CPU – principles of operation

Transistor level

- CPU and similar chips mostly use CMOS technology (1963)
 - C=Complementary both polarities of transistors available
 - A mix of n-type and p-type transistors on the same chip
 - The mix allows control of both incoming and outgoing current at a gate
 - MOS=Metal-Oxide-Semiconductor a particular transistor technology (1959)
 - A kind of FET=Field-Effect-Transistor a transistor controlled by voltage on "Gate"
 - Behaviorally similar to a triode vacuum tube (1908) but much smaller voltage, size, price
 - Also called Unipolar only one kind of current-carriers used (in one transistor)
 - n-type transistors use electrons, p-type use holes
 - The first transistors (1947) were Bipolar (both electrons and holes used to transport current) and controlled by current – no longer used in computing after ~1980
 - DRAM (1968) and Flash (1980) chips use slightly different technologies
 - the memory effect is provided by a specially constructed transistor
 - usually not mixable with CPU in the same chip
 - only low-density devices like embedded CPUs can mix CMOS logic and Flash

Logic (gate) level

• Four transistors constitute a **NAND gate**

- Two inputs: A, B
- Output = !(A&&B)
- High voltage on both inputs closes the p-type transistors (current sources, top) and opens the n-type transistors (current sink, bottom)

Logic level

Power consumption

- Gates and wires connected to Out form a capacitor which must be charged and discharged in each cycle – proportional to frequency, reduced by Dennard scaling
- Short-circuit current (all transistors are open during state changes)
- Leakage through closed transistors increased by geometry scaling down

Full 1-bit adder

Full adder = 1-bit addition with carry in and carry out

▶ The sum of three 0/1 inputs may be 0/1/2/3 – representable by 2-bit output

(Co << 1) | S = A + B + Ci

• The circuit is made smaller with three-input NAND and NOR gates

N-bit addition with carry in and carry out

- O(N) delay too slow for large N
- Recursive "dynamic-programming" construction used for large N
 - O(log N) delay, but significantly more gates needed

Combinational vs. sequential circuits

- Combinational circuit = directed acyclic graph = state-less circuit
 - The signal is only delayed, proportionally to the longest path length
- Sequential circuit = cyclic graph
 - Cycles cause state-full behavior (usually through positive feed-back)
 - Various kinds of registers
 - "Register" is originally a digital-design term any state-full circuit used to store information
 - The simplest case of register is the 1-bit Set/Reset Latch depicted above
 - A CPU register (as referenced in machine code) is, in digital-design terminology, a part of small Static RAM
 - Static RAM is an addressable array of n-bit registers one of them is activated by a binary decoder (a combinational circuit)
 - More sophisticated cases (e.g. clock dividers)

Digital-circuit design

- Process (lithography) the technology of the chip-producing foundry (fab)
 - Often simply denoted by geometric resolution in nanometers
 - Decides the geometrical, electrical, and timing properties of transistors
- Physical design produces masks for manufacturing
- Transistor Level network of transistors (and other elements)
 - Often skipped as each gate type has its optimized physical design
- Logic (Gate) Level network of gates, latches, etc.
- **RTL** (Register-Transfer Level) design
 - Circuits limited to Combinational circuits + Registers
 - Registers controlled by a common clock
 - Originally a principle of systematic (but not optimal) gate-level design
 - Later an intermediate level of design, specified as program-like text (not schematically)
 - Now usually generated from system-level design
- System Level design
 - > Done in System-C, Verilog (1986), or VHDL (1981)
 - Effectively parallel-programming languages
 - Verilog and VHDL also allow direct RTL/Logic/Transistor-level design, analog and simulation models
 - There is probably more work done than in gcc/clang/msvc/javac together
 - Restrictions (w.r.t. general programming) allow transformation to RTL designs
 - The transformation shares some algorithms with parallelizing compilers
- Electronic Design Automation (EDA) software is a 10-billion USD/year industry
 - The largest player is Synopsys, Inc. (market cap USD 35B, cf. Microsoft 1700B)

Sequential N-bit adder

- Input bits serialized on 2 wires, synchronized, in LSB-to-MSB order
- Requires clock to sample inputs and to control the (D-type) register
 - Due to delay, outputs (Co, S) must be sampled later, at the end of clock cycle
- Slower even than naïve combinational but O(1) gates

Sequential N*N-to-2N-bit multiplier

The school multiplication algorithm in binary digits

- Shown mirrored wrt. school convention, i.e. with LSB on the left and MSB on the right
- One operand fixed, one being shifted by a shift register
- 1*N-bit multiplication implemented by N AND gates
- Addition of N N-bit results implemented by 2N full adders with shifting loopback
- ▶ Total delay O(N*N); may be improved to O(N*log N) with optimized 2N-bit adder

Combinational N*N-to-2N-bit multiplier

- The school multiplication algorithm in binary digits
 - Shown mirrored wrt. school convention, i.e. with LSB on the left and MSB on the right
 - 1*N-bit multiplication implemented by N*N AND gates
 - Addition of N N-bit results implemented by N*N full adders, then by a final N+N-bit adder
 - Total delay O(N)
 - In real designs (1992), reduced to half by radix-4 Booth encoding of operands

Wallace-tree multiplier (invented 1964, used after 2000)

- 1-bit multiplier = AND gate
- N-bit multiplier must add N*N 1-bit results, properly shifted
 - Wallace-tree: Instead of adding bits in the columns, recursively reduce number of operands by full adders
 - A full adder converts three bits (in the same column) into two bits (in two adjacent columns)
 - Each layer reduces the number of bits in a column from M to (M/3)+(M%3) but sends (M/3) bits to the left
 - After O(log_{3/2} N*N) = O(log N) layers, the remaining small columns are summed by optimized 2N-bit adder
 - This algorithm is done in the circuit generator the generated circuit is combinational with O(log N) delay

Wallace-tree multiplier staged

- The Wallace-tree consists of tens of layers ($\log_{1.22} 64 = 21$)
 - Each layer is a set of independent full adders
 - The total delay may be longer than the desired system clock period
 - Registers inserted after each K layers, delay between registers less than a clock
 - A new multiplication may be started in each clock period = pipelining

Arithmetic units in general

Sequential implementation

- Hardware equivalent of loop in a program
- The same hardware used repeatedly during the same operation
- Minimum number of transistors, large latency
 - The registers incur additional delay
- Purely combinational implementation
 - Hardware equivalent of mathematical formula
 - Each piece of hardware used only once during the same operation
 - Idle for most of the time
 - Large number of transistors, **minimum latency**
 - Advanced (non-iterative) algorithms possible (e.g. Wallace multiplier)
- Staged combinational implementation
 - Hardware equivalent of unrolled loop (but iterations may differ)
 - Each piece of hardware used once during a clock period
 - May be used for another operation in the next period
 - Even larger number of transistors, latency similar to sequential implementation
 - Latency may be lower if a stage corresponds to more iterations of the algorithm
 - Large throughput due to pipelining

- When increasing transistor speed is no longer possible (2005)...
- ... there are two ways to improve throughput:
 - Replace sequential by staged combinational implementation
 - Allows pipelining
 - Implement more than one arithmetic unit
 - Multiple units in the same pipeline (SIMD instructions)
 - A SIMD instruction may also use two pipelines in parallel
 - Multiple pipelines (processing instructions of the same thread)
 - Hyperthreading: More than one thread shares the same set of pipelines
 - Multiple cores/sockets (processing instructions of different threads)
- The price:
 - Increased number of transistors
 - Increased complexity of synchronization (additional energy consumption)
- Throughput (number of operations per time) is improved
- Latency (time required to finish an operation) is NOT improved
 - Latency may be improved by advanced circuit designs

Arithmetic units in general

• The reality in Intel/AMD CPUs (2010 to 2020):

- Integer addition/subtraction is single-clock (unstaged combinational)
 - FP addition/subtraction usually 3 clocks due to shifting/normalization, pipelined
- Multiplication is staged combinational
 - Latency usually 3 to 5 clocks
 - Pipelined: Throughput 1 instruction per clock per pipeline
- Division is always iterative (sequential)
 - Latency 20 to 80 clocks (FP often faster than integer)
 - Latency may depend on actual values
 - The pipeline is blocked very small throughput
- Bit operations (AND/OR/XOR) are single-clock
 - Shifts/rotations may cost more than one clock
 - In terms of chip layout, ALUs are rather wide (across bits) than deep (across stages)
 - Any information travelling across (many) bits is problematic
- SIMD operations: usually the same latency as their scalar counterpart
 - Only few iterative operations (FDIV) available in the SIMD instruction set
 - Some wide-vector instructions implemented as two half-width operations pipelined
 - This fact heavily influenced the SIMD instruction set