
1NPRG054 High Performance Software Development- 2016/2017 David Bednarek

Performance tuning tools



Performance tuning techniques

2NPRG054 High Performance Software Development- 2016/2017 David Bednarek

 Optimizing the entire program is unnecessary work

 90:10 or even 99:1 rule

 Optimize only the hotspots
 Pragmatic definition:

▪ Hotspot is the code where optimization has the greatest impact wrt. its cost

 Problems:

▪ The cost of optimization (the human effort needed) may be wildly variable

▪ But it is probably proportional to the size of the hotspot code

▪ The effect of optimization (the time saved) is difficult to predict

▪ The upper bound of the effect is the total time spent in the hotspot

 Approximate definition:

▪ Hotspot is the code where total time divided by code size is largest

 Total or self time?

▪ Do we include the time spent in the procedures called from the hotspot?

▪ If we do, the hotspot itself must be extended to these procedures too

▪ We can hardly shrink the time spent in a procedure without changing its code

▪ Procedure integration by compiler will often decide



Techniques for measuring program behavior

3NPRG054 High Performance Software Development- 2016/2017 David Bednarek

 Instrumentation

 Modifying the program to measure itself

 Performed by a compiler on intermediate code or by a tool on binary code

 The additional code significantly disrupts the program

▪ It makes sense to measure only unaffected quantities

 Profile: number of passes through important points in the program

▪ Basic blocks (transitions between them)

▪ Procedures

▪ Procedures including mutual calls

 Profile driven optimization

▪ The compiler uses the previously measured profile

▪ to determine which parts of the program to optimize

▪ to estimate the effect of some optimizations



Techniques for measuring program behavior

4NPRG054 High Performance Software Development- 2016/2017 David Bednarek

 Sampling

 The unmodified program is launched

 At appropriately selected moments, the current position is recorded

▪ the instruction pointer

▪ optionally, the calling procedure or a part of the call stack

 The sampling moments must be

▪ Sparse enough to not affect program execution

▪ Dense enough to produce statistically significant data

▪ Correlated with the program execution in a well-defined way

▪ Independent - random sampling (approximation: periodic sampling)

▪ Dependent on selected events (number of executed instructions, memory accesses, etc.)

 Some parts (maybe a majority) of the code will never be hit by sampling

▪ Sampling naturally prefers frequently executed code - the hotspots

▪ Sampling is not accurate enough to pinpoint individual instructions

▪ But averaging across a loop will work



Techniques for measuring program behavior

5NPRG054 High Performance Software Development- 2016/2017 David Bednarek

 Sampling

 Event generation techniques

▪ "Software" - timer interrupt

▪ It requires more frequent interrupts than the usual OS timer setting

▪ Periodic interrupts may not be statistically independent of program execution

▪ "Hardware" - profiling support in the CPU

▪ The CPU generates an internal interrupt when the preset number of events is reached

▪ Events: Clock ticks, instructions, memory accesses, branch misprediction, ...

▪ Only few types of events may be measured simultaneously

▪ The program may be rerun with different event setting 

▪ The profiling software may frequently change the setup during one execution

 Sample recording techniques

▪ "Software" - the record is created by the interrupt handler

▪ "Hardware" - the record is created by the CPU (by writing into memory)

▪ Allows for more frequent sampling

▪ Does not allow call-stack exploration

▪ Does not allow randomization of the sampling period

▪ In both cases, the record may be misplaced by few instructions



Techniques for measuring program behavior

6NPRG054 High Performance Software Development- 2016/2017 David Bednarek

 Instrumentation

 Accurate measurement of (somewhat) distorted execution

 Some compiler support usually required

 No HW or OS support needed

 Sampling

 Approximate measurement of (almost) true behavior

 Compiler support not required

▪ Debugging information needed to understand results

 Possible without any HW support 

▪ CPU support improves accuracy and adds new events

▪ Understanding CPU-specific events is difficult

 OS kernel support always required

▪ Manipulating timer interrupt and/or setting-up the CPU support

▪ Handling the timer/sampling interrupt


	Slide 1: Performance tuning tools
	Slide 2: Performance tuning techniques
	Slide 3: Techniques for measuring program behavior
	Slide 4: Techniques for measuring program behavior
	Slide 5: Techniques for measuring program behavior
	Slide 6: Techniques for measuring program behavior

