
Requirements and concepts

Validity of templates

 Templates are checked for validity
 On definition: syntactic correctness, correctness of independent names

▪ Not required by the language specification but supported by rules

 On instantiation: All rules of the language

 A template does not have to be correct for all combinations of arguments
▪ It would be impossible in most cases

▪ Compilers check the correctness only for the arguments used in an instantiation
▪ Templates are difficult to test

▪ Before C++20, there was no mechanism to specify requirements on template
arguments
▪ Trial-and-error approach (see SFINAE for advanced misuse)

▪ Unreadable error messages when a template is incorrectly used

▪ C++20 introduces requires clauses and concepts for constraining template arguments
▪ They also assist in template function overload resolution (like SFINAE, unlike static_assert)

 Instantiation of a class template does not invoke instantiation of all members
▪ A valid class template instance may contain invalid member functions

▪ Example: copy-constructor of vector<unique_ptr<T>>

[C++20] Requires clauses

 A requires-clause acts as a constraint on template parameters

 Evaluated by the compiler in the moment of template instantiation
template< typename IT, typename F>

requires std::is_invocable_v<F, std::iter_reference_t<IT>>

F for_each(IT a, IT b, F f);

▪ In this case, the requires clause contains a constexpr bool expression

▪ [C++20] std::iter_reference_t is the type returned by the * operator on an iterator

▪ Implemented directly through decltype

▪ std::iterator_traits<IT>::reference is no longer needed

▪ [C++17] std::is_invocable_v is a variable template defined as

template< typename F, typename ... ArgTypes>

inline constexpr bool is_invocable_v = is_invocable< F, ArgTypes...>::value;

▪ std::is_invocable is a class template defined to look like this:

template< typename F, typename ... ArgTypes> class is_invocable

{ static constexpr bool value = /*...*/; };

▪ the actual implementation uses partial specialization and other advanced tricks

[C++20] Requires clauses

 A requires-clause acts as a constraint on template parameters
template< typename IT, typename F>

requires std::is_invocable_v<F, std::iter_reference_t<IT>>

F for_each(IT a, IT b, F f);

 If violated, this function declaration will be ignored during overload resolution

▪ Most likely, the result will be "no function declaration matches the call“

▪ In general, there may be another declaration of the function that matches well

▪ This indicates that the problem is not inside the implementation of for_each

 For non-function templates, the violation will directly trigger an error message

 The requires clause also acts as documentation

▪ Note: The implementation of for_each probably contains the expression f(*a)

▪ The requires-clause essentially checks whether this expression is correct

▪ If the requires clause were not present

▪ Template instantiation would fail due to the expression f(*a)

▪ It would fail after overload resolution, not before (as with SFINAE or requires)

▪ The error message would point to the expression inside the implementation

[C++20] Concepts

 A concept is, logically, a Boolean function whose arguments are
types, templates or constants

 In many cases, there is just one typename argument

 Evaluated by the compiler

 Note: C++14 already has a construct with the same underlying logic:
template< typename T> inline constexpr bool is_reference_v = /*...*/;

▪ The difference is in some syntactic sugar associated with concepts

▪ Concepts may be defined using bool constants but not (easily) the other way round

[C++20] Concepts

 Definition of a concept:

 A concept may be defined using a requires-expression
template< typename T> concept Dereferencable = requires (T x) { *x; };

▪ In this case, the requires-expression states that the expression *x must be
semantically valid for any x of type T

template< typename F, typename ... AL> concept Callable

= requires (F f, AL ... al) { f(al ...); };

 A concept may also be defined using other concepts or constant Boolean
expressions, including combining by && and || operators

template< typename T> concept Reference = std::is_reference_v<T>;

template< typename T> concept ConstReference =

Reference<T> && std::is_const_v< std::remove_reference_t< T>>;

▪ In this context, && and || operators are well-defined even for erroneous operands

▪ If remove_reference_t is not defined for T, the result is false

▪ Negation is not supported here - it would not be consistent with the handling of errors

[C++20] Concepts

 Concepts used with all arguments explicit
 In the requires-clause

template< typename IT, typename F>

requires Iterator<IT> && Callable<F, std::iter_reference_t< IT>>

void for_each(IT a, IT b, F f);

 In the definition of other concepts
template< typename IT>

concept Iterator = Dereferenceble<IT> && Incrementable<IT>;

 Concepts used with the first argument implicitly inferred from the context
 Instead of typename in template parameter declaration

▪ The first argument of the concept is the type being declared here

template< Iterator IT, Callable<typename IT::reference> F>

void for_each(IT a, IT b, F f);

▪ Just a syntactic sugar equivalent to a requires clause

 In auto declarations
Iterator auto it = k.find(x);

▪ Triggers an error if the return type of find does not satisfy Iterator

[](Iterator auto it){ return *it; }

▪ Produces a requires clause in the generated template operator()

 In type-checking requirements inside a requires-expression
template< typename IT> concept SubtractableIterator =

requires (IT a, IT b) { {a-b} -> std::convertible_to<std::ptrdiff_t>; }

▪ Invokes the concept std::convertible_to<decltype(a-b), std::ptrdiff_t>

[C++20] Concepts

 Example
template< typename K, typename V> concept StackOf

requires (K k, V v) {

{k.push(v)} -> std::same_as<void>;

{k.top()} noexcept -> std::convertible_to< V>;

{k.pop()} -> std::same_as<void>;

};

template< typename K> concept Stack

requires {

typename K::value_type;

requires StackOf<K, typename K::value_type>;

};

[C++20] Concepts

 Advantages of concepts

 Explicit and systematic statement of requirements

 Understandable diagnostic messages

 Requires clause participates in overload resolution (SFINAE no longer required)

▪ Unlike a static_assert inside the template

 Adoption of concepts in standard library
 Previously existing parts of library are not upgraded to use concepts

 Some new parts like std::ranges are heavily dependent on concepts

 There are some generally usable concepts defined in <concepts>

▪ Often equivalent to previously existing traits in <type_traits> etc.

▪ Example: std::same_as does the same as std::is_same_v

	Slide 1: Requirements and concepts
	Slide 2: Validity of templates
	Slide 3: [C++20] Requires clauses
	Slide 4: [C++20] Requires clauses
	Slide 5: [C++20] Concepts
	Slide 6: [C++20] Concepts
	Slide 7: [C++20] Concepts
	Slide 8: [C++20] Concepts
	Slide 9: [C++20] Concepts

