Lab 11

creating cross-platform C++ projects with CMake,
vcpkg

22.12.
2023 @ ®0O

Motivation to build and meta-build systems

CMake

Motivation for cross-platform dependency managers

vcpkg

Using CMake with vcpkg to have a project with dependencies

a &~ w0 DhPE

2023/2024 Programming in C++ (labs)

1) Motivation for build systems

Why you should use build systems

Manual compilation is just not realistic with the real-
world application

« Too many flags, include dirs, link libs ...

* You would spend your whole life writing g++ command

g++ -std=c++20 -O3 -g -Wall -Wextra -Werror -Wshadow -pedantic \
-linclude -Isrc -l/usr/local/include -Ithird_party/libA/include \

e Automation & less errors -Ithird_party/libB/include -DDEBUG -DUSE_SPECIAL_LIB \
-L/usr/local/lib -Lthird_party/libA/lib -Lthird_party/libB/lib \
° S aves t|me —I(;nrzl]l)i/t;rspr)y\ -Ithird_party_libA -Ithird_party _libB -Im -Ipthread \
. src/main.cpp src/util.cpp src/logic.cpp src/algorithm.cpp
¢ CO”S'Stency src/interface.cpp \

src/networking.cpp src/database.cpp src/compatibility.cpp

* The build behaves the same for your colleagues src/legacy.cpp \

src/new_feature.cpp _srg/se_curity.cpp
Dependency management S, pany. Fiegraioncpp s
« Real-world projects use many third-party libraries
Incremental build
* Do not re-compile what is not necessary

Distribution of your code

2023/2024

Programming in C++ (labs)

Why you should use meta build systems CMake

Premake
GYP

 Meta-build system

* It generates a temporary project in a build system of choice
« Usually to ./build directory, you can delete that and generate a new one
* It contains only references to the actual source files

\

* |t makes your project cross-platform
* E.g. make works fine across Linux platforms
* On Windows, it's not that great

* We're going to use ClVake

* You have a CMake project and when you want to work on it you can generate temporary
project for your favourite build system

Make
Visual Studio solution
Ninja

2023/2024 Programming in C++ (labs)

2) CMake

CMake is a meta build system

» Cross-platform build system generator
* Widely used with C++ projects

 Target version 3.0, referred to as "Modern CMake"
« Shift from "define flags and directories globally” to "define per targets"
* You specify "things" for each target without affecting the other targets

« Configured per-folder by CMakeLlists.txt

« Can generate projects in many build systems
* make
* ninja
 Visual Studio

2023/2024 Programming in C++ (labs)

Old vs modern CMake

cmake minimum required(VERSION 2.8) cmake minimum_ required(VERSION 3.0)

project(0ldStyleProject) project(ModernStyleProject)

Global include directories for all targets | # Executable target

include directories(include/) add executable(new_app main.cpp)

Global compiler flags # Specify include directories for this specific target

add definitions(-DDEPRECATED_FLAG) target include directories(new_app PRIVATE include/)

Executable target # Use target compile definitions for target-specific flags

add executable(old app main.cpp) target compile definitions(new_app PRIVATE -DUSE_MODERN_CMAKE)
Linking the libraries globally # Use target link libraries for target-specific linking

link libraries(1ibA 1ibB) target link libraries(new_app PRIVATE 1ibA 1ibB)

20232024 . Programmingin C++ (labs) 8

Using CMake

cmake minimum required(VERSION 3.20)
project(lab 06)

Set the C++ standard
set (CMAKE_CXX_STANDARD 20)
set (CMAKE_CXX_STANDARD REQUIRED ON)

Find required packages
find_package(SFML COMPONENTS graphics REQUIRED)
find package(Boost COMPONENTS system REQUIRED)

Variables
set(MY_CACHE_VARIABLE "DEF VALUE" CACHE STRING "Description of the variable.")

option(TESTING "This is settable from the command line" OFF)

2023/2024 Programming in C++ (labs)

Using CMake

2023/2024

...
Add executable
add_executable(${PROJECT_NAME} main.cpp)

Include dirs
target include directories(${PROJECT NAME} PRIVATE include/)

Use target compile definitions for target-specific flags
target compile definitions(${PROJECT NAME} PRIVATE -D OUR_FLAG)

Link libraries
target link libraries(${PROJECT _NAME} PRIVATE sfml-graphics Boost::system)

Include also other directories recursively

add_subdirectory(core)

If statement
if (TESTING)

add_subdirect8 osts)
endif()

Programming in C++ (labs) 10

Using CMake — how to compile a program?

« CMake works in 2 steps:

1. Configure step
« CMakelLists.txt is processed and a build-system files are generated (make, ninja, VS)
* Needs to be done just once after writing (or changing) CMakeLists.txt
2. Build step
« A generated build-system compiles the program
* Needs to be done each time we change C++ files

 Visual Studio performs configure step automatically each time it is needed, clicking Build->BuildAll
button performs the build step

* These steps can be also handled via command line:

1. cd project folder (navigate to the project folder, where CMakelLists.txt resides)
2. mkdir build && cd build (create a directory, where the project will be built)

3. cmake .. (Configure step)

4. cmake --build . (Build step)

2023/2024 Programming in C++ (labs)

3) Motivation for cross-platform
dependency managers

There is no unified package manager across systems

« On Linux, you usually can get away with system package managers
e apt, yum, dnf, ...
» pkgconfig

* On Windows, there is no such thing

* The solution is to use cross-platform package managers
* vcpkg
 https://vcpkg.io/en/
 available for Windows, Linux, and Mac, open-source by Microsoft
« conan

 https://conan.io/
» roughly the same, but from jFrog

2023/2024 Programming in C++ (labs)

4) vcpkg

vcpkg Is cross-platform dependency manager for C++

* List of many open-source libraries for C++ curated by Microsoft

* Libs are downloaded and locally compiled but are not installed outside of the
vcpkg directory

git clone https://github.com/Microsoft/vcpkg.git

cd vcpkg

.\bootstrap-vcpkg.bat

vcpkg install sfml:x64-windows boost-asio:x64-windows

2023/2024 Programming in C++ (labs)

5) CMake + vcpkg =% ??

Putting it all together

* In CMake, find_package looks for dependencies in your system
 Or in paths explicitly provided by toolchain files

mkdir build
cd build

cmake .. -G "Visual Studio 17 2022" -A x64 \

-DCMAKE_TOOLCHAIN FILE=~/source/repos/vcpkg/scripts/buildsystems/vcpkg.cmake
cmake --build .

2023/2024

Programming in C++ (labs)

6) Example with Boost
and Visual Studio

Create a default CMakeLists.txt

cmakeListsct -+ | —

1 cmake_minimum_required (VERSION 3.8)

2

3 project({my project VERSION @.1 LANGUAGES CXX)

4

5 set (CMAKE_CXX_STANDARD 2@) Set C++ standard

5 set(CMAKE_CXX_STANDARD REQUIRED ON)

7

8 add_executable (project app "main.cpp™) Add an executable name (project_app) and
g add all sources (cpp) it needs for compilation

1@ JEif(MsvC)

11 |_ target compile options({project app PRIVATE $<$<COMPILE LANGUAGE :CXO(>:/Wd>) Set warning flags for project_app
12 Elelse() =

13 |_ target compile cpticons(project app PRIVATE $<$<COMPILE_ LAMNGUAGE:CXX>:-Wall -Wextra -pedantic>)
14 endif()

* |f you created a VS CMake project, saving a CMakelLists.txt file should trigger Configure
step

* |f you add a new cpp file, it should be also added to the add_executable list so build
system also knows about it

2023/2024 Programming in C++ (labs)

Add a library dependency 1

e We include a new header

e Butitis underlined — Build system can not find it
* We need to modify CMakelLists.txt

Ml project_app.exe - x64-Debug

2023/2024

Aop L R

W oo =]

(SR Y

—l#include <iostream>
#include <boost/asio.hpp>

=lint main()

{

boost::asio::io_context io;
boost::asio::steady_timer t(io, boost::asio
t.wait();

std::cout << "Hello, world!" << std::endl;

return @;

-

Programming in C++ (labs)

(Global 5

::chrono: iseconds(5));

Add a library dependency 2

main.cpp CMakelists. et 1 2

1 cmake_minimum_required (VERSION 3.8)

2

3 project{my_project VERSION 8.1 LANGUAGES CXX)

4

5 set(CMAKE_CXX_STANDARD 28)

g set(CMAKE_CXX_STANDARD REQUIRED ON)

7

8 find_package(Boost REQUIRED]) Find ||brary

9

18 add_executable (project_app "main.cpp™)

11 . . .

12 target_include directories(project_app PRIVATE ${Boost INCLUDE DIRS}) Include dirs and link libs are set for
13 target link libraries(project_a Boost LIBRARIES o . .

> get_link_ (project_app ${Boost_ 2 specific target (the project_app in our
15 =i (MSVC) case)

16 target_compile_cpticns(project_app PRIVATE $<3<COMPILE_LANGUAGE : C30(x: /ld

17 Slelse()

18 target_compile_cpticns({project_app PRIVATE $<3<COMPILE_LANGUAGE:CXX>:-Wall -Wextra -pedantic>)

19 endif()

28

 First, we use find_package (line 8) — CMake will search for the lib in the system

* Then, we need to let the build-system known, where to look for boost headers (line 12) — find_package
creates a new variable package INCLUDE DIRS

* Finally, we tell CMake to link our app with the library (line 13)

2023/2024 Programming in C++ (labs)

Vcpkg —what if we do not have Boost installed?

» We install boost (or other lib) using vcpkg:

C:\Libs\vcpkg>vcpkg install boost-asio:x64-windows

 We need to set CMAKE_TOOLCHA'N_F'LE to pOint to Debug Test Analyze Tools Extensions Window Help

<vcpkg dir>/scripts/buildsystems/vcpkg.cmake)-0 - m <64-Debug 1 b S
« We can set it in VS by clicking on Manage Configurations — EEEN cvel 1. coniguoions.
« and then we set the CMake Command Argument 1| cmake_mininun_required (VERSION 3.8)

Command arguments

CMake command arguments:
Additicnal command line opticns passed to CMake when invoked to generate the cache,

| -DCMAKE_TOOLCHAIMN_FILE= C:hLibs\wephkghscriptshbuildsystems\wepkg.cmake

 After this configuration, Configure step should find all libraries installed by vcpkg

2023/2024 Programming in C++ (labs)

Lab 11 wrap up

* You should know
* how to wrap a C++ project into CMake to make it cross-platform
* how to add dependencies to the CMake project
* how to install dependencies with vcpkg and use it with CMake

Next lab:
 Test Exam

Important date:

 Technological Demo 19.1.
» Cross-platform skeleton with all specified third-party libs that is buildable
* No actual logic required

2023/2024 Programming in C++ (labs)

