
Lab 11
creating cross-platform C++ projects with CMake,

vcpkg

22. 12. 2023 Based on slides by
Mr. Mejzlík and Mr. Klepl

Outline

2023/2024 Programming in C++ (labs) 2

1. Motivation to build and meta-build systems

2. CMake

3. Motivation for cross-platform dependency managers

4. vcpkg

5. Using CMake with vcpkg to have a project with dependencies

1) Motivation for build systems

Why you should use build systems

2023/2024 Programming in C++ (labs) 4

• Manual compilation is just not realistic with the real-
world application

• Too many flags, include dirs, link libs …

• You would spend your whole life writing `g++` command

• Automation & less errors
• Saves time

• Consistency
• The build behaves the same for your colleagues

• Dependency management
• Real-world projects use many third-party libraries

• Incremental build
• Do not re-compile what is not necessary

• Distribution of your code

g++ -std=c++20 -O3 -g -Wall -Wextra -Werror -Wshadow -pedantic \

-Iinclude -Isrc -I/usr/local/include -Ithird_party/libA/include \

-Ithird_party/libB/include -DDEBUG -DUSE_SPECIAL_LIB \

-L/usr/local/lib -Lthird_party/libA/lib -Lthird_party/libB/lib \

-lmylibrary -lthird_party_libA -lthird_party_libB -lm -lpthread \

-o myapp \

src/main.cpp src/util.cpp src/logic.cpp src/algorithm.cpp

src/interface.cpp \

src/networking.cpp src/database.cpp src/compatibility.cpp

src/legacy.cpp \

src/new_feature.cpp src/security.cpp

src/performance_optimization.cpp \

src/third_party_integration.cpp \

-MMD -MP -MF build/dependencies.d \

-fdiagnostics-color=always -fPIC -fstack-protector-strong \

-fsanitize=address -fsanitize=undefined -flto

make
ninja
SCons

Why you should use meta build systems

2023/2024 Programming in C++ (labs) 5

• Meta-build system
• It generates a temporary project in a build system of choice

• Usually to ./build directory, you can delete that and generate a new one

• It contains only references to the actual source files

• It makes your project cross-platform
• E.g. make works fine across Linux platforms

• On Windows, it's not that great

• We're going to use CMake
• You have a CMake project and when you want to work on it you can generate temporary

project for your favourite build system

• Make

• Visual Studio solution

• Ninja

• …

CMake
Premake

GYP

2) CMake

CMake is a meta build system

2023/2024 Programming in C++ (labs) 7

• Cross-platform build system generator

• Widely used with C++ projects

• Target version 3.0, referred to as "Modern CMake"
• Shift from "define flags and directories globally" to "define per targets"

• You specify "things" for each target without affecting the other targets

• Configured per-folder by CMakeLists.txt

• Can generate projects in many build systems
• make

• ninja

• Visual Studio

vcpkg
conan

Old vs modern CMake

2023/2024 Programming in C++ (labs) 8

cmake_minimum_required(VERSION 2.8)
project(OldStyleProject)

Global include directories for all targets
include_directories(include/)

Global compiler flags
add_definitions(-DDEPRECATED_FLAG)

Executable target
add_executable(old_app main.cpp)

Linking the libraries globally
link_libraries(libA libB)

cmake_minimum_required(VERSION 3.0)
project(ModernStyleProject)

Executable target
add_executable(new_app main.cpp)

Specify include directories for this specific target
target_include_directories(new_app PRIVATE include/)

Use target_compile_definitions for target-specific flags
target_compile_definitions(new_app PRIVATE -DUSE_MODERN_CMAKE)

Use target_link_libraries for target-specific linking
target_link_libraries(new_app PRIVATE libA libB)

Using CMake

2023/2024 Programming in C++ (labs) 9

cmake_minimum_required(VERSION 3.20)
project(lab_06)

Set the C++ standard
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

Find required packages
find_package(SFML COMPONENTS graphics REQUIRED)
find_package(Boost COMPONENTS system REQUIRED)

Variables
set(MY_CACHE_VARIABLE "DEF VALUE" CACHE STRING "Description of the variable.")
option(TESTING "This is settable from the command line" OFF)

...

Min version of cmake requried

Name of the project, reference
as ${PROJECT_NAME}

Define variable and set its value

Find dependency library installed
in the system

Again, variable… but this one is
configurable from the outside using

-D MY_CACHE_VARIABLE=hello

Variable but only Boolean -
ON/OFF | 1/0 | TRUE/FALSE

Using CMake

2023/2024 Programming in C++ (labs) 10

...
Add executable
add_executable(${PROJECT_NAME} main.cpp)

Include dirs
target_include_directories(${PROJECT_NAME} PRIVATE include/)

Use target_compile_definitions for target-specific flags
target_compile_definitions(${PROJECT_NAME} PRIVATE -D OUR_FLAG)

Link libraries
target_link_libraries(${PROJECT_NAME} PRIVATE sfml-graphics Boost::system)

Include also other directories recursively
add_subdirectory(core)

If statement
if(TESTING)

add_subdirectory(tests)
endif()

Define that executable will be
produced from the given list of

source files (not headers)

Target name, use this for
target_* commands

Include directories for this
target, like -I in GCC

preprocessor defs that will be
provided during compilation

like #define OUR_FLAG

Link this target with these
libraries, like -l in GCC

Recursively process this
directory (must contain

CMakeLists.txt)

If statement, true if TRUE, 1, ON

Using CMake – how to compile a program?

• CMake works in 2 steps:

1. Configure step

• CMakeLists.txt is processed and a build-system files are generated (make, ninja, VS)

• Needs to be done just once after writing (or changing) CMakeLists.txt

2. Build step

• A generated build-system compiles the program

• Needs to be done each time we change C++ files

• Visual Studio performs configure step automatically each time it is needed, clicking Build->BuildAll
button performs the build step

• These steps can be also handled via command line:

1. cd project_folder (navigate to the project folder, where CMakeLists.txt resides)

2. mkdir build && cd build (create a directory, where the project will be built)

3. cmake .. (Configure step)

4. cmake –-build . (Build step)

2023/2024 Programming in C++ (labs) 11

3) Motivation for cross-platform
dependency managers

There is no unified package manager across systems

2023/2024 Programming in C++ (labs) 13

• On Linux, you usually can get away with system package managers
• apt, yum, dnf, …

• pkgconfig

• On Windows, there is no such thing

• The solution is to use cross-platform package managers
• vcpkg

• https://vcpkg.io/en/

• available for Windows, Linux, and Mac, open-source by Microsoft

• conan
• https://conan.io/

• roughly the same, but from jFrog

4) vcpkg

vcpkg is cross-platform dependency manager for C++

2023/2024 Programming in C++ (labs) 15

• List of many open-source libraries for C++ curated by Microsoft

• Libs are downloaded and locally compiled but are not installed outside of the
vcpkg directory

git clone https://github.com/Microsoft/vcpkg.git
cd vcpkg
.\bootstrap-vcpkg.bat
vcpkg install sfml:x64-windows boost-asio:x64-windows

https://vcpkg.io/en/getting-started

5) CMake + vcpkg = ♥ ??

Nah, more like CMake + vckpg != total hell if
you want to have your project working on

both Windows and Linux

Putting it all together

2023/2024 Programming in C++ (labs) 17

• In CMake, find_package looks for dependencies in your system

• Or in paths explicitly provided by toolchain files

mkdir build
cd build
cmake .. -G "Visual Studio 17 2022" -A x64 \

-DCMAKE_TOOLCHAIN_FILE=~/source/repos/vcpkg/scripts/buildsystems/vcpkg.cmake
cmake --build .

6) Example with Boost
and Visual Studio

Create a default CMakeLists.txt

• If you created a VS CMake project, saving a CMakeLists.txt file should trigger Configure
step

• If you add a new cpp file, it should be also added to the add_executable list so build
system also knows about it

Set C++ standard

Add an executable name (project_app) and
add all sources (cpp) it needs for compilation

Set warning flags for project_app

2023/2024 Programming in C++ (labs) 19

Add a library dependency 1

• We include a new header
• But it is underlined – Build system can not find it

• We need to modify CMakeLists.txt

2023/2024 Programming in C++ (labs) 20

Add a library dependency 2

• First, we use find_package (line 8) – CMake will search for the lib in the system

• Then, we need to let the build-system known, where to look for boost headers (line 12) – find_package
creates a new variable package_INCLUDE_DIRS

• Finally, we tell CMake to link our app with the library (line 13)

Find library

Include dirs and link libs are set for
specific target (the project_app in our

case)

2023/2024 Programming in C++ (labs) 21

Vcpkg – what if we do not have Boost installed?

• We install boost (or other lib) using vcpkg:

• We need to set CMAKE_TOOLCHAIN_FILE to point to
<vcpkg_dir>/scripts/buildsystems/vcpkg.cmake

• We can set it in VS by clicking on Manage Configurations

• and then we set the CMake Command Argument

• After this configuration, Configure step should find all libraries installed by vcpkg

C:\Libs\vcpkg>vcpkg install boost-asio:x64-windows

2023/2024 Programming in C++ (labs) 22

Lab 11 wrap up

2023/2024 Programming in C++ (labs) 23

• You should know
• how to wrap a C++ project into CMake to make it cross-platform

• how to add dependencies to the CMake project

• how to install dependencies with vcpkg and use it with CMake

Next lab:

• Test Exam

Important date:

• Technological Demo 19.1.
• Cross-platform skeleton with all specified third-party libs that is buildable

• No actual logic required

