Emulating Mixins in C++

NPRGO041 Programming in C++ - 2016/2017 David Bednarek 1

» Mixin
» Idea: Mixin is a prefabricated set of definitions that is dumped into a scope

» Example: Every random-access iterator must define 5 types and 20 operators,
providing similar functionality in various ways. It would be advantageous to
have syntax like this:

class my_iterator includes generic_random_access_iterator</* some arguments */>
{ // some definitions
};5

= There is no such syntax in C++ yet (and will not be in foreseeable future)

» Important: Functions inside the mixin must be able to see the other definitions
in the scope where the mixin is used, as if they were located there

mixin mixinl { void functionl() { ++varl; } };
mixin mixin2 { void function2() { functionl(); } };

class final_class includes mixinl, mixin2 { int varl; };

NPRGO041 Programming in C++ - 2016/2017 David Bednarek

» Emulating mixins by inheritance:

class my_iterator : public generic_random_access_iterator</* some arguments */>

{ // some definitions
}s
» Problems
= A part of the required interface references the final class:
my_iterator & operator+=(std::ptrdiff_t b) { /*...*/ return *this; }
= How can we access my_iterator inside generic_random_access_iterator?
= The required interface contains non-member functions:
my_iterator operator+(std::ptrdiff_t a, const my_iterator & b);

= How can we implement this inside the mixin?

= The requirements include a conversion between related iterators:
= Either via conversion constructor in my_const_iterator — but constructors are not inherited

my_const_iterator(const my_iterator & b);

= Or via conversion operator in my_iterator

operator my_const_iterator() const;

= This is an additional method present in only one of the two iterator classes

NPRGO041 Programming in C++ - 2016/2017 David Bednarek 3

» Referencing the final class in a mixin

= The mixin must have a parameter

template< typename final_class, /*...*/>
class generic_random_access_iterator {
final_class & operator+=(std::ptrdiff_t b)
{ /*...*%/
return *static_cast<final_class*>(this);
}
}s

= The mixin is used like this:

class my_iterator : public generic_random_access_iterator< my_iterator, /*...*/>
{ /*...*/ };

» This approach is ugly and dangerous:

class my_second_iterator : public generic_random_access_iterator< my_iterator, /*...*/>

{ /*...*/ };

NPRGO041 Programming in C++ - 2016/2017 David Bednarek 4

» Global functions as a mixin

template< typename final_class, /*...*/>
final_class operator+(std::ptrdiff_t a,

const generic_random_access_iterator<final_class, /*...*/> & b)
{ /*...*%/ }

= This is an operator on the mixin class, not on the final_class
= |t could have unwanted effects

» The conversion operator
= We need to know the other final class too

template< typename final_class, typename final_const_class, /*...*/>
class generic_random_access_iterator {

operator final _const_class() const

{ /*...%/ }
}s5

= But we don’t want the conversion the other way — we need two mixin classes!

NPRGO041 Programming in C++ - 2016/2017 David Bednarek)

Mixins and policy classes

» Instead of writing this...
template< typename final_class, typename final_const_class, /*...*/>

class generic_random_access_iterator {
operator final_const_class() const
{ /*...%/ }

};

» ...policy classes allow shorter template parameter lists...
template< typename policy>

class generic_random_access_iterator {
operator typename policy::final_const_class() const { /*...*/ }
}s

= ...atthe cost of declaring a policy class
class my_iterator; class my_const_iterator;

struct my_policy {
using final_class = my_iterator;
using final_const_iterator = my_const_iterator;
/* oo ¥/
};
class my_iterator : public generic_random_access_iterator< my_policy>

{ /*...%/ };

NPRGO041 Programming in C++ - 2016/2017 David Bednarek 6

Mixins and policy classes

= With a policy class, things may be also implemented the other way round:

struct my_const_policy {
using const_policy
/¥ ... ¥/

}s

struct my_policy {

my_const_policy;

using const_policy
/¥ ... ¥/
}s5

using my_iterator = generic_random_access_iterator< my_policy>;

my_const_policy;

using my_const_iterator = generic_random_access_iterator< my_const_policy>;

= This is probably the only approach which can really work in C++
= Itis limited to one final generic class, not really a mixin
= |t may correctly support non-member functions like:
template< typename P>

inline generic_random_access_iterator< P> operator+(

std::ptrdiff_t a, generic_random_access_iterator< P> b);

NPRGO041 Programming in C++ - 2016/2017 David Bednarek 7

