
1NPRG041 Programování v C++ - 2019/2020 David Bednárek

Cecko

Assignment 5 – Generating code for statements

Control flow in
LLVM IR

LLVM IR

• Instructions are created using llvm::IRBuilder
• accessible as ctx->builder()->CreateXYZ(...)

• the builder appends instructions at an insertion point into a basic block
• it may also be in unbound state, unable to emit instructions

• preset by the framework upon entering a function body (ctx->enter_function())

• any control-flow statement requires creation of new basic blocks

• basic blocks are created by calling ctx->create_basic_block(name)

• a basic block is identified by CKIRBasicBlockObs

• a basic block is needed to

• create a branch instruction pointing to that BB

• a BB may be a target of more than one branch instruction

• set builder insertion point before generating instructions to that BB

• this can be done repeatedly, producing a BB from more than one batch of instructions

• the order of instructions in a BB is determined by the order of Create... calls

• this order usually corresponds to the order statements/expressions in the source code

• if a different order is required, more than one BB must be used

• if a branch or return instruction is generated into a basic block

• adding further instructions to the same BB will produce invalid code

• it is a good idea to signalize it by calling ctx->builder()->ClearInsertionPoint()

• check the insertion point (GetInsertBlock()!=nullptr) before generating implicit returns or
unconditional branch instructions

IF-ELSE statement

• IF-ELSE statement
• the condition is generated into the previous BB
• the Boolean result is held in LLVM Value of type i1

• at the end of the condition
• create two new BBs
• append a conditional branch

ctx->builder()->CreateCondBr(cond,BB1,BB2);
• switch the builder to BB1

ctx->builder()->SetInsertPoint(BB1);
• the then-statement is generated into BB1

• at the else keyword
• create a third BB
• append an unconditional branch

• only if the builder still has an insertion point
ctx->builder()->CreateBr(cond,BB3);

• switch the builder to BB2
ctx->builder()->SetInsertPoint(BB2);

• the else-statement is generated into BB2

• at the end of the else-statement
• append an unconditional branch

• only if the builder still has an insertion point
ctx->builder()->CreateBr(cond,BB3);

• switch the builder to BB3
ctx->builder()->SetInsertPoint(BB3);

• the following statements will be generated into BB3
• BB3 not needed if no branch to BB3 was generated

statement_T;
else

statement_F;

if (condition)

BB1

BB2

BB3

Incomplete IF statement

• Incomplete IF statement
• the condition is generated into the previous BB

• the Boolean result is held in LLVM Value of type i1

• at the end of the condition

• create two new BBs

• append a conditional branch
ctx->builder()->CreateCondBr(cond,BB1,BB2);

• switch the builder to BB1
ctx->builder()->SetInsertPoint(BB1);

• the then-statement is generated into BB1

• when there is no else keyword

• append an unconditional branch

• only if the builder still has an insertion point

ctx->builder()->CreateBr(cond,BB2);

• switch the builder to BB2
ctx->builder()->SetInsertPoint(BB2);

• the following statements will be generated into
BB2

statement_T;

if (condition)

BB1

BB2

FOR statement

• FOR statement
• The condition expression requires a

new BB because we need to jump
there after each iteration

• The iteration expression and the
body statement must be executed
in different order than they are
parsed – two BBs required

• The grammar may need rewriting
into something like this:

for1: FOR LPAR expr SEMIC
{ $$.bb1=...; }

;
for2: for1 expr SEMIC
{ $$.bb1=$1.bb1;
$$.bb3=...;
$$.bb4=...;
$$.bb2=...; }

;
for3: for2 expr RPAR
{ $$.bb2=$1.bb2; $$.bb4=$1.bb4;
... $1.bb1 ... $1.bb3 ... }

;
for_statement: for3 statement
{ ... $1.bb2 ... $1.bb4 ... }

;

statement;

for (init;

BB1

BB4

condition;

iteration)

BB2

BB3

Shortcut evaluation of &&, ||

• This is the ideal
implementation of

if ((A && B) || (C && D))
stmt_T;

else
stmt_F;

D))

if ((A &&

stmt_F;

B) ||

(C &&

stmt_T;

Shortcut evaluation of &&, ||

• This is the ideal
implementation of

if ((A && B) || (C && D))
stmt_T;

else
stmt_F;

• It is impossible to
generate this code in
our environment:

• The true branches of
the B and D
conditions must point
to the same BB

• The bottom-up parser
does not allow
coordination between
the two
subexpressions

||

&&

&& D

A

stmt_F;

B

C

stmt_T;

||

&&

&&

to BB mode

to BB mode

to BB mode

to BB mode

Shortcut evaluation of &&, ||

• This is a possible
implementation of

if ((A && B) || (C && D))
stmt_T;

else
stmt_F;

• New BB mode of
subexpression:

• Represented by the pair
[trueBB,falseBB]

• Executing trueBB
signalizes value 1

• Executing falseBB
signalizes value 0

• Conversion to BB mode
• Create two BBs
• Generate CondBr

• && operator
• Enforce BB mode on the

left operand
• Set insert point to

left.trueBB before the
right operand

• Create a new falseBB to
merge left.falseBB with
right.falseBB

• || operator
• Same as && but swap

trueBB with falseBB

• Produces empty BBs with
unconditional branches

D

A

stmt_F;

B

C

stmt_T;

Instructions needed for Cecko

Instruction Asgn 4 Asgn 5 Note

GlobalString STRLIT produces llvm::Constant*

ConstInBoundsGEP2_32 Array to ptr use two 0 indexes

ICmpNE char/int to _Bool != in _Bool= and conditions

IsNotNull ptr to _Bool in _Bool= and conditions

ZExt _Bool/char to char/int in most operators

Trunc int to char in char=

Add,Sub,Mul,SDiv,SRem int+int,-,*,/,%

GEP ptr+int,ptr-int,ptr[int]

Neg -int,ptr-int

PtrDiff ptr-ptr

StructGEP str.name,ptr->name use get_idx()

ExtractValue f().name non-L-value before .name

Load L-value to R-value

Store =

Ret,RetVoid return incl. implicit

Call Function call incl. void

Instructions needed for Cecko

Instruction Asgn 4 Asgn 5 Note

ICmpEQ ==

ICmpSLT,SLE,SGT,SGE int<int,<=,>,>=

ICmpULT,ULE,UGT,UGE ptr<ptr,<=,>,>=

Not ! or swap BBs

CondBr if,while,for,&&,||

Br else,do,while,for,&&,||

