
Exception handling

Why exceptions?

Returning error codes
error_code f()

{

auto rc1 = g1();

if (rc1.bad())

return rc1;

auto rc2 = g2();

if (rc2.bad())

return rc2;

return g3();

}

 Run-time cost

 small if everything is OK

 small if something wrong

 Throwing exceptions
void f()

{

g1();

g2();

g3();

}

 Run-time cost

 none if everything is OK

 big if something wrong

Exception handling

Exceptions are "jumps"

▪ Start: throw statement

▪ Destination: try-catch block

▪ Determined in run-time

▪ The jump may exit a procedure

▪ Local variables will be properly
destructed by destructors

▪ Besides jumping, a value is passed

▪ The type of the value determines
the destination

▪ Typically, special-purpose classes

▪ Catch-block matching can
understand inheritance

class AnyException { /*...*/ };

class WrongException

: public AnyException { /*...*/ };

class BadException

: public AnyException { /*...*/ };

void f()

{

if (something == wrong)

throw WrongException(something);

if (anything != good)

throw BadException(anything);

}

void g()

{

try {

f();

}

catch (const AnyException & e1) {

/*...*/

}

}

Exception handling

Exceptions are "jumps"

▪ Start: throw statement

▪ Destination: try-catch block

▪ Determined in run-time

▪ The jump may exit a procedure

▪ Local variables will be properly
destructed by destructors

▪ Besides jumping, a value is passed

▪ The type of the value determines
the destination

▪ Typically, special-purpose classes

▪ Catch-block matching can
understand inheritance

▪ The value may be ignored

class AnyException { /*...*/ };

class WrongException

: public AnyException { /*...*/ };

class BadException

: public AnyException { /*...*/ };

void f()

{

if (something == wrong)

throw WrongException();

if (anything != good)

throw BadException();

}

void g()

{

try {

f();

}

catch (const AnyException &) {

/*...*/

}

}

Exception handling

Exceptions are "jumps"

▪ Start: throw statement

▪ Destination: try-catch block

▪ Determined in run-time

▪ The jump may exit a procedure

▪ Local variables will be properly
destructed by destructors

▪ Besides jumping, a value is passed

▪ The type of the value determines
the destination

▪ Typically, special-purpose classes

▪ Catch-block matching can
understand inheritance

▪ The value may be ignored

▪ There is an universal catch block

class AnyException { /*...*/ };

class WrongException

: public AnyException { /*...*/ };

class BadException

: public AnyException { /*...*/ };

void f()

{

if (something == wrong)

throw WrongException();

if (anything != good)

throw BadException();

}

void g()

{

try {

f();

}

catch (...) {

/*...*/

}

}

Exception handling

Exception handling

 Evaluating the expression in the throw statement

▪ The value is stored "somewhere"

 Stack-unwinding

▪ Blocks and functions are being exited

▪ Local and temporary variables are destructed by calling destructors (user code!)

▪ Stack-unwinding stops in the try-block whose catch-block matches the throw
expression type

 catch-block execution

▪ The throw value is still stored

▪ may be accessed via the catch-block argument (typically, by reference)

▪ "throw;" statement, if present, continues stack-unwinding

 Exception handling ends when the accepting catch-block is exited normally

▪ Also using return, break, continue, goto

▪ Or by invoking another exception

Exception handling

Materialized exceptions

▪ std::exception_ptr is a smart-
pointer to an exception object

▪ Uses reference-counting to
deallocate

▪ std::current_exception()

▪ Returns (the pointer to) the
exception being currently handled

▪ The exception handling may then be
ended by exiting the catch-block

▪ std::rethrow_exception(p)

▪ (Re-)Executes the stored exception

▪ like a throw statement

▪ This mechanism allows:

▪ Propagating the exception to a
different thread

▪ Signalling exceptions in the
promise/future mechanism

std::exception_ptr p;

void g()

{

try {

f();

}

catch (...) {

p = std::current_exception();

}

}

void h()

{

std::rethrow_exception(p);

}

C++11

Exception handling

Standard exceptions

▪ <stdexcept>

▪ All standard exceptions are derived from class exception

▪ the member function what() returns the error message

▪ bad_alloc: not-enough memory

▪ bad_cast: dynamic_cast on references

▪ Derived from logic_error:

▪ domain_error, invalid_argument, length_error, out_of_range

▪ e.g., thrown by vector::at

▪ Derived from runtime_error:

▪ range_error, overflow_error, underflow_error

▪ Hard errors (invalid memory access, division by zero, ...) are NOT signalized as
exceptions

▪ These errors might occur almost anywhere

▪ The need to correctly recover via exception handling would prohibit many code
optimizations

▪ Nevertheless, there are (proposed) changes in the language specification that will allow
reporting hard errors by exceptions at reasonable cost

Exception-safe programming

Language-enforced rules

▪ Destructors may not end by throwing an exception

▪ Constructors of static variables may not end by throwing an exception

▪ Move constructors of exception objects may not throw

 Compilers sometimes generate implicit try-catch blocks

▪ When constructing a compound object, a constructor of an element may throw

▪ Array allocation

▪ Class constructors

▪ The implicit catch block destructs previously constructed parts and rethrows

Programming with exceptions – basic rules

 Catch all exceptions in main
int main(int argc, char * * argv)

{ try {

// here is all the program functionality

} catch (...) {

std::cout << "Unknown exception caught" << std::endl;

return -1;

}

return 0;

}

▪ Motivation: "It is implementation-defined whether any stack unwinding is done when an
exception is thrown and not caught."
▪ If you don't catch in main, your open files may not be flushed, mutexes not released...

▪ Insert a std::exception catch block before the universal block to improve diagnostics in
known cases

catch (const std::exception & e) {

{ std::cout << "Exception: " << e.what() << std::endl;

return -1;

}

Programming with exceptions – basic rules

 Catch all exceptions in main

 This rule does not apply to threads

▪ Exceptions in threads launched by std::thread are caught by the library
▪ These exceptions reappear in another thread if join is called

 [Paranoid] A catch with rethrow ensures stack unwinding to this point
try {

// sensitive code containing write-open files, inter-process locks etc.

} catch (...) { throw; }

Programming with exceptions – basic rules

 Don't consume exceptions of unknown nature

▪ You shall always rethrow in universal catch-blocks, except in main

▪ Also called Exception neutrality
void something() {

try {

// something

} catch (...) { // WRONG !!!

std::cout << "Something happened – but we always continue" << std::endl;

}

}

▪ Motivation: It is not a good idea to continue work if you don't know what happened
▪ It may mean "hacker attack detected" or "battery exhausted"

Programming with exceptions – basic rules

 You can consume an exception if you know what parts may be damaged
for (;;) {

auto req = socket.receive_request();

try {

auto reply = perform_request(req);

socket.send_reply(reply);

} catch (const std::exception & e) { // Any std::exception deemed recoverable

socket.send_reply(500, e.what());

}

}

▪ The damaged parts must be restored or safely disposed of
▪ By their destructors during stack-unwinding (preferred)

▪ By clean-up code in rethrowing universal catch-blocks (error-prone)

Programming with exceptions – basic rules

▪ The damaged parts must be restored or safely disposed of
▪ By clean-up code in rethrowing universal catch-blocks (error-prone)

try {

some_mutex.lock();

try {

auto reply = perform_request(req);

} catch (...) {

some_mutex.unlock();

throw;

}

some_mutex.unlock();

socket.send_reply(reply);

} catch (const std::exception & e) {

socket.send_reply(500, e.what());

}

Programming with exceptions – basic rules

▪ The damaged parts must be restored or safely disposed of
▪ By their destructors during stack-unwinding (preferred)

▪ Called RAII (Resource Acquisition Is Initialization)
try {

reply_data reply;

{ std::lock_guard g(some_mutex); // [C++17] template deduction required

reply = perform_request(req);

}

socket.send_reply(reply);

} catch (const std::exception & e) {

socket.send_reply(500, e.what());

}

Programming with exceptions – basic rules

▪ RAII may require additional exactly positioned blocks in code

▪ These may interfere with the scope of other declarations
try {

reply_data reply;

{ std::lock_guard g(some_mutex);

reply = perform_request(req);

}

socket.send_reply(reply);

} catch (const std::exception & e) {

socket.send_reply(500, e.what());

}

▪ May be solved using std::optional
try {

std::optional< std::lock_guard< std::mutex>> g(some_mutex);

auto reply = perform_request(req);

g.reset(); // destructs the lock_guard inside

socket.send_reply(reply);

} catch (const std::exception & e) {

socket.send_reply(500, e.what());

}

Exception-safe programming - theory

 (Weak) exception safety

▪ A function (operator, constructor) is (weakly) safe, if, after an exception, it leaves all
the data in a consistent state

▪ Consistent state includes:

▪ All unreachable data were properly deallocated

▪ All pointers are either null or pointing to valid data

▪ All application-level invariants are valid

 Strong exception safety

▪ A function is strongly safe, if, after an exception, it leaves the data in the same
(observable) state as when invoked

▪ Observable state - the behavior of the public methods

▪ Also called "Commit-or-rollback semantics"

Exception handling

 Most parts of standard library strives to be strongly exception-safe

▪ In templated code, it depends on the properties of the template arguments

 Example: std::vector::insert

▪ If an exception is thrown when inserting a single element at the end, and T is
CopyInsertable or std::is_nothrow_move_constructible<T>::value is true, there are
no effects (strong exception guarantee).

▪ Before C++11, relocation for block extension was done by copying

▪ If a copy constructor threw, the new copies were discarded and the insert call reported
failure by throwing

▪ Thus, if the insert threw, no observable change happened

▪ Note: Correct destruction of copies is possible only if the destructor is non-throwing;
however, destructors are non-throwing by default

▪ In C++11, the relocation shall be done by moving

▪ If a move constructor throws, the previously moved elements shall be moved back, but it
can throw again - the result is an unrecoverable situation!

▪ The relocation is done by moving only if the move constructor is declared as noexcept

Exception handling

▪ Mark procedures which cannot throw by noexcept

void f() noexcept

{ /*...*/

}

▪ it may make code calling them easier (for you and for the compiler)

▪ noexcept may be conditional

template< typename T>

void g(T & y)

noexcept(std::is_nothrow_copy_constructible< T>::value)

{

T x = y;

}

Exception handling

 Best practices

 Default constructor

▪ Explicit implementation required if there are scalar elements (numbers, pointers)

T() noexcept : /*...*/ {}

▪ In most cases, making it noexcept is possible

▪ Prefer the ":" section for explicit initialization (usually to 0/nullptr)

▪ If all scalar data members are initialized in their declarations, default constructor is
not required

▪ It is also safer for other constructors

class T { int x = /*...*/; U * p = nullptr; /*...*/ };

 Other constructors

▪ Most non-trivial constructors in non-trivial classes require some allocation

▪ Such constructors cannot be noexcept

▪ Constructors that do not allocate (including indirectly through containers) may be
marked noexcept

T(/*...*/) noexcept : /*...*/ {}

▪ Don't forget to mark single-parameter constructors explicit

Exception handling

 Best practices

 Destructor

▪ In a class at the base of an inheritance hierarchy, always create a virtual destructor

virtual ~T() {}

▪ Avoid data elements that need clean-up

▪ If clean-up is really needed, remember the Rule Of Five

T(T&& b) noexcept : /*...*/ {}

T& operator=(const T&& b) noexcept { /*...*/ return *this; }

T(const T& b) : /*...*/ {}

T& operator=(const T& b) { /*...*/ return *this; }

~T() { /*...*/ }

▪ Avoid having more than one element that needs clean-up

▪ It often requires a try-catch block when working with more than one element that may fail

▪ Pack such data elements one-by-one in auxiliary classes

▪ Destructors are by default non-throwing, the noexcept keyword is not used

▪ In a destructor, avoid anything that could throw

Exception handling

 Best practices

 Move constructor, move assignment

▪ Avoid explicit implementation if possible

T(T&&) = default; T& operator=(T&&) = default;

▪ Do not use noexcept with =default

▪ It becomes noexcept implicitly if all elements have noexcept move

▪ Scalar elements (numbers, pointers) implement move by copying, considered noexcept

▪ Most std library types have noexcept move methods

▪ If implemented explicitly, always make it noexcept

T(T&&b) noexcept : /*...*/ { /*...*/ } T& operator=(T&&b) noexcept { /*...*/ }

▪ Avoid any potentially throwing functionality

▪ For scalar elements (numbers, pointers), copy and explicitly set the source to 0/nullptr

▪ For class elements, use the ":" section to invoke move constructors

▪ The effect on source shall be equivalent to invoking the default constructor

Exception handling

 Best practices

 Copy constructor, copy assignment

▪ Avoid explicit implementation if possible

T(const T&) = default; T& operator=(const T&) = default;

▪ Do not use noexcept with =default

 Exception-safe implementation of copy assignment
T & operator=(const T & b)

{

T tmp(b);

operator=(std::move(tmp));

return * this;

}

▪ Can reuse code already implemented in the copy constructor and the move
assignment

▪ Correct also for this==&b

▪ although ineffective

Exception-safe programming

Bezpečné programování s výjimkami

void f()

{

g1();

g2();

}

 When g2() throws...

▪ f() shall signal failure (by throwing)

▪ failure shall imply no change in
state

▪ but g1() already changed
something

▪ it must be undone

void f()

{

g1();

try {

g2();

} catch(...) {

undo_g1();

throw;

}

}

Strong exception safety

25NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Undoing is sometimes impossible

▪ e.g. erase(...)

 Code becomes unreadable

▪ Easy to forgot the undo

 Observations
 If a function does not change

observable state, undo is not
required

 The last function in the sequence
is never undone

void f()

{

g1();

try {

g2();

try {

g3();

} catch(...) {

undo_g2();

throw;

}

} catch(...) {

undo_g1();

throw;

}

}

Strong exception safety

26NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Check-and-do style

 Check if everything is correct

 Then do everything

▪ These functions must not throw

 Still easy to forget a check

 Work is often duplicated

 It may be difficult to write non-
throwing do-functions

void f()

{

check_g1();

check_g2();

check_g3();

do_g1();

do_g2();

do_g3();

}

Strong exception safety

27NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Check-and-do with tokens

 Each do-function requires a token
generated by the check-function

▪ Checks can not be omitted

▪ Tokens may carry useful data

▪ Duplicate work avoided

 It may be difficult to write non-
throwing do-functions

void f()

{

auto t1 = check_g1();

auto t2 = check_g2();

auto t3 = check_g3();

do_g1(t1); // or t1.doit();

do_g2(t2);

do_g3(t3);

}

Strong exception safety

28NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Prepare-and-commit style

 Prepare-functions generate a
token

 Tokens must be committed to
produce observable change

▪ Commit-functions must not throw

 If not committed, destruction of
tokens invokes undo

 If some of the commits are
forgotten, part of the work will be
undone

void f()

{

auto t1 = prepare_g1();

auto t2 = prepare_g2();

auto t3 = prepare_g3();

commit_g1(t1); // or t1.commit();

commit_g2(t2);

commit_g3(t3);

}

Strong exception safety

29NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Two implementations:
 Do-Undo

▪ Prepare-functions make observable
changes and return undo-plans

▪ Commit-functions clear undo-plans

▪ Token destructors apply undo-plans

 Prepare-Commit
▪ Prepare-functions return do-plans

▪ Commit-functions perform do-
plans

▪ Token destructors clear do-plans

 Commits and destructors must not
throw

▪ Unsuitable for inserting

▪ Use Do-Undo when inserting
▪ Destructor does erase

▪ Use Prepare-Commit when erasing
▪ Commit does erase

void f()

{

auto t1 = prepare_g1();

auto t2 = prepare_g2();

auto t3 = prepare_g3();

commit_g1(t1); // or t1.commit();

commit_g2(t2);

commit_g3(t3);

}

Strong exception safety

30NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Problems:

▪ Some commits may be forgotten

▪ Do-Undo style produces temporarily
observable changes
▪ Unsuitable for parallelism

 Atomic commit required

▪ Prepare-functions concatenate do-
plans

▪ Commit executes all do-plans
"atomically"
▪ It may be wrapped in a lock_guard

▪ Commit may throw!
▪ It is the only function with observable

effects

 Inside commit

▪ Do all inserts
▪ If some fails, previous must be undone

▪ Do all erases
▪ Erases do not throw (usually)

 Chained style
void f()

{

auto t1 = prepare_g1();

auto t2 = prepare_g2(std::move(t1));

auto t3 = prepare_g3(std::move(t2));

t3.commit();

}

 Symbolic style
void f()

{

auto t1 = prepare_g1();

auto t2 = std::move(t1) | prepare_g2();

auto t3 = std::move(t2) | prepare_g3();

t3.commit();

}

Strong exception safety

31NPRG041 Programming in C++ - 2016/2017 David Bednárek

	Slide 1: Exception handling
	Slide 2: Why exceptions?
	Slide 3: Exception handling
	Slide 4: Exception handling
	Slide 5: Exception handling
	Slide 6: Exception handling
	Slide 7: Exception handling
	Slide 8: Exception handling
	Slide 9: Exception-safe programming
	Slide 10: Programming with exceptions – basic rules
	Slide 11: Programming with exceptions – basic rules
	Slide 12: Programming with exceptions – basic rules
	Slide 13: Programming with exceptions – basic rules
	Slide 14: Programming with exceptions – basic rules
	Slide 15: Programming with exceptions – basic rules
	Slide 16: Programming with exceptions – basic rules
	Slide 17: Exception-safe programming - theory
	Slide 18: Exception handling
	Slide 19: Exception handling
	Slide 20: Exception handling
	Slide 21: Exception handling
	Slide 22: Exception handling
	Slide 23: Exception handling
	Slide 24: Exception-safe programming
	Slide 25: Strong exception safety
	Slide 26: Strong exception safety
	Slide 27: Strong exception safety
	Slide 28: Strong exception safety
	Slide 29: Strong exception safety
	Slide 30: Strong exception safety
	Slide 31: Strong exception safety

