
Exception handling

Why exceptions?

Returning error codes
error_code f()

{

auto rc1 = g1();

if (rc1.bad())

return rc1;

auto rc2 = g2();

if (rc2.bad())

return rc2;

return g3();

}

 Run-time cost

 small if everything is OK

 small if something wrong

 Throwing exceptions
void f()

{

g1();

g2();

g3();

}

 Run-time cost

 none if everything is OK

 big if something wrong

Exception handling

Exceptions are "jumps"

 Start: throw statement

 Destination: try-catch block

 Determined in run-time

 The jump may exit a procedure

 Local variables will be properly
destructed by destructors

 Besides jumping, a value is passed

 The type of the value determines
the destination

 Typically, special-purpose classes

 Catch-block matching can
understand inheritance

class AnyException { /*...*/ };

class WrongException

: public AnyException { /*...*/ };

class BadException

: public AnyException { /*...*/ };

void f()

{

if (something == wrong)

throw WrongException(something);

if (anything != good)

throw BadException(anything);

}

void g()

{

try {

f();

}

catch (const AnyException & e1) {

/*...*/

}

}

Exception handling

Exceptions are "jumps"

 Start: throw statement

 Destination: try-catch block

 Determined in run-time

 The jump may exit a procedure

 Local variables will be properly
destructed by destructors

 Besides jumping, a value is passed

 The type of the value determines
the destination

 Typically, special-purpose classes

 Catch-block matching can
understand inheritance

 The value may be ignored

class AnyException { /*...*/ };

class WrongException

: public AnyException { /*...*/ };

class BadException

: public AnyException { /*...*/ };

void f()

{

if (something == wrong)

throw WrongException();

if (anything != good)

throw BadException();

}

void g()

{

try {

f();

}

catch (const AnyException &) {

/*...*/

}

}

Exception handling

Exceptions are "jumps"

 Start: throw statement

 Destination: try-catch block

 Determined in run-time

 The jump may exit a procedure

 Local variables will be properly
destructed by destructors

 Besides jumping, a value is passed

 The type of the value determines
the destination

 Typically, special-purpose classes

 Catch-block matching can
understand inheritance

 The value may be ignored

 There is an universal catch block

class AnyException { /*...*/ };

class WrongException

: public AnyException { /*...*/ };

class BadException

: public AnyException { /*...*/ };

void f()

{

if (something == wrong)

throw WrongException();

if (anything != good)

throw BadException();

}

void g()

{

try {

f();

}

catch (...) {

/*...*/

}

}

Exception handling

Exception handling
 Evaluating the expression in the throw statement

 The value is stored "somewhere"

 Stack-unwinding

 Blocks and functions are being exited

 Local and temporary variables are destructed by calling destructors (user code!)

 Stack-unwinding stops in the try-block whose catch-block matches the throw
expression type

 catch-block execution

 The throw value is still stored

 may be accessed via the catch-block argument (typically, by reference)

 "throw;" statement, if present, continues stack-unwinding

 Exception handling ends when the accepting catch-block is exited normally

 Also using return, break, continue, goto

 Or by invoking another exception

Exception handling

Materialized exceptions

 std::exception_ptr is a smart-
pointer to an exception object

 Uses reference-counting to
deallocate

 std::current_exception()

 Returns (the pointer to) the
exception being currently handled

 The exception handling may then be
ended by exiting the catch-block

 std::rethrow_exception(p)

 (Re-)Executes the stored exception

 like a throw statement

 This mechanism allows:

 Propagating the exception to a
different thread

 Signalling exceptions in the
promise/future mechanism

std::exception_ptr p;

void g()

{

try {

f();

}

catch (...) {

p = std::current_exception();

}

}

void h()

{

std::rethrow_exception(p);

}

C++11

Exception handling

 Throwing and handling exceptions is slower than normal execution

 Compilers favor normal execution at the expense of exception-handling complexity

 Use exceptions only for rare events

 Out-of-memory, network errors, end-of-file, ...

 Mark procedures which cannot throw by noexcept

void f() noexcept

{ /*...*/

}

 it may make code calling them easier (for you and for the compiler)

 noexcept may be conditional

template< typename T>

void g(T & y)

noexcept(std::is_nothrow_copy_constructible< T>::value)

{

T x = y;

}

Exception handling

 Mark procedures which cannot throw by noexcept

 Example: Resizing std::vector<T>
 When inserting above capacity, the contents must be relocated to a larger memory block

 Before C++11, the relocation was done by copying, i.e. calling

T(const T &)

 If a copy constructor threw, the new copies were discarded and the insert call reported
failure by throwing

 Thus, if the insert threw, no observable change happened

 Note: Correct destruction of copies is possible only if the destructor is not throwing:

~T() noexcept

 In C++11, the relocation shall be done by moving

 If a move constructor throws, the previously moved elements shall be moved back, but it
can throw again!

 The relocation is done by moving only if the move constructor is declared as

T(T &&) noexcept

 ... or if it is declared implicitly and all elements satisfy the same property

 Otherwise, the slower copy method is used!

Exception handling

Standard exceptions

 <stdexcept>

 All standard exceptions are derived from class exception

 the member function what() returns the error message

 bad_alloc: not-enough memory

 bad_cast: dynamic_cast on references

 Derived from logic_error:

 domain_error, invalid_argument, length_error, out_of_range

 e.g., thrown by vector::at

 Derived from runtime_error:

 range_error, overflow_error, underflow_error

 Hard errors (invalid memory access, division by zero, ...) are NOT signalized as
exceptions

 These errors might occur almost anywhere

 The need to correctly recover via exception handling would prohibit many code
optimizations

 Nevertheless, there are (proposed) changes in the language specification that will allow
reporting hard errors by exceptions at reasonable cost

Exception-safe programming

Bezpečné programování s výjimkami

 Using throw a catch is simple

 Producing code that works
correctly in the presence of
exceptions is hard

 Exception-safety

 Exception-safe programming

void f()

{

int * a = new int[100];

int * b = new int[200];

g(a, b);

delete[] b;

delete[] a;

}

 If new int[200] throws, the int[100]
block becomes inaccessible

 If g() throws, two blocks become
inaccessible

Exception-safe programming

void f()

{

int * a = new int[100];

int * b = new int[200];

g(a, b);

delete[] b;

delete[] a;

}

 If new int[200] throws, the int[100]
block becomes inaccessible

 If g() throws, two blocks become
inaccessible

 Safety is expensive

void f()

{

int * a = new int[100];

try {

int * b = new int[200];

try {

g(a, b);

} catch (...) {

delete[] b; throw;

}

delete[] b;

} catch (...) {

delete[] a; throw;

}

delete[] a;

}

Exception-safe programming

void f()

{

int * a = new int[100];

int * b = new int[200];

g(a, b);

delete[] b;

delete[] a;

}

 If new int[200] throws, the int[100]
block becomes inaccessible

 If g() throws, two blocks become
inaccessible

 Smart pointers can help

void f()

{

auto a = std::make_unique<int[]>(100);

auto b = std::make_unique<int[]>(200);

g(&*a, &*b);

}

 Exception processing correctly
invokes the destructors of smart
pointers

Exception-safe programming

 There are more problems besides
memory leaks

std::mutex my_mutex;

void f()

{

my_mutex.lock();

// do something critical here

my_mutex.unlock();

// something not critical

}

 If something throws in the critical
section, this code will leave the
mutex locked forever!

 RAII: Resource Acquisition Is
Initialization
 Constructor grabs resources

 Destructor releases resources
 Also in the case of exception

std::mutex my_mutex;

void f()

{

{

std::lock_guard< std::mutex>
lock(my_mutex);

// do something critical here

}

// something not critical

}

 There is a local variable “lock” that is
never (visibly) used beyond its
declaration!

 Nested blocks matter!

Exception-safe programming

 An incorrectly implemented copy
assignment

T & operator=(const T & b)

{

if (this != & b)

{

delete body_;

body_ = new TBody(b.length());

copy(* body_, * b.body_);

}

return * this;

}

 Produces invalid object when
TBody constructor throws

 Does not work when this==&b

 Exception-safe implementation
T & operator=(const T & b)

{

T tmp(b);

operator=(std::move(tmp));

return * this;

}

 Can reuse code already
implemented in the copy
constructor and the move
assignment

 Correct also for this==&b

 although ineffective

Exception-safe programming

Exception-safe programming

Language-enforced rules

 Destructors may not end by throwing an exception

 Constructors of static variables may not end by throwing an exception

 Move constructors of exception objects may not throw

 Compilers sometimes generate implicit try-catch blocks

 When constructing a compound object, a constructor of an element may throw

 Array allocation

 Class constructors

 The implicit catch block destructs previously constructed parts and rethrows

Exception-safe programming

Theory

 (Weak) exception safety

 Exceptions does not cause inconsistent state

 No memory leaks

 No invalid pointers

 Application invariants hold

 ...?

 Strong exception safety

 Exiting function by throwing means no change in (observable) state

 Observable state = public interface behavior

 Also called "Commit-or-rollback semantics"

void f()

{

g1();

g2();

}

 When g2() throws...

 f() shall signal failure (by throwing)

 failure shall imply no change in
state

 but g1() already changed
something

 it must be undone

void f()

{

g1();

try {

g2();

} catch(...) {

undo_g1();

throw;

}

}

Strong exception safety

19NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Undoing is sometimes impossible

 e.g. erase(...)

 Code becomes unreadable

 Easy to forgot the undo

 Observations
 If a function does not change

observable state, undo is not
required

 The last function in the sequence
is never undone

void f()

{

g1();

try {

g2();

try {

g3();

} catch(...) {

undo_g2();

throw;

}

} catch(...) {

undo_g1();

throw;

}

}

Strong exception safety

20NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Check-and-do style
 Check if everything is correct

 Then do everything

 These functions must not throw

 Still easy to forget a check

 Work is often duplicated

 It may be difficult to write non-
throwing do-functions

void f()

{

check_g1();

check_g2();

check_g3();

do_g1();

do_g2();

do_g3();

}

Strong exception safety

21NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Check-and-do with tokens
 Each do-function requires a token

generated by the check-function

 Checks can not be omitted

 Tokens may carry useful data

 Duplicate work avoided

 It may be difficult to write non-
throwing do-functions

void f()

{

auto t1 = check_g1();

auto t2 = check_g2();

auto t3 = check_g3();

do_g1(t1); // or t1.doit();

do_g2(t2);

do_g3(t3);

}

Strong exception safety

22NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Prepare-and-commit style
 Prepare-functions generate a

token

 Tokens must be committed to
produce observable change

 Commit-functions must not throw

 If not committed, destruction of
tokens invokes undo

 If some of the commits are
forgotten, part of the work will be
undone

void f()

{

auto t1 = prepare_g1();

auto t2 = prepare_g2();

auto t3 = prepare_g3();

commit_g1(t1); // or t1.commit();

commit_g2(t2);

commit_g3(t3);

}

Strong exception safety

23NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Two implementations:
 Do-Undo

 Prepare-functions make observable
changes and return undo-plans

 Commit-functions clear undo-plans

 Token destructors apply undo-plans

 Prepare-Commit

 Prepare-functions return do-plans

 Commit-functions perform do-
plans

 Token destructors clear do-plans

 Commits and destructors must not
throw

 Unsuitable for inserting

 Use Do-Undo when inserting
 Destructor does erase

 Use Prepare-Commit when erasing
 Commit does erase

void f()

{

auto t1 = prepare_g1();

auto t2 = prepare_g2();

auto t3 = prepare_g3();

commit_g1(t1); // or t1.commit();

commit_g2(t2);

commit_g3(t3);

}

Strong exception safety

24NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Problems:

 Some commits may be forgotten

 Do-Undo style produces temporarily
observable changes
 Unsuitable for parallelism

 Atomic commit required

 Prepare-functions concatenate do-
plans

 Commit executes all do-plans
"atomically"
 It may be wrapped in a lock_guard

 Commit may throw!
 It is the only function with observable

effects

 Inside commit

 Do all inserts
 If some fails, previous must be undone

 Do all erases
 Erases do not throw (usually)

 Chained style
void f()

{

auto t1 = prepare_g1();

auto t2 = prepare_g2(std::move(t1));

auto t3 = prepare_g3(std::move(t2));

t3.commit();

}

 Symbolic style
void f()

{

auto t1 = prepare_g1();

auto t2 = std::move(t1) | prepare_g2();

auto t3 = std::move(t2) | prepare_g3();

t3.commit();

}

Strong exception safety

25NPRG041 Programming in C++ - 2016/2017 David Bednárek

