
1NPRG054 High Performance Software Development- 2020/2021 David Bednárek

Simple mathematical model of cache behavior

Mathematical model of cache behavior

2NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 Simple mathematical model

 Input:

▪ A run of a (single-threaded) procedure with particular data

▪ Often, a generalization to any run with similarly-sized data is valid

▪ C = Cache size

 Output: The total number of cache misses during the run

▪ Estimation of the required main-memory throughput

▪ Does not estimate latency effects

▪ A statistic over the total run time – cannot identify bottlenecks

▪ Start/stop effects: Assume the procedure runs in an infinite loop

▪ The initial set of addresses present in the cache equals to the final set

 Assumptions

▪ All memory accesses of the same size

▪ Cache line size is equal to the access size (i.e., spatial locality has no effect)

▪ Fully associative cache

▪ Perfect LRU replacement strategy

 Many statistical details are ignored, the results are only approximate

Mathematical model of cache behavior

3NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 Notation:
 𝑚 𝑡1, 𝑡2 = the number of different addresses accessed inside (𝑡1, 𝑡2)

▪ Time points 𝑡1, 𝑡2 measured in arbitrary units; only one memory access at a time

▪ Note: 𝑚 satisfies triangle inequality – it is a distance measure on the time axis

 Perfect LRU replacement strategy
 The oldest entry in the cache is evicted

 Equivalent formulation:
 If 𝑡1, 𝑡2 are adjacent accesses to the same address a...

▪ i.e. there is no access to a inside (𝑡1, 𝑡2)

 ... then there is a cache miss at 𝑡2 iff 𝑚 𝑡1, 𝑡2 ≥ 𝐶

 Proof:

▪ In any moment 𝑡 ∈ (𝑡1, 𝑡2):
▪ The cache entries accessed inside (𝑡1, 𝑡) are younger than a

▪ The entries for all the other addresses are older than a

▪ a will be evicted at a time 𝑡 ∈ (𝑡1, 𝑡2) such that
▪ there is an access at time 𝑡 to an address not accessed inside (𝑡1, 𝑡)

▪ 1 +𝑚 𝑡1, 𝑡 = 𝐶, i.e. the cache contains exactly a and the addresses accessed inside (𝑡1, 𝑡)

▪ If 𝑚 𝑡1, 𝑡2 < 𝐶 then there is no such eviction of a

Mathematical model of cache behavior

4NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 Notation:

 𝐴 = the set of addresses accessed by the procedure

 𝑇 = the running time of the procedure

 𝑚 𝑤 = the average value of 𝑚 𝑡, 𝑡 + 𝑤 across all 𝑡 ∈ [0, 𝑇)

▪ i.e., how many addresses are accessed during a time window of size 𝑤

▪ well-defined due to the assumed infinite cycle over the measured procedure

▪ 𝑚(𝑤) is non-decreasing and concave

▪ for 𝑤 ≥ 𝑇, 𝑚 𝑤 = |𝐴|

 The 𝑚(𝑤) function is a mathematical measure of temporal locality
 Lower values indicate better temporal locality

 The 𝑚(𝑤) function for 8*8*8 matrix multiplication
 𝑇 = 8 ∗ 8 ∗ 8 = 512; 𝐴 = 3 ∗ 8 ∗ 8 = 192
 Equidistant: every address accessed every 64 iterations

▪ Not really exists as a matrix-multiplication algorithm

▪ Equidistant is always the worst algorithm wrt. cache

 Random: iterations randomly permuted
▪ Expectably worse than all the algorithms in use

 Naive: three nested loops
 Recursive: decomposed via 8 4*4*4 into 64 2*2*2 multiplications

Example

5NPRG054 High Performance Software Development- 2020/2021 David Bednárek

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500

equidistant random naive recursive

Estimating m(w)

6NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 𝑚 𝑤 for an equidistant algorithm
 For every address 𝑎 ∈ 𝐴, assume periodic access every 𝑑𝑎 time units

 Let 𝐻𝑎 𝑤 = 1 if the address 𝑎 is accessed during a time window of size 𝑤

▪ 𝐻𝑎 𝑤 = 0 otherwise

▪ This is a random variable depending on the placement of the window

 The expected value of 𝐻𝑎 𝑤 is:

▪ 𝐄 𝐻𝑎 𝑤 = min
𝑤

𝑑𝑎
, 1

 Let 𝑁 𝑤 = σ𝑎∈𝐴𝐻𝑎 𝑤 , i.e. the number of different addresses accessed

 𝑚(𝑤) is just the average of 𝑁 𝑤 across all window placements

▪ 𝑚(𝑤) = 𝐄 𝑁 𝑤 = σ𝑎∈𝐴𝐄(𝐻𝑎 𝑤) = σ𝑎∈𝐴min
𝑤

𝑑𝑎
, 1

Estimating m(w)

7NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 𝑚 𝑤 in general
 The intervals between adjacent accesses to the same address may vary

 The 𝑑𝑎 is, in general, a random variable dependent on window placement

 The correct general formula for the expected value of 𝐻𝑎 𝑤 is:

▪ 𝐄 𝐻𝑎 𝑤 =
𝐄(min 𝑤,𝑑𝑎)

𝐄(𝑑𝑎)

▪ Based on the fact that wide 𝑑𝑎 is encountered more frequently

▪ 𝑚(𝑤) = 𝐄 𝑁 𝑤 = σ𝑎∈𝐴𝐄(𝐻𝑎 𝑤) = σ𝑎∈𝐴
𝐄(min 𝑤,𝑑𝑎)

𝐄(𝑑𝑎)

 Note: If the random variables 𝐻𝑎 𝑤 are independent for different 𝑎 ∈ 𝐴

▪ This is not a realistic assumption for most algorithms, but it still works here

▪ Then, for large 𝐴 , 𝑁 𝑤 can be approximated by a normal distribution (by CLT)

▪ The variance will be relatively low, 𝜎2 ≤ |𝐴|/4, i.e. the std. dev. 𝜎 ≤ 𝐴 /2

▪ This observation will soon be useful...

Estimating the frequency of cache misses

8NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 Estimating number of cache misses

 𝐶 – the size of the cache

 For an access to an address 𝑏 ∈ 𝐴

▪ assuming the previous access is at the distance 𝑑𝑏

▪ the address 𝑏 will be evicted and thus a cache miss will occur if 𝑁 𝑑𝑏 ≥ 𝐶

▪ 𝑁 𝑑𝑏 is a random variable dependent on the position of the access

▪ However, due to the narrow variance of 𝑁 𝑤 , the formula 𝑁 𝑑𝑏 ≥ 𝐶...

▪ ... may be simplified to 𝑚 𝑑𝑏 ≥ 𝐶, which is still random due to 𝑑𝑏

 The total frequency of cache misses (wrt. unit of time) is then estimated as

▪ 𝑋(𝐶) = σ𝑏∈𝐴
𝐏(𝑚 𝑑𝑏 ≥𝐶)

𝐄(𝑑𝑏)

▪ the 𝐄(𝑑𝑏) factor accounts for the frequency of memory accesses to 𝑏

Estimating the frequency of cache misses

9NPRG054 High Performance Software Development- 2020/2021 David Bednárek

 Computing 𝑋(𝐶) from 𝑚(𝑤)
 Trick: Compute the derivative of 𝑚 𝑤 :

▪

𝜕

𝜕𝑤
𝑚(𝑤) = σ𝑎∈𝐴

𝜕

𝜕𝑤
𝐄(min 𝑤,𝑑𝑎)

𝐄(𝑑𝑎)
= σ𝑎∈𝐴

𝐏(𝑤≤𝑑𝑎)

𝐄(𝑑𝑎)

 𝑚 𝑑𝑏 is increasing (except when equal to 𝐴)

▪ therefore 𝑤 ≤ 𝑑𝑎 is equivalent to 𝑚 𝑤 ≤ 𝑚 𝑑𝑎

 Combined:

▪

𝜕

𝜕𝑤
𝑚(𝑤) = σ𝑎∈𝐴

𝐏(𝑚 𝑤 ≤𝑚 𝑑𝑎)

𝐄(𝑑𝑎)

 This is similar to the definition of 𝑋(𝐶):

▪ 𝑋(𝐶) = σ𝑏∈𝐴
𝐏(𝑚 𝑑𝑏 ≥𝐶)

𝐄(𝑑𝑏)

▪ with the substitution 𝐶 = 𝑚 𝑤

 Finally:

▪ 𝑋(𝐶) =
𝜕𝑚 𝑤

𝜕𝑤
(𝑚−1(𝐶))

▪ This is only an approximative formula

▪ not applicable for small 𝐶 ≪ 𝐴

 Frequency of cache misses

 𝑋(𝐶) =
𝜕𝑚 𝑤

𝜕𝑤
(𝑚−1(𝐶))

 Example 8*8*8 matrix multiplication

▪ For a L1 cache of size 32 (matrix elements), the recursive algorithm is better

▪ For a L2 cache of size 96, the naive algorithm is better

▪ The derivative is important, not the time-axis position

Frequency of cache misses

10NPRG054 High Performance Software Development- 2020/2021 David Bednárek

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500

L1 L2 naive recursive

 Two approaches to cache-miss optimization

 Cache-aware

▪ Make a turn in 𝑚 𝑤 every time it approaches a cache-level size

▪ The new derivative will be kept until approaching the next level

▪ Manipulating 𝑚 𝑤 while keeping the algorithm working may be hard or impossible

 Cache-oblivious

▪ Keep the 𝑚 𝑤 curve smoothly turning throughout the whole domain

▪ For recursive algorithms, the curve is often almost independent of 𝑇 and 𝐴

Frequency of cache misses

11NPRG054 High Performance Software Development- 2020/2021 David Bednárek

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500

L1 L2 naive recursive

 So far, we assumed algorithm execution for particular input data
 If we run the algorithm with different data of the same size

▪ For many problems, 𝑚 𝑤 depends only on the size of data
▪ Matrix multiplication and other numerical problems

▪ In general, 𝑚 𝑤 may significantly vary depending on the data
▪ E.g., search algorithms depend on statistical distribution of keys

 If we run the algorithm with significantly different data size 𝐴

▪ The 𝑚 𝑤 curve always converges to 𝐴

▪ For recursive algorithms, the curve beginnings for different 𝐴 will be similar

Frequency of cache misses

12NPRG054 High Performance Software Development- 2020/2021 David Bednárek

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000 3500 4000

naive 8*8*8 recursive 8*8*8 naive 16*16*16 recursive 16*16*16

