted_until lexicographical_compare max_element
merge min_element minmax_element mismatch move none_of nth_element
partial_sort partial_sort_copy partition partition_copy remove remove_copy
remove_copy_if remove_if replace replace_copy replace_copy_if replace_if
reverse reverse_copy rotate rotate_copy search search_n set_difference
set_intersection set_symmetric_difference set_union sort stable_partition
stable_sort swap_ranges transform uninitialized_copy uninitialized_copy_n
uninitialized_fill uninitialized_fill_n unique unique_copy

 New parallel algorithms
• for_each - similar to std::for_each except returns void

• for_each_n - applies a function object to the first n elements of a sequence

• reduce - similar to std::accumulate, except out of order

• exclusive_scan - similar to std::partial_sum, excludes the ith input element from
the ith sum

• inclusive_scan - similar to std::partial_sum, includes the ith input element in the
ith sum

• transform_reduce - applies a functor, then reduces out of order

• transform_exclusive_scan - applies a functor, then calculates exclusive scan

• transform_inclusive_scan - applies a functor, then calculates inclusive scan

Sequenced-before 18NPRG054 High Performance Software Development- 2016/2017 David Bednárek

• value computation: calculation of the value that is returned by the expression.
This may involve determination of the identity of the object (glvalue evaluation,
e.g. if the expression returns a reference to some object) or reading the value
previously assigned to an object (prvalue evaluation, e.g. if the expression
returns a number, or some other value)

• side effect: access (read or write) to an object designated by a volatile glvalue,
modification (writing) to an object, calling a library I/O function, or calling a
function that does any of those operations.

 Sequenced-before rules (since C++11)
 "sequenced-before" is an asymmetric, transitive, pair-wise relationship between

evaluations within the same thread.
• If A is sequenced before B, then evaluation of A will be complete before evaluation of

B begins.

• If A is not sequenced before B and B is not sequenced before A, then two possibilities
exist:

• evaluations of A and B are unsequenced: they may be performed in any order
and may overlap (within a single thread of execution, the compiler may interleave
the CPU instructions that comprise A and B)

• evaluations of A and B are indeterminately sequenced: they may be performed in
any order but may not overlap: either A will be complete before B, or B will be
complete before A. The order may be the opposite the next time the same
expression is evaluated.

 Undefined behavior
• If a side effect on a scalar object is unsequenced relative to another side effect on the

same scalar object, the behavior is undefined.

• If a side effect on a scalar object is unsequenced relative to a value computation using
the value of the same scalar object, the behavior is undefined.

Sequenced-before 19NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Each value computation and side effect of a full expression, that is

• unevaluated operand

• constant expression

• an entire initializer, including any comma-separated constituent expressions

• the destructor call generated at the end of the lifetime of a non-temporary object

• an expression that is not part of another full-expression (such as the entire
expression statement, controlling expression of a for/while loop, conditional
expression of if/switch, the expression in a return statement, etc),

• including implicit conversions applied to the result of the expression, destructor
calls to the temporaries, default member initializers (when initializing
aggregates), and every other language construct that involves a function call,

• is sequenced before each value computation and side effect of the next full
expression.

 The value computations (but not the side-effects) of the operands to any
operator are sequenced before the value computation of the result of the
operator (but not its side-effects).

 When calling a function (whether or not the function is inline, and whether or not
explicit function call syntax is used), every value computation and side effect
associated with any argument expression, or with the postfix expression
designating the called function, is sequenced before execution of every
expression or statement in the body of the called function.

Sequenced-before 20NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 The value computation of the built-in post-increment and post-decrement operators is sequenced
before its side-effect.

 The side effect of the built-in pre-increment and pre-decrement operators is sequenced before its
value computation (implicit rule due to definition as compound assignment)

 Every value computation and side effect of the first (left) argument of the built-in logical AND
operator && and the built-in logical OR operator || is sequenced before every value computation
and side effect of the second (right) argument.

 Every value computation and side effect associated with the first expression in the conditional
operator ?: is sequenced before every value computation and side effect associated with the
second or third expression.

 The side effect (modification of the left argument) of the built-in assignment operator and of all
built-in compound assignment operators is sequenced after the value computation (but not the
side effects) of both left and right arguments, and is sequenced before the value computation of
the assignment expression (that is, before returning the reference to the modified object)

 Every value computation and side effect of the first (left) argument of the built-in comma operator ,
is sequenced before every value computation and side effect of the second (right) argument.

 In list-initialization, every value computation and side effect of a given initializer clause is
sequenced before every value computation and side effect associated with any initializer clause
that follows it in the brace-enclosed comma-separated list of initalizers.

 When returning from a function, copy-initialization of the temporary that is the result of evaluating
the function call is sequenced-before the destruction of all temporaries at the end of the operand
of the return statement, which, in turn, is sequenced-before the destruction of local variables of the
block enclosing the return statement.

 A function call that is not sequenced before or sequenced after another function call
is indeterminately sequenced (the program must behave as if the CPU instructions
that constitute different function calls were not interleaved, even if the functions
were inlined).
 The rule has one exception: a function calls made by a standard library algorithm executing under

std::par_unseq execution policy are unsequenced and may be arbitrarily interleaved.

Sequenced-before 21NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Additional rules - C++17
 In a function-call expression, the expression that names the function is sequenced

before every argument expression and every default argument.

 In a function call, value computations and side effects of the initialization of every
parameter are indeterminately sequenced with respect to value computations and
side effects of any other parameter.

 In a subscript expression E1[E2], every value computation and side-effect of E1 is
sequenced before every value computation and side effect of E2

 In a pointer-to-member expression E1.*E2 or E1->*E2, every value computation and
side-effect of E1 is sequenced before every value computation and side effect of E2
(unless the dynamic type of E1 does not contain the member to which E2 refers)

 In a shift operator expression E1<<E2 and E1>>E2, every value computation and
side-effect of E1 is sequenced before every value computation and side effect of E2

 The call to the allocation function (operator new) is sequenced before (since C++17)
the evaluation of the constructor arguments in a new-expression

 Every expression in a comma-separated list of expressions in a parenthesized
initializer is evaluated as if for a function call (indeterminately-sequenced)

 Every overloaded operator obeys the sequencing rules of the built-in
operator it overloads when called using operator notation.

 In every simple assignment expression E1=E2 and every compound
assignment expression E1@=E2, every value computation and side-effect
of E2 is sequenced before every value computation and side effect of E1

• i = ++i + 2; // undefined behavior until C++11

• i = i++ + 2; // undefined behavior until C++17

• f(i = -2, i = -2); // undefined behavior until C++17

• f(++i, ++i); // undefined behavior until C++17, unspecified after C++17

• i = ++i + i++; // undefined behavior

