
Exception handling

Exception handling

• Exceptions are "jumps"

• Start: throw statement

• Destination: try-catch block

• Determined at run time

• The jump may exit a procedure

• Local variables will be properly
destructed by destructors

• Besides jumping, a value is passed

• The type of the value determines
the destination

• Typically, special-purpose classes

• Catch-block matching can
understand inheritance

class AnyException { /*...*/ };
class WrongException
: public AnyException { /*...*/ };

class BadException
: public AnyException { /*...*/ };

void f()
{
if (something == wrong)
throw WrongException(something);

std::string locvar1;
if (anything != good)
throw BadException(anything);

}

void g()
{
try {
std::ofstream locvar2;
f();

}
catch (const AnyException & e1) {
/*...*/

}
}

Exception handling

• Exceptions are "jumps"

• Start: throw statement

• Destination: try-catch block

• Determined at run time

• The jump may exit a procedure

• Local variables will be properly
destructed by destructors

• Besides jumping, a value is passed

• The type of the value determines
the destination

• Typically, special-purpose classes

• Catch-block matching can
understand inheritance

• The value may be ignored

class AnyException { /*...*/ };
class WrongException
: public AnyException { /*...*/ };

class BadException
: public AnyException { /*...*/ };

void f()
{
if (something == wrong)
throw WrongException(something);

std::string locvar1;
if (anything != good)
throw BadException(anything);

}

void g()
{
try {
std::ofstream locvar2;
f();

}
catch (const AnyException &) {
/*...*/

}
}

Exception handling

• Exceptions are "jumps"

• Start: throw statement

• Destination: try-catch block

• Determined at run time

• The jump may exit a procedure

• Local variables will be properly
destructed by destructors

• Besides jumping, a value is passed

• The type of the value determines
the destination

• Typically, special-purpose classes

• Catch-block matching can
understand inheritance

• The value may be ignored

• There is an universal catch block

class AnyException { /*...*/ };
class WrongException
: public AnyException { /*...*/ };

class BadException
: public AnyException { /*...*/ };

void f()
{
if (something == wrong)
throw WrongException(something);

std::string locvar1;
if (anything != good)
throw BadException(anything);

}

void g()
{
try {
std::ofstream locvar2;
f();

}
catch (...) {
/*...*/

}
}

Exception handling

• Exception handling consists of

• Evaluating the expression in the throw statement

• The value is stored "somewhere"

• Stack-unwinding

• Blocks and functions are being exited

• Local and temporary variables are destructed by calling destructors

• Inside a destructor, another instance of exception handling may be executed

• The destructors must not let their internal exceptions escape

• Stack-unwinding stops in the try-block whose catch-block matches the throw
expression type

• catch-block execution

• The throw value is still stored

• may be accessed via the catch-block argument (typically, by reference)

• also accessible through std::current_exception

• "throw;" statement, if present, continues stack-unwinding

• Exception handling ends when the accepting catch-block is exited normally

• Also using return, break, continue, goto

• Or by throwing another exception from the catch-block

Exception handling

• Materialized exceptions

• std::exception_ptr is a smart-
pointer to an exception object

• Uses reference-counting to
deallocate

• std::current_exception()

• Returns (a pointer to a copy of)
the exception being currently
handled

• The exception handling may then
be ended by exiting the catch-
block

• std::rethrow_exception(p)

• (Re-)executes the stored
exception

• like a throw statement

• This mechanism allows:

• Propagating the exception to a
different thread

• Signalling exceptions in the
promise/future mechanism

std::exception_ptr p;

void g()
{
try {
f();

}
catch (...) {
p = std::current_exception();

}
}

void h()
{
std::rethrow_exception(p);

}

Exception handling

• Throwing and handling exceptions is slower than normal execution
• Compilers favor normal execution at the expense of exception-handling complexity

• Use exceptions only for rare events
• Out-of-memory, network errors, end-of-file, ...

• Mark procedures which cannot throw by noexcept
• it may make code calling them easier (for you and for the compiler)

• You shall always explicitly mark move-constructors and move-assignments as noexcept
• If you are able to avoid exceptions there

• It will significantly improve the behavior of containers containing your type

• Compiler-generated functions will be noexcept if every element has its noexcept function

• Destructors are noexcept by default
• If your destructors may throw, you shall mark them noexcept(false)

void f() noexcept
{ /*...*/
}

• noexcept may be conditional on a compile-time constant
• Used in conjunction with type-examining traits in the standard library

template< typename T>
void g(T & y) noexcept(std::is_nothrow_copy_constructible_v< T>)
{

T x = y;
}

Exception handling

• Standard exceptions

• <stdexcept>

• All standard exceptions are derived from class std::exception

• the member function what() returns the error message

• std::bad_alloc: not-enough memory

• std::bad_cast: dynamic_cast on references

• Derived from std::logic_error – usually a mistake of the programmer

• domain_error, invalid_argument, length_error, out_of_range

• e.g., thrown by vector::at

• Derived from std::runtime_error – usually a problem in the data or environment

• range_error, overflow_error, underflow_error

• It is a good practice to derive your exception classes from std::exception

• It allows anyone to display the error message by
try { /*...*/ } catch (const std::exception & e) { std::cout << e.what(); }

• Hard errors (invalid memory access, division by zero, ...) are NOT signalized as
exceptions

• These errors might occur almost anywhere

• The need to correctly recover via exception handling would prohibit many code
optimizations

• Some compilers may be able to do it if asked

Programming with exceptions – basic rules

•Rules of the language

• Destructors must not end by exception

• An exception may be invoked inside a destructor, but it must be caught inside

• Rationale:

• Stack-unwinding calls destructors of local variables

• An exception exiting a destructor cannot be reasonably handled

• If it happens, terminate() is called and the program is exited without finishing the
destructors

Programming with exceptions – basic rules

•Rules of the language

• Destructors must not end by exception

• An exception may be invoked inside a destructor, but it must be caught inside

• Technically, this rule applies only to destructors of

• Local variables (due to exceptions during stack unwinding)

• Global/static variables (nowhere to catch such exceptions)

• Logically, it shall be applied anywhere

• Local variable destructors often call other destructors

• We don't like objects that refuse to die

Programming with exceptions – basic rules

•Rules of the language

• Destructors must not end by exception

• A constructor of global/static variable must not end by exception

• There is no possibility to catch such exception

• If it happens, terminate() is called and the program is exited without finishing the
destructors

• Other constructors can safely throw exceptions (and it is a good idea)

• Avoid global/static variables

Programming with exceptions – basic rules

• Compilers create implicit try-catch blocks

• Creation of arrays

• Calls default constructors for every element

• If the constructor for i-th element throws

• The (i-1),...,0-th elements are destructed

• The exception is rethrown - the array is not created

• Creation of classes/structures

• Call constructors for every base class and data member

• If the constructor for an element throws

• The previous elements are destructed

• The exception is rethrown - the class is not created

• The implicit catch block may be augmented with an explicit one:
X::X(/* ... */)
try : Y(/* ... */)
{ /* constructor body */
} catch (/* ... */) {
/* catches all exceptions in both the element constructors and the body

implicitly rethrows at the end
*/

}

Exception-safe programming

Exception-safe programming

• Using throw a catch is simple

• Producing code that works
correctly in the presence of
exceptions is hard

• Exception-safety

• Exception-safe programming

void f()
{
int * a = new int[100];
int * b = new int[200];
g(a, b);
delete[] b;
delete[] a;

}

• If new int[200] throws, the
int[100] block becomes
inaccessible

• If g() throws, two blocks become
inaccessible

Exception-safe programming

• The use of smart pointers solves
some problems related to
exception safety

void f()
{
auto a=std::make_unique<int[]>(100);
auto b=std::make_unique<int[]>(200);
g(a, b);

}

• RAII: Resource Acquisition Is
Initialization

• Constructor allocates resources

• Destructor frees the resources

• Even in the case of an exception

std::mutex my_mutex;

void f()
{
std::lock_guard< std::mutex>
lock(my_mutex);
// do something critical here

}

Programming with exceptions – basic rules

• Catch all exceptions in main
int main(int argc, char * * argv)
{ try {

// here is all the program functionality
} catch (...) {

std::cout << "Unknown exception caught" << std::endl;
return -1;

}
return 0;

}

• Motivation: "It is implementation-defined whether any stack unwinding is done when an
exception is thrown and not caught."

• If you don't catch in main, your open files may not be flushed, mutexes not released...

• Insert a std::exception catch block before the universal block to improve diagnostics in
known cases

catch (const std::exception & e) {
{ std::cout << "Exception: " << e.what() << std::endl;

return -1;
}

• This rule does not apply to threads
• Exceptions in threads launched by std::thread are caught by the library

• These exceptions reappear in another thread if join is called

• [Paranoid] A catch with rethrow ensures stack unwinding to this point
try {

// sensitive code containing write-open files, inter-process locks etc.
} catch (...) { throw; }

Programming with exceptions – basic rules

• Don't consume exceptions of unknown nature
• You shall always rethrow in universal catch-blocks, except in main

• Also called Exception neutrality
void something() {

try {
// something

} catch (...) { // WRONG !!!
std::cout << "Something happened – but we always continue" << std::endl;

}
}

• Motivation: It is not a good idea to continue work if you don't know what happened
• It may mean "hacker attack detected" or "battery exhausted"

• You can consume an exception if you know what parts may be damaged
for (;;) {

auto req = socket.receive_request();
try {

auto reply = perform_request(req);
socket.send_reply(reply);

} catch (const std::exception & e) { // Any std::exception deemed recoverable
socket.send_reply(500, e.what());

}
}

• The damaged parts must be restored or safely disposed of
• By their destructors during stack-unwinding (preferred)

• By clean-up code in rethrowing universal catch-blocks (error-prone)

Programming with exceptions – basic rules

• The damaged parts must be restored or safely disposed of
• By clean-up code in rethrowing universal catch-blocks (error-prone)

try {
some_mutex.lock();
try {
auto reply = perform_request(req);

} catch (...) {
some_mutex.unlock();
throw;

}
some_mutex.unlock();
socket.send_reply(reply);

} catch (const std::exception & e) {
socket.send_reply(500, e.what());

}
• By their destructors during stack-unwinding (preferred)

• Called RAII (Resource Acquisition Is Initialization)
try {

reply_data reply;
{ std::lock_guard g(some_mutex); // [C++17] template deduction required
reply = perform_request(req);

}
socket.send_reply(reply);

} catch (const std::exception & e) {
socket.send_reply(500, e.what());

}

Programming with exceptions – basic rules

• RAII may require additional exactly positioned blocks in code

• These may interfere with the scope of other declarations

try {
reply_data reply;
{ std::lock_guard g(some_mutex);
reply = perform_request(req);

}
socket.send_reply(reply);

} catch (const std::exception & e) {
socket.send_reply(500, e.what());

}

• May be solved using std::optional

try {
std::optional< std::lock_guard< std::mutex>> g(some_mutex);
auto reply = perform_request(req);
g.reset(); // destructs the lock_guard inside
socket.send_reply(reply);

} catch (const std::exception & e) {
socket.send_reply(500, e.what());

}

• An incorrectly implemented copy
assignment

T & operator=(const T & b)
{
if (this != & b)
{
delete body_;
body_ = new TBody(b.length());
copy(* body_, * b.body_);

}
return * this;

}

• Produces invalid object when
TBody constructor throws

• Requires testing for this==&b

• Exception-safe implementation
T & operator=(const T & b)
{
T tmp(b);
operator=(std::move(tmp));
return * this;

}

• Can reuse code already
implemented in the copy
constructor and the move
assignment

• Correct also for this==&b

• although ineffective

Exception-safe programming

Exception-safe programming

• (Weak) exception safety
• A function (operator, constructor) is (weakly) safe, if, after an exception, it leaves

all the data in a consistent state

• Consistent state includes:

• All unreachable data were properly deallocated

• All pointers are either null or pointing to valid data

• All application-level invariants are valid

Exception-safe programming

• (Weak) exception safety
• A function (operator, constructor) is (weakly) safe, if, after an exception, it leaves

all the data in a consistent state

• Consistent state includes:

• All unreachable data were properly deallocated

• All pointers are either null or pointing to valid data

• All application-level invariants are valid

• Strong exception safety
• A function is strongly safe, if, after an exception, it leaves the data in the same

(observable) state as when invoked

• Observable state - the behavior of the public methods

• Also called "Commit-or-rollback semantics"

Exception-safe programming

• Standard library is designed to be strongly exception-safe, if

• the user-supplied types/functions are strongly exception-safe

• some additional conditions hold

• Example: std::vector::insert

• If an exception is thrown when inserting a single element at the end, and T is
CopyInsertable or std::is_nothrow_move_constructible<T>::value is true, there are no
effects (strong exception guarantee).

• The algorithm chosen by the library may depend on noexcept flags

• Insert uses copy-constructors if move-constructors are not marked noexcept

• Otherwise it would not be able to undo the failed move

	Slide 1: Exception handling
	Slide 2: Exception handling
	Slide 3: Exception handling
	Slide 4: Exception handling
	Slide 5: Exception handling
	Slide 6: Exception handling
	Slide 7: Exception handling
	Slide 8: Exception handling
	Slide 9: Programming with exceptions – basic rules
	Slide 10: Programming with exceptions – basic rules
	Slide 11: Programming with exceptions – basic rules
	Slide 12: Programming with exceptions – basic rules
	Slide 13: Exception-safe programming
	Slide 14: Exception-safe programming
	Slide 15: Exception-safe programming
	Slide 16: Programming with exceptions – basic rules
	Slide 17: Programming with exceptions – basic rules
	Slide 18: Programming with exceptions – basic rules
	Slide 19: Programming with exceptions – basic rules
	Slide 20: Exception-safe programming
	Slide 21: Exception-safe programming
	Slide 22: Exception-safe programming
	Slide 23: Exception-safe programming

