
1NPRG054 High Performance Software Development- 2020/2021 David Bednárek

CPU – principles of operation



Transistor level

2NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 CPU and similar chips mostly use CMOS technology (1963)

 C=Complementary – both polarities of transistors available

▪ A mix of n-type and p-type transistors on the same chip

▪ The mix allows control of both incoming and outgoing current at a gate

 MOS=Metal-Oxide-Semiconductor – a particular transistor technology (1959)

▪ A kind of FET=Field-Effect-Transistor – a transistor controlled by voltage on "Gate"

▪ Behaviorally similar to a triode vacuum tube (1908) but much smaller voltage, size, price

▪ Also called Unipolar – only one kind of current-carriers used (in one transistor)

▪ n-type transistors use electrons, p-type use holes

▪ The first transistors (1947) were Bipolar (both electrons and holes used to transport current) 
and controlled by current – no longer used in computing after ~1980

 DRAM (1968) and Flash (1980) chips use slightly different technologies

▪ the memory effect is provided by a specially constructed transistor

▪ usually not mixable with CPU in the same chip 

▪ only low-density devices like embedded CPUs can mix CMOS logic and Flash



 Four transistors constitute a NAND gate
 Two inputs: A, B

 Output = !(A&&B)

 High voltage on both inputs closes the p-type transistors (current sources, top) 
and opens the n-type transistors (current sink, bottom)

Logic (gate) level

3NPRG054 High Performance Software Development- 2020/2021 David Bednárek



 Power consumption
 Gates and wires connected to Out form a capacitor which must be charged and 

discharged in each cycle – proportional to frequency, reduced by Dennard scaling

 Short-circuit current (all transistors are open during state changes)

 Leakage through closed transistors – increased by geometry scaling down

Logic level

4NPRG054 High Performance Software Development- 2020/2021 David Bednárek



 Full adder = 1-bit addition with carry in and carry out

 The sum of three 0/1 inputs may be 0/1/2/3 – representable by 2-bit output
(Co<<1)|S = A+B+Ci

 The circuit is made smaller with three-input NAND and NOR gates

Full 1-bit adder

5NPRG054 High Performance Software Development- 2020/2021 David Bednárek

A

B

Ci
Co

S



 N-bit addition with carry in and carry out

 O(N) delay - too slow for large N

 Recursive “dynamic-programming” construction used for large N

▪ O(log N) delay, but significantly more gates needed

N-bit adder

6NPRG054 High Performance Software Development- 2020/2021 David Bednárek

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S



 Combinational circuit = directed acyclic graph = state-less circuit
 The signal is only delayed, proportionally to the longest path length

 Sequential circuit = cyclic graph
 Cycles cause state-full behavior (usually through positive feed-back)

 Various kinds of registers
▪ “Register” is originally a digital-design term – any state-full circuit used to store information

▪ The simplest case of register is the 1-bit Set/Reset Latch depicted above

▪ A CPU register (as referenced in machine code) is, in digital-design terminology, a part of small Static RAM

▪ Static RAM is an addressable array of n-bit registers – one of them is activated by a binary decoder (a 
combinational circuit)

 More sophisticated cases (e.g. clock dividers)

Combinational vs. sequential circuits

7NPRG054 High Performance Software Development- 2020/2021 David Bednárek

Set~

Reset~
Q~

Q



Digital-circuit design

8NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 Process (lithography) – the technology of the chip-producing foundry (fab)
 Often simply denoted by geometric resolution in nanometers

 Decides the geometrical, electrical, and timing properties of transistors

 Physical design – produces masks for manufacturing

 Transistor Level – network of transistors (and other elements)
 Often skipped as each gate type has its optimized physical design

 Logic (Gate) Level – network of gates, latches, etc.

 RTL (Register-Transfer Level) design
 Circuits limited to Combinational circuits + Registers

▪ Registers controlled by a common clock

 Originally a principle of systematic (but not optimal) gate-level design

 Later an intermediate level of design, specified as program-like text (not schematically)

 Now usually generated from system-level design

 System Level design
 Done in System-C, Verilog (1986), or VHDL (1981)

▪ Effectively parallel-programming languages
▪ Verilog and VHDL also allow direct RTL/Logic/Transistor-level design, analog and simulation models

▪ There is probably more work done than in gcc/clang/msvc/javac together

▪ Restrictions (w.r.t. general programming) allow transformation to RTL designs
▪ The transformation shares some algorithms with parallelizing compilers

 Electronic Design Automation (EDA) software is a 10-billion USD/year industry
 The largest player is Synopsys, Inc. (market cap USD 35B, cf. Microsoft 1700B)



 Sequential N-bit adder
 Input bits serialized on 2 wires, synchronized, in LSB-to-MSB order 

 Requires clock to sample inputs and to control the (D-type) register

▪ Due to delay, outputs (Co, S) must be sampled later, at the end of clock cycle

 Slower even than naïve combinational but O(1) gates

Combinational vs. sequential N-bit adder

9NPRG054 High Performance Software Development- 2020/2021 David Bednárek

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

D-type 
register

RES CLK

I O



 The school multiplication algorithm in binary digits 
 Shown mirrored wrt. school convention, i.e. with LSB on the left and MSB on the right
 One operand fixed, one being shifted by a shift register

 1*N-bit multiplication implemented by N AND gates

 Addition of N N-bit results implemented by 2N full adders with shifting loopback
 Total delay O(N*N); may be improved to O(N*log N) with optimized 2N-bit adder

Sequential N*N-to-2N-bit multiplier

10NPRG054 High Performance Software Development- 2020/2021 David Bednárek

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

2N-bit D-type register
RES

CLK I2N

O2N

I1

O1

N-bit shift register

N-bit register

CLK

LSB

LSB

LSB MSB

MSB

MSB



 The school multiplication algorithm in binary digits 
 Shown mirrored wrt. school convention, i.e. with LSB on the left and MSB on the right
 1*N-bit multiplication implemented by N*N AND gates

 Addition of N N-bit results implemented by N*N full adders, then by a final N+N-bit adder

 Total delay O(N)
▪ In real designs (1992), reduced to half by radix-4 Booth encoding of operands

Combinational N*N-to-2N-bit multiplier

11NPRG054 High Performance Software Development- 2020/2021 David Bednárek

o
p

er
an

d
 A

operand B
LSB

LSB MSB

MSB

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S

+
A B

Ci Co

S+
A B

Ci Co

S

final adder



 1-bit multiplier = AND gate

 N-bit multiplier must add N*N 1-bit results, properly shifted
 Wallace-tree: Instead of adding bits in the columns, recursively reduce number of operands by full adders

▪ A full adder converts three bits (in the same column) into two bits (in two adjacent columns)

▪ Each layer reduces the number of bits in a column from M to (M/3)+(M%3) but sends (M/3) bits to the left

▪ After O(log3/2 N*N) = O(log N) layers, the remaining small columns are summed by optimized 2N-bit adder

▪ This algorithm is done in the circuit generator – the generated circuit is combinational with O(log N) delay

Wallace-tree multiplier (invented 1964, used after 2000)

12NPRG054 High Performance Software Development- 2020/2021 David Bednárek

64*AND 16*full adder

64 bits 48 bits

10*full adder

38 bits

…

15 columns

16 bits final result
LSB

LSB

LSB

MSB

MSB

MSB



 The Wallace-tree consists of tens of layers (log1.22 64 = 21)
▪ Each layer is a set of independent full adders

 The total delay may be longer than the desired system clock period

 Registers inserted after each K layers, delay between registers less than a clock

 A new multiplication may be started in each clock period = pipelining

Wallace-tree multiplier staged

13NPRG054 High Performance Software Development- 2020/2021 David Bednárek

Bit-by-bit AND

I1 I2 I3Wallace layer 1

Wallace layer 2

I1 I2 I3

I1 I2 I3

Wallace layer M

Final 2N-bit adder I1 I2 I3

d
el

ay
 <

 1
 c

lo
ck

d
el

ay
 <

 1
 c

lo
ck

d
el

ay
 <

 1
 c

lo
ck

time



Arithmetic units in general

14NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 Sequential implementation
▪ Hardware equivalent of loop in a program

 The same hardware used repeatedly during the same operation

 Minimum number of transistors, large latency 

▪ The registers incur additional delay

 Purely combinational implementation
▪ Hardware equivalent of mathematical formula

 Each piece of hardware used only once during the same operation

▪ Idle for most of the time

 Large number of transistors, minimum latency

 Advanced (non-iterative) algorithms possible (e.g. Wallace multiplier)

 Staged combinational implementation
▪ Hardware equivalent of unrolled loop (but iterations may differ)

 Each piece of hardware used once during a clock period

▪ May be used for another operation in the next period

 Even larger number of transistors, latency similar to sequential implementation

▪ Latency may be lower if a stage corresponds to more iterations of the algorithm

 Large throughput due to pipelining



Arithmetic units in general

15NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 When increasing transistor speed is no longer possible (2005)...

 ... there are two ways to improve throughput:
 Replace sequential by staged combinational implementation

▪ Allows pipelining

 Implement more than one arithmetic unit
▪ Multiple units in the same pipeline (SIMD instructions)

▪ A SIMD instruction may also use two pipelines in parallel

▪ Multiple pipelines (processing instructions of the same thread)
▪ Hyperthreading: More than one thread shares the same set of pipelines

▪ Multiple cores/sockets (processing instructions of different threads)

 The price: 
 Increased number of transistors 

 Increased complexity of synchronization (additional energy consumption)

 Throughput (number of operations per time) is improved

 Latency (time required to finish an operation) is NOT improved
 Latency may be improved by advanced circuit designs



Arithmetic units in general

16NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 The reality in Intel/AMD CPUs (2010 to 2020):
 Integer addition/subtraction is single-clock (unstaged combinational)

▪ FP addition/subtraction usually 3 clocks due to shifting/normalization, pipelined

 Multiplication is staged combinational 
▪ Latency usually 3 to 5 clocks

▪ Pipelined: Throughput 1 instruction per clock per pipeline

 Division is always iterative (sequential)
▪ Latency 20 to 80 clocks (FP often faster than integer)

▪ Latency may depend on actual values

▪ The pipeline is blocked – very small throughput

 Bit operations (AND/OR/XOR) are single-clock
▪ Shifts/rotations may cost more than one clock

▪ In terms of chip layout, ALUs are rather wide (across bits) than deep (across stages)

▪ Any information travelling across (many) bits is problematic

 SIMD operations: usually the same latency as their scalar counterpart
▪ Only few iterative operations (FDIV) available in the SIMD instruction set

▪ Some wide-vector instructions implemented as two half-width operations pipelined
▪ This fact heavily influenced the SIMD instruction set


