
1NPRG054 High Performance Software Development- 2016/2017 David Bednarek

Performance tuning tools



Performance tuning techniques

2NPRG054 High Performance Software Development- 2016/2017 David Bednarek

 Optimizing the entire program is unnecessary work

 90:10 or even 99:1 rule

 Optimize only the hotspots
 Pragmatic definition:

▪ Hotspot is the code where optimization has the greatest impact wrt. its cost

 Problems:

▪ The cost of optimization (the human effort needed) may be wildly variable

▪ But it is probably proportional to the size of the hotspot code

▪ The effect of optimization (the time saved) is difficult to predict

▪ The upper bound of the effect is the total time spent in the hotspot

 Approximate definition:

▪ Hotspot is the code where total time divided by code size is largest

 Total or self time?

▪ Do we include the time spent in the procedures called from the hotspot?

▪ If we do, the hotspot itself must be extended to these procedures too

▪ We can hardly shrink the time spent in a procedure without changing its code

▪ Procedure integration by compiler will often decide



Techniques for measuring program behavior

3NPRG054 High Performance Software Development- 2016/2017 David Bednarek

 Instrumentation

 Modifying the program to measure itself

 Performed by a compiler on intermediate code or by a tool on binary code

 The additional code significantly disrupts the program

▪ It makes sense to measure only unaffected quantities

 Profile: number of passes through important points in the program

▪ Basic blocks (transitions between them)

▪ Procedures

▪ Procedures including mutual calls

 Profile driven optimization

▪ The compiler uses the previously measured profile

▪ to determine which parts of the program to optimize

▪ to estimate the effect of some optimizations



Techniques for measuring program behavior

4NPRG054 High Performance Software Development- 2016/2017 David Bednarek

 Sampling

 The unmodified program is launched

 At appropriately selected moments, the current position is recorded

▪ the instruction pointer

▪ optionally, the calling procedure or a part of the call stack

 The sampling moments must be

▪ Sparse enough to not affect program execution

▪ Dense enough to produce statistically significant data

▪ Correlated with the program execution in a well-defined way

▪ Independent - random sampling (approximation: periodic sampling)

▪ Dependent on selected events (number of executed instructions, memory accesses, etc.)

 Some parts (maybe a majority) of the code will never be hit by sampling

▪ Sampling naturally prefers frequently executed code - the hotspots

▪ Sampling is not accurate enough to pinpoint individual instructions

▪ But averaging across a loop will work



Techniques for measuring program behavior

5NPRG054 High Performance Software Development- 2016/2017 David Bednarek

 Sampling

 Event generation techniques

▪ "Software" - timer interrupt

▪ It requires more frequent interrupts than the usual OS timer setting

▪ Periodic interrupts may not be statistically independent of program execution

▪ "Hardware" - profiling support in the CPU

▪ The CPU generates an internal interrupt when the preset number of events is reached

▪ Events: Clock ticks, instructions, memory accesses, branch misprediction, ...

▪ Only few types of events may be measured simultaneously

▪ The program may be rerun with different event setting 

▪ The profiling software may frequently change the setup during one execution

 Sample recording techniques

▪ "Software" - the record is created by the interrupt handler

▪ "Hardware" - the record is created by the CPU (by writing into memory)

▪ Allows for more frequent sampling

▪ Does not allow call-stack exploration

▪ Does not allow randomization of the sampling period

▪ In both cases, the record may be misplaced by few instructions



Techniques for measuring program behavior

6NPRG054 High Performance Software Development- 2016/2017 David Bednarek

 Instrumentation

 Accurate measurement of (somewhat) distorted execution

 Some compiler support usually required

 No HW or OS support needed

 Sampling

 Approximate measurement of (almost) true behavior

 Compiler support not required

▪ Debugging information needed to understand results

 Possible without any HW support 

▪ CPU support improves accuracy and adds new events

▪ Understanding CPU-specific events is difficult

 OS kernel support always required

▪ Manipulating timer interrupt and/or setting-up the CPU support

▪ Handling the timer/sampling interrupt


	Slide 1: Performance tuning tools
	Slide 2: Performance tuning techniques
	Slide 3: Techniques for measuring program behavior
	Slide 4: Techniques for measuring program behavior
	Slide 5: Techniques for measuring program behavior
	Slide 6: Techniques for measuring program behavior

