
1NSWI098 Compiler Principles – David Bednárek

Cecko

Assignment 2 – Parsing

bison

bison

• bison
• 1985, part of the GNU project

• based on yacc (yet another compiler-compiler, 1975)

• compatible with flex

• LALR(1) parser generator

bison

• bison
• 1985, part of the GNU project

• based on yacc (yet another compiler-compiler, 1975)

• compatible with flex

• LALR(1) parser generator

• Input
• caparser.y

• Configuration (do not touch!)

• Declarations of terminals (do not touch!)
• Terminal names start with uppercase

• Declarations of semantic types for non-terminals (not used in Assignment 2)
• Non-terminal names start with lowercase

• The grammar

• C/C++ code fragments (not used in Assignment 2)

• Output (in modern C++ mode)
• caparser.hpp

• Declarations of make_T functions for terminals

• Declaration of the parser class

• caparser.cpp
• Implementation of the parser class

• Essentially an interpreter of LALR(1) Action/Goto tables

• Contains user-defined C/C++ code fragments

bison

• Input file syntax
• The language supports both /*...*/ and //... comments

• The first section is line-oriented

// switches and definitions
%code requires
{
 // this code is emitted to the .hpp file
}
%code
{
 // this code is emitted to the beginning of the .cpp file
}
// declarations of terminals and their semantic types
// the strings are used in syntax-error messages generated by the parser
%token EOF 0 "end of file"
%token LBRA "["
%token<int> INTLIT "integer literal"
// declarations of semantic types of non-terminals (not used in Asgn. 2)
%type<casem::ArgList> argument_list

%%

// grammar rules

%%

// this code is emitted to the end of the .cpp file

bison

• Rule syntax
• All rules for a non-terminal usually concentrated in one place

• Right-hand-side parts separated by |
• This is not a regular expression, just a list of sequences

• Empty RHS is either just empty or contains the %empty metasymbol

• A (multi-)rule may be arbitrarily spread on multiple lines
• The syntax includes : and ;

stmt:
 IF LPAR expr RPAR
 stmt
 | IF LPAR expr RPAR
 stmt
 ELSE
 stmt
 | WHILE LPAR expr RPAR
 stmt
 | RETURN INTLIT SEMIC
 ;

• The order of rules is not significant

• The initial nonterminal of our grammar is named translation_unit
• Defined by the %start switch

• Inclusion of the EOF terminal in the terminal rule is not required

bison

• bison is a LALR(1) parser generator
• bottom-up analysis based on item automaton

• Built-in rules to resolve conflicts
• based on explicitly declared priority/associativity of terminals as operators

• if priorities not defined, favor shift over reductions

• it simplifies grammars of simple languages, dangerous in more complex cases

• Forbidden in home assignments

• Understanding conflicts
• Since version 3.7.0, bison can display counterexamples for conflicts:

• This is not necessarily the only or the smallest counterexample

solution/caparser.y: warning: shift/reduce conflict on token "else"
 Example: "if" "(" expr ")" "if" "(" expr ")" stmt • "else" stmt
 Shift derivation
 stmt
 ↳ 3: "if" "(" expr ")" stmt
 ↳ 4: "if" "(" expr ")" stmt • "else" stmt
 Reduce derivation
 stmt
 ↳ 4: "if" "(" expr ")" stmt "else" stmt
 ↳ 3: "if" "(" expr ")" stmt •

• All versions produce a human-readable dump of the item automaton
• <build-folder>/stud-sol/caparser.y.output

bison

• Example 1 - an ambiguous grammar
• Grammar part dumped in the .output file:

 3 stmt: "if" "(" expr ")" stmt
 4 | "if" "(" expr ")" stmt "else" stmt
 5 | "while" "(" expr ")" stmt
 6 | "return" "integer literal" ";"

• The corresponding counterexample:
 Example: "if" "(" expr ")" "if" "(" expr ")" stmt • "else" stmt
 Shift derivation
 stmt
 ↳ 3: "if" "(" expr ")" stmt
 ↳ 4: "if" "(" expr ")" stmt • "else" stmt
 Reduce derivation
 stmt
 ↳ 4: "if" "(" expr ")" stmt "else" stmt
 ↳ 3: "if" "(" expr ")" stmt •

• The counterexample shows that the word
"if" "(" expr ")" "if" "(" expr ")" stmt "else" stmt

• can be derived by two different derivations from the same stmt nonterminal
• applying rule 3, then rule 4

• applying rule 4, then rule 3 (on the first occurrence of stmt)

• The grammar ambiguity causes a shift-reduce conflict:
• after parsing the nested stmt nonterminal, looking ahead to the "else" terminal

• This particular problem shall be solved by rewriting the grammar unambiguously

bison

• Example 2 - a LALR(1) conflict
• The grammar is not ambiguous but it does not satisfy the LALR(1) conditions

 7 expr: "integer literal"
 8 | "identifier"
 9 | "(" typename ")" expr
 10 | "(" expr ")"

 11 typename: "identifier"

• The counterexample produced by bison is too long, this is manually simplified:
• First reduce derivation

expr
↳ 10: "(" expr ")"
 ↳ 8: "identifier" •

• Second reduce derivation
expr
↳ 9: "(" typename ")" expr
 ↳ 11: "identifier" •

• In this case, there are two different words derived from expr
"(" "identifier" • ")"
"(" "identifier" • ")" expr

• The two words have a common prefix (shown by the position of the dot)

• The look-ahead terminal after that dot is also the same

• The two derivations use different rules just before the dot
• The parser can't tell which rule to use for reducing the text before the dot

• This is termed a reduce-reduce conflict

bison

• Example 2 - a LALR(1) conflict
• The conflict is also visible in the .output file:

State 29 conflicts: 1 reduce/reduce

• The corresponding state is dumped in the same file as:
• The LR(0) items forming the state:

 8 expr: "identifier" •
 11 typename: "identifier" •

• The corresponding actions for this state:
 ")" reduce using rule 8 (expr)
 ")" [reduce using rule 11 (typename)]
 $default reduce using rule 8 (expr)

• In this case, there are two possible actions for the same look-ahead of ")"
• The action shown in [brackets] is suppressed by some built-in conflict resolution rules

• The $default look-ahead means "in all other cases"

• If you don't understand how/why this state was produced, trace it back:
• Try to find the text "state 29":

State 23

 9 expr: "(" • typename ")" expr
 10 | "(" • expr ")"

 "(" shift, and go to state 23
 "identifier" shift, and go to state 29
 "integer literal" shift, and go to state 25

 expr go to state 30
 typename go to state 31

bison

• Example 2 - a LALR(1) conflict
State 23

 9 expr: "(" • typename ")" expr
 10 | "(" • expr ")"

• The dump does not show the closure items, but it shows the actions resulting from them:
 "(" shift, and go to state 23
 "identifier" shift, and go to state 29
 "integer literal" shift, and go to state 25

• Because the dots are before non-terminals, there are also the gotos:
 expr go to state 30
 typename go to state 31

State 29

 8 expr: "identifier" •
 11 typename: "identifier" •

 ")" reduce using rule 8 (expr)
 ")" [reduce using rule 11 (typename)]
 $default reduce using rule 8 (expr)

• In this case, the State 23 and the shift action to the State 29 is sufficient for
understanding the problem

• In more complex cases, it may be necessary to trace back more states
• In theory, tracing every path back to the initial state will produce the language of all

counterexamples for State 23

bison

• Example 2 - a LALR(1) conflict
• The underlying cause of this conflict is the fact that these two expressions

(x)
(x)y

• have the same prefix but the meaning of x is completely different

• In theory, it could be handled by massively rewriting the grammar like
expr: expr_or_typename
 | expr_not_typename
 ;
expr_not_typename: INTLIT
 | LPAR expr_or_typename RPAR expr
 | LPAR expr_or_typename RPAR
 | LPAR expr_not_typename RPAR
 ;
expr_or_typename: IDF
 ;
typename: expr_or_typename
 ;

• expr_or_typename describes the intersection of the two languages produced from
the expr and typename nonterminals

• expr_not_typename describes the set-difference of the two languages

• typename_not_expr would be empty in this grammar

• Although there still are the two words having the same prefix, all the reduction
required before applied inside the

• In the real C language, such a rewrite does not solve all the conflicts...

Cecko

• The real situation in C/C++
• The following text (inside a function body)

x(*y);

• may be a statement containing a function call applied to a pointer dereference

• may be a declaration of variable y as a pointer to the type x
• the parentheses are superfluous but allowed

• The grammar is really ambiguous between declarations and statements
• Trying to solve this ambiguity by rewriting the grammar is a nonsense

• Even if the rewrite was successful, the semantic analysis would be almost impossible

• The ambiguity is solved with the help of semantic information
• At the input to parsing, the compiler must distinguish between identifiers of

types and identifiers of everything else
• The language reference manual explicitly states this

• This is also the reason for the typename keyword inside C++ templates

• It is implemented by looking into symbol tables between lexical analysis and parsing

• In our case, you have to implement it inside the calexer.lex file:
ctx->is_typedef(yytext)

• will tell you whether yytext was declared as a type identifier (i.e. by typedef)

• if true, call make_TYPEIDF instead of make_IDF

• Testing: Our compiler has a built-in library containing the type identifier FILE

• Note: Interacting with symbol tables in lexer is potentially dangerous:
typedef struct { /*...*/ } x; x(*y);

• Are you sure that the symbol tables already contain the first declaration when the second x
is lexically analyzed? The parser has a look-ahead! More on that in Assignment 3.

• In the grammar, use TYPEIDF where identifier of a type is expected

Cecko

• At the input to parsing, the compiler must distinguish between identifiers of
types and identifiers of everything else

ctx->is_typedef(yytext)
• if true, call make_TYPEIDF instead of make_IDF

• In the grammar, use TYPEIDF where identifier of a type is expected
• This is actually only in the typedef-name nonterminal

• But beware, there are contexts which do not reference plain identifiers:
• struct/union/enum tag names as in

struct x * y;

• member names as in
y->x;

• newly declared identifiers as in
int x;

• In all these cases, is_typedef provides irrelevant information

• The grammar must allow both IDF and TYPEIDF in these contexts, like:
postfix-expression:

postfix-expression ARROW identifier
/*...*/
;

direct-declarator:
identifier
/*...*/
;

identifier: IDF | TYPEIDF ;

Cecko

• The only context that allows IDF but not TYPEIDF is inside expressions
• except the type-name in sizeof

• note: Cecko does not support type casts

• Problem:
primary-expression:

identifier
| constant
/*...*/
;

constant:
enumeration-constant
/*...*/
;

enumeration-constant:
identifier
;

• This must be resolved similarly to the rewrite shown in Example 2
• Separate constant_identifier from constant_not_identifier

• In primary-expression, merge identifier with constant_identifier
• Hint: make a comment to remember the merge - it will be useful in semantic analysis

• The merged identifier referenced here shall allow only IDF, not TYPEIDF

	Slide 1: Cecko Assignment 2 – Parsing
	Slide 2: bison
	Slide 3: bison
	Slide 4: bison
	Slide 5: bison
	Slide 6: bison
	Slide 7: bison
	Slide 8: bison
	Slide 9: bison
	Slide 10: bison
	Slide 11: bison
	Slide 12: bison
	Slide 13: Cecko
	Slide 14: Cecko
	Slide 15: Cecko

