SFINAE

NPRGO041 Programming in C++ - 2016/2017 David Bednarek 1

Resolving function calls

» Call expression f(args) is resolved by the compiler as:

» The identifier f is being looked for (in this order)
= In the scope of the function containing the call
= In the scope of the corresponding class (if inside a member function)
= In the scope of its base classes (except dependent base class names), recursively

= |f found in more than one base class, the call is invalid, except where resolved by dominance
= Identifiers may be lifted to derived classes with “using base::ident;” declaration

= |n the global/namespace scope
= Additional declarations may be visible via “using ns::ident;” or “using namespace ns;”
» If not found as type/variable/constant, argument-dependent-lookup is invoked
= Argument-dependent-lookup considers all namespaces related to types of call arguments
» If fis determined to be a function, function overload resolution is invoked to
select one of the declarations

= Overload resolution may fail due to ambiguity

Resolving function calls

» Overload resolution

» Applies to call expressions like f(args) where f is determined to be a function

= Applied in three independent cases:
» Global/namespace scope: All function declarations found by ADL
= Member function declarations in the same class (including those lifted by “using”)
» Operator invocation like “al+a2”: Global/member cases mixed together

= All function and function template declarations with the given name are considered
» Phases:

= For templates, template parameters matching the call are deducted
= Deterministic mechanism defined by language, produces at most one result
= Deduction may fail
Deducted template parameters may cause fail elsewhere in the function header
Both kinds of failures lead to exclusion of the declaration from the candidate set (SFINAE)
= All remaining candidate functions (non-templates and succesfully instantiated templates)
are checked
= Compatibility wrt. number and types of arguments in the call is verified
= Return type is NOT considered (i.e. checked wrt. the context of the call)

= |f more than one candidate satisfies the compatibility rules, priority is determined
“More specialized” templates have priority
= Declarations resulting in “cheaper implicit conversions” of arguments have priority
= Both sets of priority rules create only partial orderings — they may fail because of ambiguity

SFINAE

» Substitution Failure Is Not An Error
» Example:

namespace std {
template< typename IT>

typename iterator_traits<IT>::difference_type distance(IT a, IT b);

}s

float distance(const std::string & a, const std::string & b);

std::string x = “Berlin”, y = “Paris”;

std: :cout << distance(x,y);

= std::distance is visible for the call distance(std::string,std::string)
= The return type iterator_traits<std::string>::difference_type is not defined

» If function template parameters derived from a function call cause an error when
substituted into another function parameter type or the return type, this function
template is excluded from the set of function declarations considered

» Asimilar definition applies to template specializations

SFINAE

» Substitution Failure Is Not An Error
» The SFINAE rule is used (and misused) for dirty tricks

» std::enable_if<V,T>

= std::enable_if<true,T>::type ===

= std::enable_if<true>::type === void

= std::enable_if<false,T> does not define the member “type”, which invokes SFINAE
» std::enable_if t<V,T>===typename std::enable_if<V,T>::type

template< typename IT>

enable_if t<
is_same_v< typename iterator_traits< IT>::iterator_category, random_access_iterator_tag>,
typename iterator_traits< IT>::difference_type>
distance(IT a, IT b)

{ return b - a; }

template< typename IT>

enable_if t«
| is_same_v< typename iterator_traits< IT>::iterator_category, random_access_iterator_tag>,
typename iterator_traits< IT>::difference_type>
distance(IT a, IT b)

{ for (ptrdiff_t n = 0; a != b; ++n, ++a); return n; }

C++20 Concepts

» With C++20 Concepts, std::enable_if is no longer required

template< typename A>

enable_if t< C<A>, T> f(/*.*/);

= |s equivalent to
template< typename A>

requires C<A>

T f(/*.*/);

» SFINAE is still an important part of the language
» Failure to satisfy the “requires” clause is not an error
» Even with concepts, the substitution may still fail and invoke SFINAE

Function template priority

» More specialized function templates

» Defines priority of two template functions like
template< argsl> void f(formalsl); // f1

template< args2> void f(formals2); // 2

» Informally: f1 is more specialized than f2 if...

= ... for each combination of types/constants assigned to args1...

Instead of checking infinite number of types/constants, the compiler introduces a fictitious unique
type/constant for each template parameter

= ... the resulting sequence of (types of) formals1 ...
Determined by simply substituting the fictitious types/constants into types of formals1
Substitution failures are ignored
= ... may be successfully used as actual arguments to f2
the function template argument deduction for f2 is successful
= Substitution failures are ignored, conversion failures are relevant
» This relation is not even a partial ordering

= The winner must be more specialized than all other candidates and all other candidates
must not be more specialized than the winner

= Often there is no winner
» Partial specializations of class templates are selected using similar rules
= There are no conversions — simpler and more predictable behavior

Advanced use of SFINAE

» Enabling a function depending on policy

= Auxiliary template to test convertibility
template< typename policy to, typename policy_ from>

struct is_convertible_policy : std::false_type {};

= Partial specialization applicable when the target policy declares “convert_from” policy type
template< typename policy_to>

struct is_convertible_policy< policy_to, typename policy_to::convert_from>
: std::true_type {};

= Convenience interface (templated constant)
template< typename policy to, typename policy_ from>

static constexpr bool is_convertible_policy_v =
is_convertible_policy< policy_to, policy_from>::value;

= Conditionally enabled conversion constructor
= std::enable_if placed in an additional anonymous template argument with a default value
template< typename policy>

class generic_iterator {
template< typename policy2,
typename = std::enable_if< is_convertible_policy v< policy, policy2>>>

generic_iterator(const generic_iterator< policy2> & b) { /*...*/ }

}s

NPRGO041 Programming in C++ - 2016/2017 David Bednarek 8

	Slide 1: SFINAE
	Slide 2: Resolving function calls
	Slide 3: Resolving function calls
	Slide 4: SFINAE
	Slide 5: SFINAE
	Slide 6: C++20 Concepts
	Slide 7: Function template priority
	Slide 8: Advanced use of SFINAE

