
1NPRG054 High Performance Software Development- 2020/2021 David Bednárek

CPU – principles of operation



Transistor level

2NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 CPU and similar chips mostly use CMOS technology (1963)

 C=Complementary – both polarities of transistors available

▪ A mix of n-type and p-type transistors on the same chip

▪ The mix allows control of both incoming and outgoing current at a gate

 MOS=Metal-Oxide-Semiconductor – a particular transistor technology (1959)

▪ A kind of FET=Field-Effect-Transistor – a transistor controlled by voltage on "Gate"

▪ Behaviorally similar to a triode vacuum tube (1908) but much smaller voltage, size, price

▪ Also called Unipolar – only one kind of current-carriers used (in one transistor)

▪ n-type transistors use electrons, p-type use holes

▪ The first transistors (1947) were Bipolar (both electrons and holes used to transport current) 
and controlled by current – no longer used in computing after ~1980

 DRAM (1968) and Flash (1980) chips use slightly different technologies

▪ the memory effect is provided by a specially constructed transistor

▪ usually not mixable with CPU in the same chip 

▪ only low-density devices like embedded CPUs can mix CMOS logic and Flash



 Four transistors constitute a NAND gate
 Two inputs: A, B

 Output = !(A&&B)

 High voltage on both inputs closes the p-type transistors (current sources, top) 
and opens the n-type transistors (current sink, bottom)

Logic (gate) level

3NPRG054 High Performance Software Development- 2020/2021 David Bednárek



 Power consumption
 Gates and wires connected to Out form a capacitor which must be charged and 

discharged in each cycle – proportional to frequency, reduced by Dennard scaling

 Short-circuit current (all transistors are open during state changes)

 Leakage through closed transistors – increased by geometry scaling down

Logic level

4NPRG054 High Performance Software Development- 2020/2021 David Bednárek



 Full adder = 1-bit addition with carry in and carry out

 The sum of three 0/1 inputs may be 0/1/2/3 – representable by 2-bit output
(Co<<1)|S = A+B+Ci

 The circuit is made smaller with three-input NAND and NOR gates

Full 1-bit adder

5NPRG054 High Performance Software Development- 2020/2021 David Bednárek

A

B

Ci
Co

S



 N-bit addition with carry in and carry out

 O(N) delay - too slow for large N

 Recursive “dynamic-programming” construction used for large N

▪ O(log N) delay, but significantly more gates needed

N-bit adder

6NPRG054 High Performance Software Development- 2020/2021 David Bednárek

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S



 Combinational circuit = directed acyclic graph = state-less circuit
 The signal is only delayed, proportionally to the longest path length

 Sequential circuit = cyclic graph
 Cycles cause state-full behavior (usually through positive feed-back)

 Various kinds of registers
▪ “Register” is originally a digital-design term – any state-full circuit used to store information

▪ The simplest case of register is the 1-bit Set/Reset Latch depicted above

▪ A CPU register (as referenced in machine code) is, in digital-design terminology, a part of small Static RAM

▪ Static RAM is an addressable array of n-bit registers – one of them is activated by a binary decoder (a 
combinational circuit)

 More sophisticated cases (e.g. clock dividers)

Combinational vs. sequential circuits

7NPRG054 High Performance Software Development- 2020/2021 David Bednárek

Set~

Reset~
Q~

Q



Digital-circuit design

8NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 Process (lithography) – the technology of the chip-producing foundry (fab)
 Often simply denoted by geometric resolution in nanometers

 Decides the geometrical, electrical, and timing properties of transistors

 Physical design – produces masks for manufacturing

 Transistor Level – network of transistors (and other elements)
 Often skipped as each gate type has its optimized physical design

 Logic (Gate) Level – network of gates, latches, etc.

 RTL (Register-Transfer Level) design
 Circuits limited to Combinational circuits + Registers

▪ Registers controlled by a common clock

 Originally a principle of systematic (but not optimal) gate-level design

 Later an intermediate level of design, specified as program-like text (not schematically)

 Now usually generated from system-level design

 System Level design
 Done in System-C, Verilog (1986), or VHDL (1981)

▪ Effectively parallel-programming languages
▪ Verilog and VHDL also allow direct RTL/Logic/Transistor-level design, analog and simulation models

▪ There is probably more work done than in gcc/clang/msvc/javac together

▪ Restrictions (w.r.t. general programming) allow transformation to RTL designs
▪ The transformation shares some algorithms with parallelizing compilers

 Electronic Design Automation (EDA) software is a 10-billion USD/year industry
 The largest player is Synopsys, Inc. (market cap USD 35B, cf. Microsoft 1700B)



 Sequential N-bit adder
 Input bits serialized on 2 wires, synchronized, in LSB-to-MSB order 

 Requires clock to sample inputs and to control the (D-type) register

▪ Due to delay, outputs (Co, S) must be sampled later, at the end of clock cycle

 Slower even than naïve combinational but O(1) gates

Combinational vs. sequential N-bit adder

9NPRG054 High Performance Software Development- 2020/2021 David Bednárek

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

D-type 
register

RES CLK

I O



 The school multiplication algorithm in binary digits 
 Shown mirrored wrt. school convention, i.e. with LSB on the left and MSB on the right
 One operand fixed, one being shifted by a shift register

 1*N-bit multiplication implemented by N AND gates

 Addition of N N-bit results implemented by 2N full adders with shifting loopback
 Total delay O(N*N); may be improved to O(N*log N) with optimized 2N-bit adder

Sequential N*N-to-2N-bit multiplier

10NPRG054 High Performance Software Development- 2020/2021 David Bednárek

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

2N-bit D-type register
RES

CLK I2N

O2N

I1

O1

N-bit shift register

N-bit register

CLK

LSB

LSB

LSB MSB

MSB

MSB



 The school multiplication algorithm in binary digits 
 Shown mirrored wrt. school convention, i.e. with LSB on the left and MSB on the right
 1*N-bit multiplication implemented by N*N AND gates

 Addition of N N-bit results implemented by N*N full adders, then by a final N+N-bit adder

 Total delay O(N)
▪ In real designs (1992), reduced to half by radix-4 Booth encoding of operands

Combinational N*N-to-2N-bit multiplier

11NPRG054 High Performance Software Development- 2020/2021 David Bednárek

o
p

er
an

d
 A

operand B
LSB

LSB MSB

MSB

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S+
A B

Ci Co

S

final adder



 1-bit multiplier = AND gate

 N-bit multiplier must add N*N 1-bit results, properly shifted
 Wallace-tree: Instead of adding bits in the columns, recursively reduce number of operands by full adders

▪ A full adder converts three bits (in the same column) into two bits (in two adjacent columns)

▪ Each layer reduces the number of bits in a column from M to (M/3)+(M%3) but sends (M/3) bits to the left

▪ After O(log3/2 N*N) = O(log N) layers, the remaining small columns are summed by optimized 2N-bit adder

▪ This algorithm is done in the circuit generator – the generated circuit is combinational with O(log N) delay

Wallace-tree multiplier (invented 1964, used after 2000)

12NPRG054 High Performance Software Development- 2020/2021 David Bednárek

64*AND 16*full adder

64 bits 48 bits

10*full adder

38 bits

…

15 columns

16 bits final result
LSB

LSB

LSB

MSB

MSB

MSB



 The Wallace-tree consists of tens of layers (log1.22 64 = 21)
▪ Each layer is a set of independent full adders

 The total delay may be longer than the desired system clock period

 Registers inserted after each K layers, delay between registers less than a clock

 A new multiplication may be started in each clock period = pipelining

Wallace-tree multiplier staged

13NPRG054 High Performance Software Development- 2020/2021 David Bednárek

Bit-by-bit AND

I1 I2 I3Wallace layer 1

Wallace layer 2

I1 I2 I3

I1 I2 I3

Wallace layer M

Final 2N-bit adder I1 I2 I3

d
el

ay
 <

 1
 c

lo
ck

d
el

ay
 <

 1
 c

lo
ck

d
el

ay
 <

 1
 c

lo
ck

time



Arithmetic units in general

14NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 Sequential implementation
▪ Hardware equivalent of loop in a program

 The same hardware used repeatedly during the same operation

 Minimum number of transistors, large latency 

▪ The registers incur additional delay

 Purely combinational implementation
▪ Hardware equivalent of mathematical formula

 Each piece of hardware used only once during the same operation

▪ Idle for most of the time

 Large number of transistors, minimum latency

 Advanced (non-iterative) algorithms possible (e.g. Wallace multiplier)

 Staged combinational implementation
▪ Hardware equivalent of unrolled loop (but iterations may differ)

 Each piece of hardware used once during a clock period

▪ May be used for another operation in the next period

 Even larger number of transistors, latency similar to sequential implementation

▪ Latency may be lower if a stage corresponds to more iterations of the algorithm

 Large throughput due to pipelining



Arithmetic units in general

15NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 When increasing transistor speed is no longer possible (2005)...

 ... there are two ways to improve throughput:
 Replace sequential by staged combinational implementation

▪ Allows pipelining

 Implement more than one arithmetic unit
▪ Multiple units in the same pipeline (SIMD instructions)

▪ A SIMD instruction may also use two pipelines in parallel

▪ Multiple pipelines (processing instructions of the same thread)
▪ Hyperthreading: More than one thread shares the same set of pipelines

▪ Multiple cores/sockets (processing instructions of different threads)

 The price: 
 Increased number of transistors 

 Increased complexity of synchronization (additional energy consumption)

 Throughput (number of operations per time) is improved

 Latency (time required to finish an operation) is NOT improved
 Latency may be improved by advanced circuit designs



Arithmetic units in general

16NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 The reality in Intel/AMD CPUs (2010 to 2020):
 Integer addition/subtraction is single-clock (unstaged combinational)

▪ FP addition/subtraction usually 3 clocks due to shifting/normalization, pipelined

 Multiplication is staged combinational 
▪ Latency usually 3 to 5 clocks

▪ Pipelined: Throughput 1 instruction per clock per pipeline

 Division is always iterative (sequential)
▪ Latency 20 to 80 clocks (FP often faster than integer)

▪ Latency may depend on actual values

▪ The pipeline is blocked – very small throughput

 Bit operations (AND/OR/XOR) are single-clock
▪ Shifts/rotations may cost more than one clock

▪ In terms of chip layout, ALUs are rather wide (across bits) than deep (across stages)

▪ Any information travelling across (many) bits is problematic

 SIMD operations: usually the same latency as their scalar counterpart
▪ Only few iterative operations (FDIV) available in the SIMD instruction set

▪ Some wide-vector instructions implemented as two half-width operations pipelined
▪ This fact heavily influenced the SIMD instruction set


