
1NPRG041 Programming in C++ - 2019/2020 David Bednárek

copy/move operations

• A copy operation on containers and similar types

• Requires allocation and copying of dynamically-allocated data

• It is slow and may throw exceptions

Copy

2NPRG041 Programming in C++ - 2019/2020 David Bednárek

std::vector< char> x { 'a', 'b', 'c' };

a b c

std::vector< char> y = x;

a b c

x

y

• After moving, the source is empty
• Exact meaning depends on the type

• A move operation usually does no allocation

• It is fast and does not throw exceptions

Move

3NPRG041 Programming in C++ - 2019/2020 David Bednárek

std::vector< char> x { 'a', 'b', 'c' };

a b c

std::vector< char> y = std::move(x);

x

y

Move

• Move operation is invoked instead of copy, if

• the source is explicitly marked with std::move(), or

• the source is an r-value

• temporary object, which cannot be accessed repeatedly

• return values from functions which return by value

• explicitly created temporary objects

• results of casts etc.

• std::move

• actually a cast from lvalue-reference to rvalue-reference
template< typename T>
T && move(T & x) { return static_cast<T &&>(x); } // simplified

• std::move does NOT move anything

• the cast (usually) changes the behavior AFTER the std::move call
T z = y; // invokes T(const T&) because y is an l-value
T z = std::move(y); // invokes T(T&&) because std::move(y) is an r-value

4

NPRG041
Programmin

g in C++ -
2019/2020

David

Move

• The meaning of copy and move operations depends on the type

• The behavior is implemented as four special member functions

• copy-constructor – called when initializing a new object by copying
T(const T &);

• move-constructor – called when initializing a new object by moving
T(T &&);

• copy-assignment – called when copying a new value to an old object
T & operator=(const T &);

• move-assignment – called when moving a new value to an old object
T & operator=(T &&);

• if not implemented by the programmer, the compiler will create them

• only if some (rather complex) conditions ensuring backward compatibility are met

• otherwise the respective copy/move operations are not supported by the type

• the compiler-generated implementation calls the corresponding functions for all data
members (and base classes)

• if you follow C++11 guidelines, this behavior will probably meet your needs

• for elementary types (numbers, T *), move is implemented as copy

• it may cause inconsistency between number and container members

• when containers are moved, all elements are also moved

• the source container becomes empty (except std::array which cannot be resized)

5

NPRG041
Programmin

g in C++ -
2019/2020

David

The Rule of Five

• Consider what happens when your class is going to die...

• ... can all the data members clean-up themselves?

• Numbers need no clean-up

• Smart pointers will automatically clean up their memory blocks if necessary

• Raw (T*) pointers will just disappear, they can not do any clean-up
automatically

• If they are just observers, it is O.K. - they are not responsible for cleaning

• If they represent ownership, you will need to call delete in a destructor
class T { public:
 ~T() { delete p_; } // destructor required
 U * p_; // owner of a memory block
};

• Now, what happens if you copy the owner class T bit-by-bit?

• There will be two T objects containing pointers to the same object U

• The second call to ~T() will cause CRASH due to double delete on the same object

• It is impossible to determine that an object was already deleted

• Instead of shallow copying, deep copy must be used for T

6

NPRG041
Programmin

g in C++ -
2019/2020

David

The Rule of Five

• The Rule of Five:

• If something forced you to write the destructor,
you also have to write the four copy/move functions

• The implementation of the four by the compiler would not fit your needs

• Your destructor is unlikely to survive double invocation on shallow copies

• Besides ownership pointers, it also applies to open files, locks, ...

• You can also disable them if you don't need copyable/movable class:
T(const T &) = delete;
T(T &&) = delete;
T & operator=(const T &) = delete;
T & operator=(T &&) = delete;

• Implementing the Five functions is demanding and error-prone

• Avoid using U* pointers where ownership is required

• Use only types that can take care of themselves

7

NPRG041
Programmin

g in C++ -
2019/2020

David

The Rule of Five – possible scenarios

• All elements support copy and move in the required fashion

• None of the Five methods required

• Beware of the incoherence between numbers and smarter elements:
class matrix { private: std::vector<float> v_; std::size_t rows_, cols_; };

• Move makes the source vector empty but rows_/cols_ remain nonzero!

• You may need explicit implementation of move and default copy

• All elements support copy and move but copying has no sense

• Living objects in simulations/games etc.

• Disable copy methods by “= delete”

• If move methods remain useful, they have to be made accessible by “= default”

• Touching any of the four methods automatically disables the others (C++20)

• Elements support move in the required fashion, but copying is required

• Copying elements does not work or behaves differently than required

• E.g., elements are unique/shared_ptr but the class requires deep copy semantics

• Implement copy methods, enable move methods by “= default”

• Elements do not support copy/move in the required way

• Implement all the copy and move methods and the destructor

8

NPRG041
Programmin

g in C++ -
2019/2020

David

Virtual destructor

• Classes at the root of an inheritance hierarchy (usually abstract classes)
must have a virtual destructor:

class C { virtual ~C() {} };

• It enforces an advanced implementation of delete for pointers to the class

• For speed, the default implementation of delete is dumb

• A typical use of inheritance:
class D : public C { std::shared_ptr<Z> zp; }

• A derived class object is dynamically allocated
D * dptr = new D;

• A pointer to the derived object is then assigned to a pointer to the base class

• This assignment is the core motivation for inheritance

C * cptr = dptr; // implicit conversion "derived to base class pointer"

• Finally, the object is destroyed using the pointer to the base class

• The compiler does not know the type of the object being deleted!

delete cptr; // if C::~C() is virtual, it deletes the complete D object

• Without virtual destructor, data members of derived classes will remain undestructed!

• With multiple inheritance, the delete will also damage the allocation mechanism!

• The same problem applies to smart pointers

• Destructor of a smart pointer invokes delete on a raw pointer

9

NPRG041
Programmin

g in C++ -
2019/2020

David

Abstract classes

• Classes at the root of an inheritance hierarchy (usually abstract classes)
must have a virtual destructor:

class AbstractClass { virtual ~AbstractClass() {} };

• Such classes are usually used solely as dynamically allocated objects

• std::vector<AbstractClass> is a NONSENSE in C++

• Such a container cannot store any derived class!

• std::vector<std::unique_ptr<AbstractClass>> is the correct solution

• With dynamically allocated objects, move is usually not needed

• The (smart) pointers to them are moved instead

• Often, objects with inheritance also have some kind of identity

• Copying such objects usually has no sense

• It is a good idea to disable copy and move methods for abstract classes

• The disablement will automatically propagate to derived classes

• Sometimes, a destructor is needed to clean-up a derived class

• The disablement makes the rule-of-five satisfied

10

NPRG041
Programmin

g in C++ -
2019/2020

David

11NPRG041 Programming in C++ - 2019/2020 David Bednárek

Dynamic allocation

Dynamic allocation in C++11

• Use smart pointers instead of raw (T *) pointers
#include <memory>

• one owner (pointer cannot be copied)

• negligible runtime cost (almost the same as T *)

void f() {
 std::unique_ptr< T> p = std::make_unique< T>(); // invokes new
 std::unique_ptr< T> q = std::move(p); // pointer moved to q
 // p is nullptr now
}

• shared ownership

• runtime cost of reference counting

void f() {
 std::shared_ptr< T> p = std::make_shared< T>(); // invokes new
 std::shared_ptr< T> q = p; // pointer copied; object shared between q and p
}

• Memory is deallocated when the last owner disappears

• Destructor of (or assignment to) the smart pointer invokes delete when required

• Reference counting cannot deallocate cyclic structures

12

NPRG041
Programmin

g in C++ -
2019/2020

David

Dynamic allocation in C++11

• unique_ptr is uncopiable, shared_ptr is expensive to copy

• avoid copying whenever possible

• When passing ownership, the parameter of the receiving function may be

• passed by value
void store_pointer(std::shared_ptr<T> a) {
 storage_ = std::move(a);
}

• passed by r-value reference
void store_pointer(std::shared_ptr<T> && a) {

• the ownership transfer may be conditional

 if (/*...*/)
 storage_ = std::move(a);
}

• In both cases, pass the actual argument using move:
store_pointer(std::move(p));

• if passed by value, the ownership is immediately moved to the argument a

• and later moved again to the storage

• if passed by reference, the ownership is moved directly to the storage

• and may remain in the actual argument if not actually moved

• if the calling function wants to use p after calling store_pointer(std::move(p)), there must
be a mechanism informing it whether store_pointer actually moved or not

13

NPRG041
Programmin

g in C++ -
2019/2020

David

Dynamic allocation in C++11

• unique_ptr is uncopiable, shared_ptr is expensive to copy

• avoid copying whenever possible

• If you don't need to pass ownership, do not pass smart pointers

• Use a raw pointer - T * or const T *

• in this case, it is termed a (modifying) observer (to distinguish from old-style owning T *)

• Raw pointers are always passed by value
void store_pointer(T * a) {
 storage_ = a;
}

• If the actual argument is a smart pointer, it must be explicitly converted
std::shared_ptr<T> p = /*...*/
store_pointer(p.get());
store_pointer(&*p);

• The &* version is preferred – it works also on iterators or raw pointers

• It is actually a user-defined operator* followed by the built-in &

• The observers are not considered co-owners

• The object may be destructed by an owner with observers present

• It is the programmers responsibility to avoid using observers after owners die

• This is the reason why the smart-to-observer conversion is not implicit

14

NPRG041
Programmin

g in C++ -
2019/2020

David

Using pointers in modern C++

• Owner of object

• std::unique_ptr< T>, std::shared_ptr< T>

• Use only if objects must be allocated one-by-one

• Possible reasons: Inheritance, irregular life range, graph-like structure, singleton

• For holding multiple objects of the same type, use std::vector< T>

• std::weak_ptr< T>

• To enable circular references with std::shared_ptr< T>, used rarely

• Modifying observer

• T *

• In modern C++, native (raw, T*) pointers shall not represent ownership

• Save T * in another object which needs to modify the T object

• Beware of lifetime: The observer must stop observing before the owner dies

• If you are not able to prevent premature owner death, you need shared ownership

• Read-only observer

• const T *

• Save const T * in another object which needs to read the T object

• Besides pointers, C++ has references (T &, const T &, T &&)

• Used (by convention) for temporary access during a function call etc.

15

NPRG041
Programmin

g in C++ -
2019/2020

David

Owners and observers

• Example – unique ownership
auto owner = std::make_unique< T>(); // std::unique_ptr< T>

• Observer
auto modifying_observer = owner.get(); // T *
auto modifying_observer2 = &*owner; // same effect as .get()

• Read-only observer
const T * read_only_observer = owner.get(); // implicit conversion of T * to
const T *
auto read_only_observer2 = (const T *)owner.get(); // explicit conversion
const T * read_only_observer3 = modifying_observer; // implicit conversion

• Owner pointers can point only to a complete dynamically allocated block
• Or to a base object (with virtual destructor) from which the complete object is derived

• Observer pointers can point to any piece of data anywhere
• Parts of objects

auto part_observer = & owner->member;
• Static data

static T static_data[2];
T* observer_of_static = & static_data[0];

• Local data (beware: their lifetime is limited – avoid propagating observers outside of their
scope)

void g(T * p); // note: reference T& instead of pointer is preferred here
void f() { T local_data; g(& local_data); }

16

NPRG041
Programmin

g in C++ -
2019/2020

David

Dynamic allocation

• Dynamic allocation is slow

• compared to static/automatic storage

• the reason is cache behavior, not only the allocation itself

• Use dynamic allocation only when necessary

• variable-sized or large arrays

• in most of these cases, dynamic allocation is used indirectly through containers

• polymorphic containers (containing various objects using inheritance)
std::vector<std::unique_ptr<common_base_class>>

• object lifetimes not corresponding to function invocations

• however, this case can often be solved by moving the object contents

• For speed, avoid data structures with individually allocated items

• linked lists, binary trees, ...

• std::list, std::map, ...

• prefer contiguous structures (vectors, hash tables, B-trees, etc.)

• avoiding is difficult - do it only if speed is important

• This is how C++ programs may be made faster than C#/java

• C#/java requires dynamic allocation of every class instance

17

NPRG041
Programmin

g in C++ -
2019/2020

David

	Slide 1: copy/move operations
	Slide 2: Copy
	Slide 3: Move
	Slide 4: Move
	Slide 5: Move
	Slide 6: The Rule of Five
	Slide 7: The Rule of Five
	Slide 8: The Rule of Five – possible scenarios
	Slide 9: Virtual destructor
	Slide 10: Abstract classes
	Slide 11: Dynamic allocation
	Slide 12: Dynamic allocation in C++11
	Slide 13: Dynamic allocation in C++11
	Slide 14: Dynamic allocation in C++11
	Slide 15: Using pointers in modern C++
	Slide 16: Owners and observers
	Slide 17: Dynamic allocation

