
1NPRG054 High Performance Software Development- 2016/2017 David Bednárek

Parallelization/vectorization/optimization in C++

C++17 execution control

2NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 C++17
 already in TS 19570:2015 as experimental

 <execution> - namespace std::execution

 Types (tags)

class sequenced_policy { /* unspecified */ };

class parallel_policy { /* unspecified */ };

class parallel_unsequenced_policy { /* unspecified */ };

 Constants – instances of tags used as arguments to functions

inline constexpr sequenced_policy seq { /* unspecified */ };

inline constexpr parallel_policy par { /* unspecified */ };

inline constexpr parallel_unsequenced_policy par_unseq { /* unspecified */ };

 Additional execution policies may be provided by a standard library
implementation (possible future additions may include std::parallel::cuda and
std::parallel::opencl)

C++17 execution control

3NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Example – for_each
 Old version (C++98, semantics changed in C++11)

template< class InputIt, class UnaryFunction >
UnaryFunction for_each(InputIt first, InputIt last, UnaryFunction f);

 Applies the given function object f to the result of dereferencing every iterator in the
range [first, last), in order.

 UnaryFunction must meet the requirements of MoveConstructible. Does not have to
be CopyConstructible

 C++17
template< class ExecutionPolicy, class ForwardIt, class UnaryFunction2 >
void for_each(ExecutionPolicy&& policy,

ForwardIt first, ForwardIt last, UnaryFunction2 f);

 Applies the given function object f to the result of dereferencing every iterator in the
range [first, last) (not necessarily in order).

 The algorithm is executed according to policy.

 UnaryFunction2 must meet the requirements of CopyConstructible.

C++17 execution control

4NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Effect of the tags
 sequenced_policy

 Parallel algorithm's execution may not be parallelized.

 The invocations of element access functions in parallel algorithms invoked with this policy (usually specified
as std::execution::seq) are indeterminately sequenced in the calling thread.

 parallel_policy
 Parallel algorithm's execution may be parallelized.

 The invocations of element access functions in parallel algorithms invoked with this policy (usually specified
as std::execution::par) are permitted to execute in either the invoking thread or in a thread implicitly created
by the library to support parallel algorithm execution.

 Any such invocations executing in the same thread are indeterminately sequenced with respect to each other.

 parallel_unsequenced_policy
 Parallel algorithm's execution may be parallelized, vectorized, or migrated across threads (such as by a

parent-stealing scheduler).

 The invocations of element access functions in parallel algorithms invoked with this policy are permitted to
execute in an unordered fashion in unspecified threads, and unsequenced with respect to one another within
each thread.

 Unsequenced execution policy is the only case where function calls are unsequenced with respect to each
other, meaning they can be interleaved. In all other situations in C++, they are indeterminately-sequenced
(cannot interleave).
 Because of that, users are not allowed to allocate or deallocate memory, acquire mutexes or perform any other

vectorization-unsafe operations when using this policy (vectorization-unsafe functions are the ones that synchronize-with
another function, e.g. std::mutex::unlock synchronizes-with the next std::mutex::lock)

 During the execution of a parallel algorithm with any of these three execution policies, if the
invocation of an element access function exits via an uncaught exception, std::terminate is called,
but the implementations may define additional execution policies that handle exceptions
differently.

C++17 execution control

5NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Parallel versions of algorithms
 execution_policy argument added

 adjacent_difference adjacent_find all_of any_of copy copy_if copy_n count count_if equal
fill fill_n find find_end find_first_of find_if find_if_not generate generate_n includes
inner_product inplace_merge is_heap is_heap_until is_partitioned is_sorted is_sorted_until
lexicographical_compare max_element merge min_element minmax_element mismatch
move none_of nth_element partial_sort partial_sort_copy partition partition_copy remove
remove_copy remove_copy_if remove_if replace replace_copy replace_copy_if replace_if
reverse reverse_copy rotate rotate_copy search search_n set_difference set_intersection
set_symmetric_difference set_union sort stable_partition stable_sort swap_ranges
transform uninitialized_copy uninitialized_copy_n uninitialized_fill uninitialized_fill_n unique
unique_copy

 New parallel algorithms
 for_each - similar to std::for_each except returns void

 for_each_n - applies a function object to the first n elements of a sequence

 reduce - similar to std::accumulate, except out of order

 exclusive_scan - similar to std::partial_sum, excludes the ith input element from the ith sum

 inclusive_scan - similar to std::partial_sum, includes the ith input element in the ith sum

 transform_reduce - applies a functor, then reduces out of order

 transform_exclusive_scan - applies a functor, then calculates exclusive scan

 transform_inclusive_scan - applies a functor, then calculates inclusive scan

Sequenced-before

6NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 value computation: calculation of the value that is returned by the expression. This may involve
determination of the identity of the object (glvalue evaluation, e.g. if the expression returns a
reference to some object) or reading the value previously assigned to an object (prvalue
evaluation, e.g. if the expression returns a number, or some other value)

 side effect: access (read or write) to an object designated by a volatile glvalue, modification
(writing) to an object, calling a library I/O function, or calling a function that does any of those
operations.

 Sequenced-before rules (since C++11)
 "sequenced-before" is an asymmetric, transitive, pair-wise relationship between

evaluations within the same thread.
 If A is sequenced before B, then evaluation of A will be complete before evaluation of B

begins.

 If A is not sequenced before B and B is not sequenced before A, then two possibilities
exist:
 evaluations of A and B are unsequenced: they may be performed in any order and may overlap

(within a single thread of execution, the compiler may interleave the CPU instructions that
comprise A and B)

 evaluations of A and B are indeterminately sequenced: they may be performed in any order but
may not overlap: either A will be complete before B, or B will be complete before A. The order may
be the opposite the next time the same expression is evaluated.

 Undefined behavior
 If a side effect on a scalar object is unsequenced relative to another side effect on the

same scalar object, the behavior is undefined.

 If a side effect on a scalar object is unsequenced relative to a value computation using the
value of the same scalar object, the behavior is undefined.

Sequenced-before

7NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Each value computation and side effect of a full expression, that is
 unevaluated operand

 constant expression

 an entire initializer, including any comma-separated constituent expressions

 the destructor call generated at the end of the lifetime of a non-temporary object

 an expression that is not part of another full-expression (such as the entire expression
statement, controlling expression of a for/while loop, conditional expression of if/switch, the
expression in a return statement, etc),

 including implicit conversions applied to the result of the expression, destructor calls to the
temporaries, default member initializers (when initializing aggregates), and every other
language construct that involves a function call,

 is sequenced before each value computation and side effect of the next full
expression.

 The value computations (but not the side-effects) of the operands to any
operator are sequenced before the value computation of the result of the
operator (but not its side-effects).

 When calling a function (whether or not the function is inline, and whether or
not explicit function call syntax is used), every value computation and side
effect associated with any argument expression, or with the postfix expression
designating the called function, is sequenced before execution of every
expression or statement in the body of the called function.

Sequenced-before

8NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 The value computation of the built-in post-increment and post-decrement operators is sequenced before
its side-effect.

 The side effect of the built-in pre-increment and pre-decrement operators is sequenced before its value
computation (implicit rule due to definition as compound assignment)

 Every value computation and side effect of the first (left) argument of the built-in logical AND operator
&& and the built-in logical OR operator || is sequenced before every value computation and side effect of
the second (right) argument.

 Every value computation and side effect associated with the first expression in the conditional operator ?:
is sequenced before every value computation and side effect associated with the second or third
expression.

 The side effect (modification of the left argument) of the built-in assignment operator and of all built-in
compound assignment operators is sequenced after the value computation (but not the side effects) of
both left and right arguments, and is sequenced before the value computation of the assignment
expression (that is, before returning the reference to the modified object)

 Every value computation and side effect of the first (left) argument of the built-in comma operator , is
sequenced before every value computation and side effect of the second (right) argument.

 In list-initialization, every value computation and side effect of a given initializer clause is sequenced
before every value computation and side effect associated with any initializer clause that follows it in the
brace-enclosed comma-separated list of initalizers.

 When returning from a function, copy-initialization of the temporary that is the result of evaluating the
function call is sequenced-before the destruction of all temporaries at the end of the operand of the
return statement, which, in turn, is sequenced-before the destruction of local variables of the block
enclosing the return statement.

 A function call that is not sequenced before or sequenced after another function call is
indeterminately sequenced (the program must behave as if the CPU instructions that constitute
different function calls were not interleaved, even if the functions were inlined).
 The rule has one exception: a function calls made by a standard library algorithm executing under

std::par_unseq execution policy are unsequenced and may be arbitrarily interleaved.

Sequenced-before

9NPRG054 High Performance Software Development- 2016/2017 David Bednárek

 Additional rules - C++17
 In a function-call expression, the expression that names the function is sequenced before every argument

expression and every default argument.
 In a function call, value computations and side effects of the initialization of every parameter are

indeterminately sequenced with respect to value computations and side effects of any other parameter.

 In a subscript expression E1[E2], every value computation and side-effect of E1 is sequenced before every
value computation and side effect of E2

 In a pointer-to-member expression E1.*E2 or E1->*E2, every value computation and side-effect of E1 is
sequenced before every value computation and side effect of E2 (unless the dynamic type of E1 does not
contain the member to which E2 refers)

 In a shift operator expression E1<<E2 and E1>>E2, every value computation and side-effect of E1 is
sequenced before every value computation and side effect of E2

 The call to the allocation function (operator new) is sequenced before (since C++17) the evaluation of the
constructor arguments in a new-expression

 Every expression in a comma-separated list of expressions in a parenthesized initializer is evaluated as if
for a function call (indeterminately-sequenced)

 Every overloaded operator obeys the sequencing rules of the built-in operator it overloads when
called using operator notation.

 In every simple assignment expression E1=E2 and every compound assignment expression E1@=E2,
every value computation and side-effect of E2 is sequenced before every value computation and side
effect of E1

i = ++i + 2; // undefined behavior until C++11

i = i++ + 2; // undefined behavior until C++17

f(i = -2, i = -2); // undefined behavior until C++17

f(++i, ++i); // undefined behavior until C++17, unspecified after C++17

i = ++i + i++; // undefined behavior

