
1NPRG041 Programování v C++ - 2019/2020 David Bednárek

Cecko

Assignment 3 to 5 – Semantic analysis

Base and bonus assignments

Assignment 3 – declarations Assignment 4 Assignment 5

100:
Types: Built-in, TYPEIDF, const
Pointer, Function
Declarations: Variable, Function
Expressions: Integer literals
Statements: Return

100:
Conversions: Array-to-pointer
_Bool/char-to-int, int-to-char
Expressions: char/string literals,
Variables
Function call (also variadic)
Unary +, -, *, &
Binary int +,-,*,/,%
Binary char/int/ptr =
Statements: expression, return

100:
Conversions: any-to-_Bool
Expressions:
int <,<=,>,>=,==,!=
Unary !
_Bool =
_Bool arguments and return values
Statements: if,while,do

+10: Declarations: typedef +10: sizeof +10: Statements: for

+10: Types: Array +10: Expressions:
int ++, --, +=, -=, *=, /=, %=
ptr ++, --, +=, -=

+10: Expressions:
ptr <,<=,>,>=,==,!=
ptr-ptr

+20: Types: Enum +20: Expressions:
ptr+int, int+ptr, ptr-int
ptr[int], int[ptr]

+30: Expressions:
Binary ||,&&

+20: Types: Struct +10: Expressions: .,->, struct =
Struct arguments and return values

+6: Bonus for passing extra tests

Semantic actions in bison

bison

• a bison parser can evaluate a purely-synthesized attribute grammar
• synthesized attributes are passed from children to parents

• i.e. from the right-hand-side of a rule to the nonterminal on the left

• inherited attributes cannot be supported by bison
• LALR(1) parser builds the tree bottom-up, during reductions

• bison supports only one attribute for each non-terminal
• it may be a C++ structure

• each non-terminal may produce a different type of attribute

• attribute types are declared in the first section of a grammar file
• declaration of the terminal A and its attribute type T

%token<T> A

• declaration of the attribute type T of the non-terminal a
%type<T> a

• attribute values are assigned in the C++ code for each rule
• example: evaluating an expression (in compile time)

%type<double> mul_expr add_expr
%%
add_expr:

mul_expr { $$ = $1; }
| add_expr ADD mul_expr { $$ = $1 + $3; }
| add_expr SUB mul_expr { $$ = $1 - $3; }
;

bison

• Technical details
%token<T> A
%type<T> a

• The T must be a class/type (qualified) identifier in C++

• container instances, pointers, etc. must be named by typedef/using

• The T must support default constructor and copy-assignment

• data containing unique_ptr cannot be used

• In the case of syntax-error recovery, attributes are discarded

• instead of being used in a rule

• $$ denotes the attribute of the LHS non-terminal

• the output attribute of the rule

• it shall be assigned by the C++ code of the rule

• it may be assigned by parts ($$.a) or accessed repeatedly in the code fragment

• $i denotes the attribute of the i-th symbol on the RHS

• every symbol counts, even if it has no attribute

• @i denotes the location (line number) of the i-th symbol on the RHS

• for non-terminals, it is automatically computed from terminals contained

• if there is no C++ code in a rule, { $$ = $1; } is used automatically

• it may fail due to type incompatibility

• not a good practice to rely on this

bison

• a bison parser can evaluate a purely-synthesized attribute grammar

• it is sufficient for compiling expressions and declarations

• it cannot pass the information from the declaration to a use of an identifier

• instead of bison attributes, global state (ctx) must be used

• we must understand the order in which the C++ code fragments are executed

• a post-order pass through the (physically non-existent) derivation tree

• special care needed in some cases

• example: linked list declaration
struct N { int v; struct N * next; };

• the declaration of struct N must appear in symbol tables before entering the { }

• the full definition of struct N must be added to symbol tables afterwards

decl_head:
STRUCT IDF { $$ = ctx->struct_definition_open($2); }

decl:
decl_head LCUR elem_list RCUR { ctx->struct_definition_close($1,$3); }
;

• note: bison can somehow handle code fragments inside the RHS

• their presence has surprising side-effects

• rewriting grammar to keep code at the end of RHS is preferred

• in Assignments 4 and 5, we will need similar tricks to handle code generation

bison & flex

• bison is a LALR(1) parser – look-ahead of 1 token
• when parser does a reduce, lexer has already processed the next token

• the TYPEIDF trick in the lexer
[a-z]+ { if (ctx->is_typedef(yytext))

return make_TYPEIDF(yytext);
else return make_IDF(yytext); }

• Example:
typedef int * ptr ; ptr x ;

• In the parser, this rule...
declaration: TYPEDEF type declarator SEMIC { ctx->define_typedef($2, $3); };

• ... would NOT work
• the second "ptr" is already returned from the lexer as IDF when define_typedef is called

• The correct solution is:
declaration_core:

TYPEDEF type declarator { ctx->define_typedef($2, $3); };
declaration: declaration_core SEMIC;

• The real grammar allows a sequence of declarators – it may be rewritten as:
declaration_core:

TYPEDEF type declarator { ctx->define_typedef($2, $3); $$ = $2; }
| declaration_core COMMA declarator { ctx->define_typedef($1, $2); $$ = $1; }
;

• in reality, it must allow more variants than "TYPEDEF type" including "int typedef const"

• Another example – scope exit must be reported before the closing parenthesis
void f(); int x; void g() { { typedef char f; } f(x); }

A minimal introduction to
LLVM IR

LLVM IR

• LLVM Intermediate Representation
• The output of your work (directly or indirectly through the cecko framework)

• Global variables (including string constants)

• Functions containing code (including instructions allocating local variables)

• llvm::Value – Abstract class representing any "algorithm" providing a value
• Held by llvm::Value * = cecko::CKIRValueObs

• llvm::Constant
• llvm::ConstantInt – integer constants computed during compilation

• Held by llvm::ConstantInt * = cecko::CKIRConstantIntObs

• other immutable values like addresses of global variables

• llvm::Instruction – anything computed at run-time
• including llvm::AllocaInst - allocate an address for a local variable

• Automatically generated by the cecko framework

• created using llvm::IRBuilder - provides automatic constant folding
• if an instruction being created has constant operands, the result constant is created instead

• llvm::Type – Abstract class representing a type of a value
• Held by llvm::Type * = cecko::CKIRTypeObs

• Simplified type system of the C language
• arbitrarily sized integers, floats, pointer, arrays, structs, functions

• no enums, no signed/unsigned flag, no const flag – insufficient for compiling C

The cecko framework
for Assignment 3

cecko framework

• The cecko framework provides

• A type system corresponding to the cecko language

• void, _Bool, char, int – the built-in types

• pointer, array, function

• struct, enum

• const flags where required

• Named entities in two name spaces

• Identifiers. Due to the TYPEIDF trick, divided into two subspaces

• Named objects – enum constants, variables, functions – IDF tokens

• Typedefs – defined from IDF tokens, used as TYPEIDF tokens

• Tags – structs and enums

• You shall allow both IDF and TYPEIDF after struct/enum keywords!

• Both name spaces are divided into scopes (i.e. compound statements)

• The framework automatically handles scoping rules

• Your responsibility is to report scope boundaries

• Scopes also provide automatic distinction between global and local variables

• Function arguments are automatically converted into local variables

• structs, enums and functions have distinct declarations and definitions

• Where applicable, the framework also creates the corresponding LLVM entities

cecko framework

• All creation/modification services of the framework provided through ctx
• hold by cecko::context_obs

• member functions of cecko::CKContext

• member functions of cecko::context (messaging functions)

• Inspecting entity properties is done via the corresponding (abstract) class
• cecko::CKAbstractType – all type descriptors

• hold by cecko::CKTypeObs

• cecko::CKAbstractNamed – constants, variables, functions
• hold by cecko::CKNamedObs

• cecko::CKTypedef – typedefs
• hold by cecko::CKTypedefConstObs

• For many entities, there are two types of pointers, e.g.:
• cecko::CKTypeObs = const cecko::CIAbstractType *

• Dereference (->) will crash when null

• cecko::CKTypeSafeObs
• Dereference (->) is safe (provides a dummy object) when null

• Use ! to test for null

• This allows easy recovery from many semantic errors

• Implicitly convertible to cecko::CKTypeObs

Examples

• typedef const int * strange[3];

• int
auto t1=ctx->get_int_type();

• const
auto tp1=CKTypeRefSafePack(t1,true);

• 3
auto value=ctx->get_int32_constant(3);

• *
auto t2=ctx->get_pointer_type(tp1);
auto tp2=CKTypeRefSafePack(t2,false);

• []
auto t3=ctx->get_array_type(tp2.type,value);
auto tp3=CKTypeRefSafePack(t3,tp3.is_const);

• strange
ctx->define_typedef(“strange”,tp3,loc);

