copy/move operations

NPRGO041 Programming in C++ - 2019/2020 David Bednarek 1

std::vector< char> x { 'a', 'b', 'c' };

std::vector< char> y = Xx;

A copy operation on containers and similar types
« Requires allocation and copying of dynamically-allocated data
« It is slow and may throw exceptions

NPRGO41 Programming in C++ - 2019/2020 David Bednarek

Move

std::vector< char> x { 'a', 'b', 'c' };

std::vector< char> y = std::move(x);

 After moving, the source is empty
« Exact meaning depends on the type

« A move operation usually does no allocation
« It is fast and does not throw exceptions

NPRGO41 Programming in C++ - 2019/2020 David Bednarek

« Move operation is invoked instead of copy, if
 the source is explicitly marked with std::move(), or
 the source is an r-value
» temporary object, which cannot be accessed repeatedly
 return values from functions which return by value

+ explicitly created temporary objects
 results of casts etc.

« std::move

 actually a cast from Ivalue-reference to rvalue-reference
template< typename T>

T & move(T & x) { return static cast<T &&>(x); } // simplified
 std::move does NOT move anything

« the cast (usually) changes the behavior AFTER the std::move call
=Vy; // invokes T(const T&) because y is an l-value
std: :move(y); // invokes T(T&&) because std::move(y) is an r-value

— -
N N

gin C++ -
2019/2020

« The meaning of copy and move operations depends on the type

» The behavior is implemented as four special member functions

 copy-constructor — called when initializing a new object by copying
T(const T &);

» move-constructor — called when initializing a new object by moving
T(T &&);

« copy-assignment — called when copying a new value to an old object
T & operator=(const T &);

* move-assignment — called when moving a new value to an old object
T & operator=(T &R);

« if not implemented by the programmer, the compiler will create them

 only if some (rather complex) conditions ensuring backward compatibility are met
« otherwise the respective copy/move operations are not supported by the type

« the compiler-generated implementation calls the corresponding functions for all data
members (and base classes)

if you follow C++11 guidelines, this behavior will probably meet your needs
« for elementary types (numbers, T *), move is implemented as copy
* it may cause inconsistency between number and container members

« when containers are moved, all elements are also moved
« the source container becomes empty (except std::array which cannot be resized)

The Rule of Five

« Consider what happens when your class is going to die...

* ... can all the data members clean-up themselves?
* Numbers need no clean-up
« Smart pointers will automatically clean up their memory blocks if necessary

« Raw (T*) pointers will just disappear, they can not do any clean-up
automatically
« If they are just observers, it is O.K. - they are not responsible for cleaning

« If they represent ownership, you will need to call delete in a destructor
class T { public:
~T() { delete p_; } // destructor required
Uu=*rp_; // owner of a memory block

s

* Now, what happens if you copy the owner class T bit-by-bit?

« There will be two T objects containing pointers to the same object U
» The second call to ~T() will cause CRASH due to double delete on the same object
It is impossible to determine that an object was already deleted

 Instead of shallow copying, deep copy must be used for T

gin C++ -
2019/2020

The Rule of Five

 The Rule of Five:

« If something forced you to write the destructor,
you also have to write the four copy/move functions

» The implementation of the four by the compiler would not fit your needs
* Your destructor is unlikely to survive double invocation on shallow copies
« Besides ownership pointers, it also applies to open files, locks, ...

* You can also disable them if you don't need copyable/movable class:
T(const T &) = delete;
T(T &) = delete;
T & operator=(const T &) = delete;
T & operator=(T &&) = delete;

« Implementing the Five functions is demanding and error-prone
 Avoid using U* pointers where ownership is required
« Use only types that can take care of themselves

gin C++ -
2019/2020

 All elements support copy and move in the required fashion
« None of the Five methods required

- Beware of the incoherence between numbers and smarter elements:
class matrix { private: std::vector<float> v_; std::size t rows , cols ; };

» Move makes the source vector empty but rows_/cols_ remain nonzero!
« You may need explicit implementation of move and default copy

 All elements support copy and move but copying has no sense
« Living objects in simulations/games etc.
« Disable copy methods by “= delete”

« If move methods remain useful, they have to be made accessible by = default”
« Touching any of the four methods automatically disables the others (C++20)

« Elements support move in the required fashion, but copying is required

« Copying elements does not work or behaves differently than required
« E.g., elements are unique/shared_ptr but the class requires deep copy semantics
« Implement copy methods, enable move methods by “= default”

« Elements do not support copy/move in the required way
« Implement all the copy and move methods and the destructor

Virtual destructor

 Classes at the root of an inheritance hierarchy (usually abstract classes)
must have a virtual destructor:
class C { virtual ~C() {} };
It enforces an advanced implementation of delete for pointers to the class
« For speed, the default implementation of delete is dumb
A typical use of inheritance:
class D : public C { std::shared_ptr<zZ> zp; }
A derived class object is dynamically allocated
D * dptr = new D;
« A pointer to the derived object is then assigned to a pointer to the base class

» This assignment is the core motivation for inheritance
C * cptr = dptr; // implicit conversion "derived to base class pointer"

« Finally, the object is destroyed using the pointer to the base class

« The compiler does not know the type of the object being deleted!
delete cptr; // if C::~C() is virtual, it deletes the complete D object

« Without virtual destructor, data members of derived classes will remain undestructed!
« With multiple inheritance, the delete will also damage the allocation mechanism!

» The same problem applies to smart pointers
 Destructor of a smart pointer invokes delete on a raw pointer

gin C++ -
2019/2020

Abstract classes

 Classes at the root of an inheritance hierarchy (usually abstract classes)
must have a virtual destructor:

class AbstractClass { virtual ~AbstractClass() {} };
 Such classes are usually used solely as dynamically allocated objects

» std::vector<AbstractClass> is a NONSENSE in C++
« Such a container cannot store any derived class!

« std::vector<std::unique_ptr<AbstractClass>> is the correct solution

 With dynamically allocated objects, move is usually not needed
« The (smart) pointers to them are moved instead

 Often, objects with inheritance also have some kind of identity
« Copying such objects usually has no sense

It is a good idea to disable copy and move methods for abstract classes
« The disablement will automatically propagate to derived classes

« Sometimes, a destructor is needed to clean-up a derived class
« The disablement makes the rule-of-five satisfied

gin C++ -
2019/2020

10

Dynamic allocation

NPRGO041 Programming in C++ - 2019/2020 David Bednarek

Dynamic allocation in C++11

« Use smart pointers instead of raw (T *) pointers
#include <memory>

« one owner (pointer cannot be copied)
* negligible runtime cost (almost the same as T *)
void f() {
std::unique ptr< T> p
std::unique ptr< T> ¢
// p is nullptr now

}

std::make unique< T>(); // invokes new
std::move(p); // pointer moved to q

 shared ownership

 runtime cost of reference counting
void f() {

std::shared _ptr< T> p = std::make_shared< T>(); // invokes new
std::shared ptr< T> ¢ p; // pointer copied; object shared between q and p

}

« Memory is deallocated when the last owner disappears
 Destructor of (or assignment to) the smart pointer invokes delete when required
« Reference counting cannot deallocate cyclic structures

gin C++ -
2019/2020

12

Dynamic allocation in C++11

 unique_ptr is uncopiable, shared_ptr is expensive to copy
* avoid copying whenever possible

« When passing ownership, the parameter of the receiving function may be

« passed by value
void store pointer(std::shared ptr<T> a) {
storage = std::move(a);

¥

« passed by r-value reference
void store pointer(std::shared ptr<T> && a) {

 the ownership transfer may be conditional
if (/*...%/)

storage = std::move(a);

« In both cases, pass the actual argument using move:
store_pointer(std::move(p));
« if passed by value, the ownership is immediately moved to the argument a
» and later moved again to the storage
« if passed by reference, the ownership is moved directly to the storage
« and may remain in the actual argument if not actually moved

« if the calling function wants to use p after calling store_pointer(std::move(p)), there must
be a mechanism informing it whether store_pointer actually moved or not

gin C++ -

= 2019/2020

 unique_ptr is uncopiable, shared_ptr is expensive to copy
* avoid copying whenever possible

 If you don't need to pass ownership, do not pass smart pointers
« Use araw pointer - T * or const T *

« in this case, it is termed a (modifying) observer (to distinguish from old-style owning T *)

» Raw pointers are always passed by value
void store pointer(T * a) {

storage = a,;

¥

- If the actual argument is a smart pointer, it must be explicitly converted
std::shared ptr<T> p = /*...*/

store pointer(p.get());
store_pointer(&*p);

« The &* version is preferred — it works also on iterators or raw pointers
« Itis actually a user-defined operator* followed by the built-in &

» The observers are not considered co-owners
« The object may be destructed by an owner with observers present

« It is the programmers responsibility to avoid using observers after owners die
« This is the reason why the smart-to-observer conversion is not implicit

Owner of object
« std::unique_ptr< T>, std::shared_ptr< T>
» Use only if objects must be allocated one-by-one

» Possible reasons: Inheritance, irregular life range, graph-like structure, singleton
« For holding multiple objects of the same type, use std::vector< T>

» std::weak_ptr< T>
« To enable circular references with std::shared_ptr< T>, used rarely

Modifying observer
e T X
« In modern C++, native (raw, T*) pointers shall not represent ownership

« Save T * in another object which needs to modify the T object
« Beware of lifetime: The observer must stop observing before the owner dies
« If you are not able to prevent premature owner death, you need shared ownership

Read-only observer
e constT *
« Save const T * in another object which needs to read the T object

Besides pointers, C++ has references (T &, const T &, T &&)
» Used (by convention) for temporary access during a function call etc.

Owners and observers

« Example — unique ownership

auto owner = std::make unique< T>(); // std::unique_ptr< T>
» Observer

auto modifying observer = owner.get(); // T *

auto modifying observer2 = &*owner; // same effect as .get()

» Read-only observer
const T * read only observer = owner.get(); // implicit conversion of T * to
const T *
auto read only observer2 = (const T *)owner.get(); // explicit conversion
const T * read only observer3 = modifying observer; // implicit conversion

« Owner pointers can point only to a complete dynamically allocated block
« Or to a base object (with virtual destructor) from which the complete object is derived
« Observer pointers can point to any piece of data anywhere
« Parts of objects
auto part_observer = & owner->member;
+ Static data
static T static _data[2];
T* observer_of static = & static _data[0];
e Local §Iata (beware: their lifetime is limited — avoid propagating observers outside of their
scope
void g(T * p); }} note: reference T& instead of pointer is preferred here
void f() { T local data; g(& local data); }

gin C++ -
2019/2020

16

Dynamic allocation

« Dynamic allocation is slow
« compared to static/automatic storage
 the reason is cache behavior, not only the allocation itself

« Use dynamic allocation only when necessary
« variable-sized or large arrays
 in most of these cases, dynamic allocation is used indirectly through containers

« polymorphic containers (containing various objects using inheritance)
std::vector<std: :unique ptr<common_base class>>

 object lifetimes not corresponding to function invocations
» however, this case can often be solved by moving the object contents

 For speed, avoid data structures with individually allocated items
* linked lists, binary trees, ...
« std::list, std::map, ...
 prefer contiguous structures (vectors, hash tables, B-trees, etc.)
« avoiding is difficult - do it only if speed is important

» This is how C++ programs may be made faster than C#/java
« C#/java requires dynamic allocation of every class instance

gin C++ -

- 2019/2020

	Slide 1: copy/move operations
	Slide 2: Copy
	Slide 3: Move
	Slide 4: Move
	Slide 5: Move
	Slide 6: The Rule of Five
	Slide 7: The Rule of Five
	Slide 8: The Rule of Five – possible scenarios
	Slide 9: Virtual destructor
	Slide 10: Abstract classes
	Slide 11: Dynamic allocation
	Slide 12: Dynamic allocation in C++11
	Slide 13: Dynamic allocation in C++11
	Slide 14: Dynamic allocation in C++11
	Slide 15: Using pointers in modern C++
	Slide 16: Owners and observers
	Slide 17: Dynamic allocation

