
Exception handling

Why exceptions?

Returning error codes
error_code f()

{

auto rc1 = g1();

if (rc1.bad())

return rc1;

auto rc2 = g2();

if (rc2.bad())

return rc2;

return g3();

}

 Run-time cost

 small if everything is OK

 small if something wrong

 Throwing exceptions
void f()

{

g1();

g2();

g3();

}

 Run-time cost

 none if everything is OK

 big if something wrong

Exception handling

Exceptions are "jumps"

 Start: throw statement

 Destination: try-catch block

 Determined in run-time

 The jump may exit a procedure

 Local variables will be properly
destructed by destructors

 Besides jumping, a value is passed

 The type of the value determines
the destination

 Typically, special-purpose classes

 Catch-block matching can
understand inheritance

class AnyException { /*...*/ };

class WrongException

: public AnyException { /*...*/ };

class BadException

: public AnyException { /*...*/ };

void f()

{

if (something == wrong)

throw WrongException(something);

if (anything != good)

throw BadException(anything);

}

void g()

{

try {

f();

}

catch (const AnyException & e1) {

/*...*/

}

}

Exception handling

Exceptions are "jumps"

 Start: throw statement

 Destination: try-catch block

 Determined in run-time

 The jump may exit a procedure

 Local variables will be properly
destructed by destructors

 Besides jumping, a value is passed

 The type of the value determines
the destination

 Typically, special-purpose classes

 Catch-block matching can
understand inheritance

 The value may be ignored

class AnyException { /*...*/ };

class WrongException

: public AnyException { /*...*/ };

class BadException

: public AnyException { /*...*/ };

void f()

{

if (something == wrong)

throw WrongException();

if (anything != good)

throw BadException();

}

void g()

{

try {

f();

}

catch (const AnyException &) {

/*...*/

}

}

Exception handling

Exceptions are "jumps"

 Start: throw statement

 Destination: try-catch block

 Determined in run-time

 The jump may exit a procedure

 Local variables will be properly
destructed by destructors

 Besides jumping, a value is passed

 The type of the value determines
the destination

 Typically, special-purpose classes

 Catch-block matching can
understand inheritance

 The value may be ignored

 There is an universal catch block

class AnyException { /*...*/ };

class WrongException

: public AnyException { /*...*/ };

class BadException

: public AnyException { /*...*/ };

void f()

{

if (something == wrong)

throw WrongException();

if (anything != good)

throw BadException();

}

void g()

{

try {

f();

}

catch (...) {

/*...*/

}

}

Exception handling

Exception handling
 Evaluating the expression in the throw statement

 The value is stored "somewhere"

 Stack-unwinding

 Blocks and functions are being exited

 Local and temporary variables are destructed by calling destructors (user code!)

 Stack-unwinding stops in the try-block whose catch-block matches the throw
expression type

 catch-block execution

 The throw value is still stored

 may be accessed via the catch-block argument (typically, by reference)

 "throw;" statement, if present, continues stack-unwinding

 Exception handling ends when the accepting catch-block is exited normally

 Also using return, break, continue, goto

 Or by invoking another exception

Exception handling

Materialized exceptions

 std::exception_ptr is a smart-
pointer to an exception object

 Uses reference-counting to
deallocate

 std::current_exception()

 Returns (the pointer to) the
exception being currently handled

 The exception handling may then be
ended by exiting the catch-block

 std::rethrow_exception(p)

 (Re-)Executes the stored exception

 like a throw statement

 This mechanism allows:

 Propagating the exception to a
different thread

 Signalling exceptions in the
promise/future mechanism

std::exception_ptr p;

void g()

{

try {

f();

}

catch (...) {

p = std::current_exception();

}

}

void h()

{

std::rethrow_exception(p);

}

C++11

Exception handling

 Throwing and handling exceptions is slower than normal execution

 Compilers favor normal execution at the expense of exception-handling complexity

 Use exceptions only for rare events

 Out-of-memory, network errors, end-of-file, ...

 Mark procedures which cannot throw by noexcept

void f() noexcept

{ /*...*/

}

 it may make code calling them easier (for you and for the compiler)

 noexcept may be conditional

template< typename T>

void g(T & y)

noexcept(std::is_nothrow_copy_constructible< T>::value)

{

T x = y;

}

Exception handling

 Mark procedures which cannot throw by noexcept

 Example: Resizing std::vector<T>
 When inserting above capacity, the contents must be relocated to a larger memory block

 Before C++11, the relocation was done by copying, i.e. calling

T(const T &)

 If a copy constructor threw, the new copies were discarded and the insert call reported
failure by throwing

 Thus, if the insert threw, no observable change happened

 Note: Correct destruction of copies is possible only if the destructor is not throwing:

~T() noexcept

 In C++11, the relocation shall be done by moving

 If a move constructor throws, the previously moved elements shall be moved back, but it
can throw again!

 The relocation is done by moving only if the move constructor is declared as

T(T &&) noexcept

 ... or if it is declared implicitly and all elements satisfy the same property

 Otherwise, the slower copy method is used!

Exception handling

Standard exceptions

 <stdexcept>

 All standard exceptions are derived from class exception

 the member function what() returns the error message

 bad_alloc: not-enough memory

 bad_cast: dynamic_cast on references

 Derived from logic_error:

 domain_error, invalid_argument, length_error, out_of_range

 e.g., thrown by vector::at

 Derived from runtime_error:

 range_error, overflow_error, underflow_error

 Hard errors (invalid memory access, division by zero, ...) are NOT signalized as
exceptions

 These errors might occur almost anywhere

 The need to correctly recover via exception handling would prohibit many code
optimizations

 Nevertheless, there are (proposed) changes in the language specification that will allow
reporting hard errors by exceptions at reasonable cost

Exception-safe programming

Bezpečné programování s výjimkami

 Using throw a catch is simple

 Producing code that works
correctly in the presence of
exceptions is hard

 Exception-safety

 Exception-safe programming

void f()

{

int * a = new int[100];

int * b = new int[200];

g(a, b);

delete[] b;

delete[] a;

}

 If new int[200] throws, the int[100]
block becomes inaccessible

 If g() throws, two blocks become
inaccessible

Exception-safe programming

void f()

{

int * a = new int[100];

int * b = new int[200];

g(a, b);

delete[] b;

delete[] a;

}

 If new int[200] throws, the int[100]
block becomes inaccessible

 If g() throws, two blocks become
inaccessible

 Safety is expensive

void f()

{

int * a = new int[100];

try {

int * b = new int[200];

try {

g(a, b);

} catch (...) {

delete[] b; throw;

}

delete[] b;

} catch (...) {

delete[] a; throw;

}

delete[] a;

}

Exception-safe programming

void f()

{

int * a = new int[100];

int * b = new int[200];

g(a, b);

delete[] b;

delete[] a;

}

 If new int[200] throws, the int[100]
block becomes inaccessible

 If g() throws, two blocks become
inaccessible

 Smart pointers can help

void f()

{

auto a = std::make_unique<int[]>(100);

auto b = std::make_unique<int[]>(200);

g(&*a, &*b);

}

 Exception processing correctly
invokes the destructors of smart
pointers

Exception-safe programming

 There are more problems besides
memory leaks

std::mutex my_mutex;

void f()

{

my_mutex.lock();

// do something critical here

my_mutex.unlock();

// something not critical

}

 If something throws in the critical
section, this code will leave the
mutex locked forever!

 RAII: Resource Acquisition Is
Initialization
 Constructor grabs resources

 Destructor releases resources
 Also in the case of exception

std::mutex my_mutex;

void f()

{

{

std::lock_guard< std::mutex>
lock(my_mutex);

// do something critical here

}

// something not critical

}

 There is a local variable “lock” that is
never (visibly) used beyond its
declaration!

 Nested blocks matter!

Exception-safe programming

 An incorrectly implemented copy
assignment

T & operator=(const T & b)

{

if (this != & b)

{

delete body_;

body_ = new TBody(b.length());

copy(* body_, * b.body_);

}

return * this;

}

 Produces invalid object when
TBody constructor throws

 Does not work when this==&b

 Exception-safe implementation
T & operator=(const T & b)

{

T tmp(b);

operator=(std::move(tmp));

return * this;

}

 Can reuse code already
implemented in the copy
constructor and the move
assignment

 Correct also for this==&b

 although ineffective

Exception-safe programming

Exception-safe programming

Language-enforced rules

 Destructors may not end by throwing an exception

 Constructors of static variables may not end by throwing an exception

 Move constructors of exception objects may not throw

 Compilers sometimes generate implicit try-catch blocks

 When constructing a compound object, a constructor of an element may throw

 Array allocation

 Class constructors

 The implicit catch block destructs previously constructed parts and rethrows

Exception-safe programming

Theory

 (Weak) exception safety

 Exceptions does not cause inconsistent state

 No memory leaks

 No invalid pointers

 Application invariants hold

 ...?

 Strong exception safety

 Exiting function by throwing means no change in (observable) state

 Observable state = public interface behavior

 Also called "Commit-or-rollback semantics"

void f()

{

g1();

g2();

}

 When g2() throws...

 f() shall signal failure (by throwing)

 failure shall imply no change in
state

 but g1() already changed
something

 it must be undone

void f()

{

g1();

try {

g2();

} catch(...) {

undo_g1();

throw;

}

}

Strong exception safety

19NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Undoing is sometimes impossible

 e.g. erase(...)

 Code becomes unreadable

 Easy to forgot the undo

 Observations
 If a function does not change

observable state, undo is not
required

 The last function in the sequence
is never undone

void f()

{

g1();

try {

g2();

try {

g3();

} catch(...) {

undo_g2();

throw;

}

} catch(...) {

undo_g1();

throw;

}

}

Strong exception safety

20NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Check-and-do style
 Check if everything is correct

 Then do everything

 These functions must not throw

 Still easy to forget a check

 Work is often duplicated

 It may be difficult to write non-
throwing do-functions

void f()

{

check_g1();

check_g2();

check_g3();

do_g1();

do_g2();

do_g3();

}

Strong exception safety

21NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Check-and-do with tokens
 Each do-function requires a token

generated by the check-function

 Checks can not be omitted

 Tokens may carry useful data

 Duplicate work avoided

 It may be difficult to write non-
throwing do-functions

void f()

{

auto t1 = check_g1();

auto t2 = check_g2();

auto t3 = check_g3();

do_g1(t1); // or t1.doit();

do_g2(t2);

do_g3(t3);

}

Strong exception safety

22NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Prepare-and-commit style
 Prepare-functions generate a

token

 Tokens must be committed to
produce observable change

 Commit-functions must not throw

 If not committed, destruction of
tokens invokes undo

 If some of the commits are
forgotten, part of the work will be
undone

void f()

{

auto t1 = prepare_g1();

auto t2 = prepare_g2();

auto t3 = prepare_g3();

commit_g1(t1); // or t1.commit();

commit_g2(t2);

commit_g3(t3);

}

Strong exception safety

23NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Two implementations:
 Do-Undo

 Prepare-functions make observable
changes and return undo-plans

 Commit-functions clear undo-plans

 Token destructors apply undo-plans

 Prepare-Commit

 Prepare-functions return do-plans

 Commit-functions perform do-
plans

 Token destructors clear do-plans

 Commits and destructors must not
throw

 Unsuitable for inserting

 Use Do-Undo when inserting
 Destructor does erase

 Use Prepare-Commit when erasing
 Commit does erase

void f()

{

auto t1 = prepare_g1();

auto t2 = prepare_g2();

auto t3 = prepare_g3();

commit_g1(t1); // or t1.commit();

commit_g2(t2);

commit_g3(t3);

}

Strong exception safety

24NPRG041 Programming in C++ - 2016/2017 David Bednárek

 Problems:

 Some commits may be forgotten

 Do-Undo style produces temporarily
observable changes
 Unsuitable for parallelism

 Atomic commit required

 Prepare-functions concatenate do-
plans

 Commit executes all do-plans
"atomically"
 It may be wrapped in a lock_guard

 Commit may throw!
 It is the only function with observable

effects

 Inside commit

 Do all inserts
 If some fails, previous must be undone

 Do all erases
 Erases do not throw (usually)

 Chained style
void f()

{

auto t1 = prepare_g1();

auto t2 = prepare_g2(std::move(t1));

auto t3 = prepare_g3(std::move(t2));

t3.commit();

}

 Symbolic style
void f()

{

auto t1 = prepare_g1();

auto t2 = std::move(t1) | prepare_g2();

auto t3 = std::move(t2) | prepare_g3();

t3.commit();

}

Strong exception safety

25NPRG041 Programming in C++ - 2016/2017 David Bednárek

