
Software project - analysis

Artur Finger, Slávka Ivaničová, Zoltán Betteš, Marek Beňovič, Gergely Tóth

The new website for the software
project committee at the Informatics

section of MFF UK
(PRKNO)

Katedra softwarového inženýrství

Project supervisor: doc. RNDr. Petr Hnětynka, Ph.D.

Prague 2017

Contents

1 Introduction 2
1.1 Context . 2
1.2 Goal(s) . 3

2 Specification 4
2.1 Users . 4

2.1.1 Guest . 4
2.1.2 Student . 8
2.1.3 Academic . 12
2.1.4 Committee member . 15
2.1.5 Committee admin . 18

2.2 Shared functionality . 24
2.2.1 Data export . 24
2.2.2 Internationalization . 24
2.2.3 Email notifications . 24
2.2.4 Anonymization . 24
2.2.5 Accounts . 24

3 Analysis 28
3.1 Technologies . 28

3.1.1 Backend (PHP, Yii) . 28
3.1.2 Frontend (JS, jQuery) . 28
3.1.3 Database (MySQL, Yii Database) 29
3.1.4 Typesetting (Markdown) 31

3.2 Architecture . 31
3.3 Risk analysis . 33
3.4 Milestones . 33
3.5 Work split . 34

1

1. Introduction
Glossary

• CAS - A central authentication system for students and staff of Charles
University

1.1 Context
As a part of the mandatory curricula of most master’s degree programmes at

the Informatics section of MFF UK there is a subject called the Software Project
(code NPRG023). This subject does not have any lectures and the way to pass
it is to form a team of four to eight students and implement a complex, full-
featured, ready-for-shipment piece of software. The problem which the software
solves must be well analysed by the team, design decisions must be made with
careful consideration and the resultant software must be well-documented.

The detailed life cycle of a software project is as follows. First a team must
assemble and come up with an idea. The idea can be original, it can be some
software that some of the faculty’s research teams need implemented or it can
even be on contract for some external company - its origin does not matter. Once
an idea is agreed upon, the team must find a faculty member who would agree
to supervise them and help them with this project. The supervisor then drafts
a short proposal describing the aim of the project and sends it to the project
committee for evaluation. If the committee agrees that the project is reasonable
and complex enough, they accept the proposal. Otherwise, the supervisor has
a chance to improve the proposal, maybe add some extra features and resend
it or the team can come up with another idea. After a proposal is accepted,
the team has to come to an agreement about when they will start working on
the project, their time starts ticking - they have nine months to complete the
project. Once the team has agreed upon the start date, the supervisor sends
a request to start the project to the committee. (The request includes a list of
students that will comprise the team and the start date.) If the committee accepts
the request, the team can start their work on the project on the specified start
date. Two months into the project the team must present their analysis of the
problem to the committee. After additional 7 months (9 months in total since the
beginning of the project) the team stops working on the project and soon after
they stop, they present the complete software to the committee (this is known as
the defence of the project). The committee will have questions and the team must
answer them convincingly. If everything is OK, the team passes. In the unlikely
event that the software or anything related to it (e.g. the documentation) is not
satisfactory, the team continues to work on the project for additional 3 months
and then presents/defends it again. During any of these two defences, if the
committee does not find any harsh flaws with the software, but the software or
its documentation are not completely satisfactory, the team passes on a condition
- which means they have to finish up some details (perhaps refactor some code,
rewrite the documentation, maybe improve test coverage) but they do not need
to defend anything again. After the team makes satisfactory corrections, they

2

pass.
If there is a problem with the analysis, the team must rework it and defend

it again. Also, same as with the final defence, if the problems are only minor
ones it may be sufficient for the team to submit their reworked documents and
diagrams, without the need to attend a new defence. Unlike the final defence, the
defence of the analysis may be repeated an unlimited amount of times. It should
be noted however, that the deadline for the implementation does not change, so
repeating the defence of the analysis takes away time that should be used for
implementation.

1.2 Goal(s)
The purpose of this project is to implement a web application for the project

committee, which would serve as an information system for managing software
projects and related tasks. In short, the application will allow academics to
create projects and proposals, send them to the committee, assign students to
a project and so on. Students will be able to add more information to their
projects. Committee members will be able to discuss proposals of defence dates.
The admin of the committee will be able to manage defences, search users, accept
and decline projects during a defence and much more. In case of any problem the
committee admin will be able to override anything in the system. One feature of
this application will also give anyone (who is registered) the ability to advertise
their idea for a potential software project and another feature will allow students
to look for a team via an advertisement-like system.

3

2. Specification
After a careful analysis and disambiguation of the project committee’s func-

tional requirements for the website, we propose the following specification. The
functionality listed in the specification should cover the needs of any person who
takes part in software projects (meaning those that are part of the NPRG023
course).

2.1 Users
The users of this web application can be split into six categories according

to what role they play in software projects. A person can assume one of the
following roles:

• Guest 2.1.1

• Student 2.1.2

• Academic 2.1.3

• Committee member 2.1.4

• Committee admin 2.1.5

Different functionality is offered to each category of users. A guest is someone
who does not take part in software projects at all. Such people will only have
access to the bare minimum of information and functionality. (Naturally, all
users are perceived as guests before they authenticate themselves.) A student
is a master’s degree student of the Charles University. Technically, it could be
a bachelor’s degree student or a student from a different university, but that is
highly unlikely, since the course is not intended for them. A student has all the
privileges of a guest and more. An academic is a PhD student or staff of the
Charles University. Again technically they could be from a different university,
but that is highly unlikely. Academics have all the privileges of a student and
more - with two exceptions: they cannot work on a project as part of the team
and therefore they also cannot create a student advertisement about themselves,
since they will not be needing it. What they can do is to supervise a project
or oppose one. Committee members have all the privileges of an academic and
more. Most importantly, they are the ones that decide the fate of newly proposed
projects. A committee admin has all the privileges of a committee member and
more. In fact, an admin is able to create, delete, change and override anything
in the system and there may be multiple committee admins. This role is usually
assigned to the chair of the committee or the secretary. The functionality offered
to each category of users follows below.

2.1.1 Guest
Guests cannot edit or change anything on the web site. The only thing they

can do is to view content. Generally they can view as much information about

4

projects as possible, but nothing that could be considered sensitive information.
The intended use case for a guest is just to browse the website a bit and check
out a few projects to gain some understanding of software projects before taking
the course.

1. News - All important events appear in a news feed. News are generated
when a static page changes (eg. when the official rules for the software
project course (NPRG023) change), when a new date is open for defences
to take place on or when a defence is cancelled. More on static pages later.
Guests are able to view most of the news, but some are intended for and
visible only to the users who are logged in.

2. Advertisements - There are two types of advertisements - ones about po-
tential projects (so called project advertisements) and others about students
who are looking for a team (so called student advertisements). A student
advertisement is a short summary that a student posts about himself when
he is looking for a team. Such an advertisement should contain a list of
technologies the student would like to use on the project, his preferred top-
ics and his time/schedule preferences. Other students can then contact the
author of the advertisement and add him to their team. Guests can view
all advertisements, but cannot comment on them. Advertisements can be
filtered by keywords.

3. Projects - Guests can view a list of all projects and also the details of each.
The details contain a short description, names of the team members, the
state of the project 2.2, the starting date and the deadlines, the name of the
supervisor, possibly a detailed description and a list of uploaded files of any
kind. Furthermore there is always the specification of the project and - if
the project is finished - an advice document (giving tips to other students on
how to work efficiently on such projects, based on the experience the team
has gained during this course). It is possible to filter projects by keywords,
supervisor, date/time interval and by state or look for them by a full-text
search. Projects in the proposal stage cannot be searched or listed because
they are not formally considered to be a project yet.

4. Defenses - Guests are allowed to see basic info about upcoming defences,
including the date and a list of projects scheduled for a defense.

5. Static pages - Guests can also view several static pages including the
official rules of the NPRG023 course, a guide through the life cycle of
software projects, a list of downloadable document templates and a page
about the committee.

5

Figure 2.1: Guest page

6

Figure 2.2: Stages of a project
A project starts in the proposal stage. Once a proposal is accepted the project proceeds to accepted stage and
becomes visible to everyone. After a team gathers and the project starts to run it goes to the analysis stage

and after a two month deadline the analysis is handed in. Implementation follows with a seven month deadline
after which code and documentation are handed in. If a project passes, its state is changed to defended and
the students are awarded their credits. Otherwise the project may be forced to attend another defence (at
most one for implementation and any number for analysis). A conditionally defended project is followed by

minor rework, which is handed in after a specified deadline. If everything checks out, the project is defended.
At any point the committee admin can kill a project, sending it to the failed stage, in which case he or she

must supply a reason.

7

2.1.2 Student
Students can do everything a guest can and more, after they log in. The main

addition is that students can edit the content of the project they are working on
and do a few more things connected to that. The intended use case for a student
is to create a student advertisement, get together a team, find a project with
a supervisor and then work on the project for nine months, uploading relevant
files before each deadline. If the student has a more creative spirit they can think
of their own project, create a project advertisement and form a team around it.

1. News - Students can view all news and also subscribe to them by email.

2. Advertisements - Students can create, edit, hide and delete any num-
ber of project advertisements. Students can view and comment on the
advertisements or show interest in an advertised project. The author of
an advertisement receives an email each time someone comments on it, but
it is also possible to unsubscribe from these.

(a) Concerning person advertisements, the functionality is similar, but the
student can create only one such advertisement, no one can comment
on it and once the student starts working on a project, the advertise-
ment gets hidden automatically.

3. Project - The author (supervisor) of a project adds team members to it.
The team can view their project directly on the homepage. They can edit
the content of the project in markdown, view and upload documents, edit
basic info and create/edit/send proposals (same as the supervisor (2.1.3-
1)). Documents can be just general ones, which can be hidden from anyone
who is not part of the team (more specifically, this does not include the
supervisor of the project and neither the committee admin). But there are
also some documents that are formally required. These are the documents
that get handed in to the committee after a part of the work is finished
(i.e. before each defence) - theses always consist of one PDF file for the
documentation and a zip file containing any code, diagrams and similar.
These documents are hidden from anyone but the committee and they can
be re-uploaded any number of times before the deadline. There is also an-
other special kind of file, which can be uploaded by each team member after
the project is finished - this is the advice document for the next generation
of students. Each student can upload only one of these. It is also worth
mentioning that students can view the history of the states their project
went through.
When the time is right, team members can schedule their project for a de-
fence, if a defence date is available. It is necessary for the team to upload
all relevant documents for a defence to their project a week before the de-
fence takes place. There is also a deadline for each chunk of work (the
analysis, the implementation, corrections of either one) which cannot be
exceeded either. The documents for defences have to be uploaded before
these deadlines pass. Technically, one person can be working on multiple
projects simultaneously, but that is not recommended as it would be too time
consuming.

8

4. Defense - As mentioned earlier, team members can schedule their project
for a defence. This must happen at least twice - once for the analysis and
once for the implementation. If there are some problems with the project,
the team will be asked to rework it and defend it again. The defence of
the analysis can be repeated arbitrarily many times, but the defence of the
implementation only once at most. The team members must schedule their
project for a defence each time. After the supervisor’s and the opponent’s
reviews are uploaded, students can view them immediately. Additionally,
after a defence, students can view the committee admin’s statement.

5. Users - Students can change some details in their profile, such as the sub-
scription to the news published on the site and the URL of their personal
webpage. In case the student doesn’t log in via CAS, they can edit their
email and change their password.

Figure 2.3: Student use case

Use Case Find a project

Primary Actor: Student

Main Success Scenario:

1. After the student has logged in, the advertisements are displayed directly on the homepage.
In order to show only the project ads the student enables the filter and checks the Project ads
field. The results are refined by specifying the important dates (when is the project introduced
and when is it due) and keywords. By clicking the Filter button the list is refreshed to show
only the appropriate entries. After perusing the description the student signals his or her
interest by clicking the Interested button. (A1)

Alternate scenario:
A1: To gain more information, the student can:

(a) post a comment about the project (ask a question)

(b) view the comments about it (if there are any) by clicking on the Comments link pre-
sented below the description.

9

Figure 2.4: Advertisements page

Use Case Create student advertisement

Primary Actor: Student

Main Success Scenario:

1. After navigating to the Advertisements page, the column titled My Advertisements is presented
to the student on the right side. The user clicks on the New ad button and a form appears
asking the user for the details of the advertisement. The student gives it a title, selects the
type of it to be Student advertisement and writes a short description about the things he is
looking for. Additionally, the user can also specify keywords for the ad (which helps in the
filtering process). The user publishes the ad by clicking the Save button and then confirming
it in the pop-up dialog. (A1)

Alternate scenario:
A1: The student can choose not to publish the advertisement by clicking on the Cancel button or

by not confirming the publishing in the pop-up dialog.

10

Figure 2.5: Homepage of the student with a project

Use Case Edit (work on) the project

Primary Actor: Student

Main Success Scenario:

1. The current state of the project is displayed directly on the homepage of the student after he
or she logs in. In order to move the project forward, the student uploads private documents to
the server by clicking the Add document button in the Documents section. After the selection
of the file from the disk, it is submitted by clicking on the Add button. (A1) Optionally, the
student can add a comment to the particular document for all his team to see and provide
more information about it, thus improving team communication. When the student (and the
team) feels that the project is ready to be defended, they upload the necessary ZIP and PDF
file to the appropriate fields in the Documents section.

Alternate scenario:
A1: By clicking on the Cancel button the submitting process is aborted.

11

2.1.3 Academic
Academics can do anything students can, except for two things. They cannot

create student advertisements (2a) and cannot be part of a team (3). On the other
hand they can supervise a project, oppose one or play the role of a consultant.
The intended use case for an academic is to come up with new projects, make
suitable proposals for them (that would get accepted by the committee) and once
an interested team shows up, supervise them. Another scenario for an academic
is that when a team approaches them with their own original idea for a project
and asks for supervision, the academic must make a proposal based on that idea
and see to it, that the project is complex enough to be accepted by the committee.
A supervisor must upload a review of the project two days ahead of the defence
of the implementation. Also, from time to time an academic is asked by the
committee to oppose a finished project. In such case, he or she must revise the
implementation and the documentation of the software and upload their review
at least two days before the defence of the project.

1. Project - As far as searching and browsing projects goes, academics can do
anything a guest can do. In addition to that, academics can do quite a few
things. As mentioned earlier, they can create proposals for new projects
and send them to the committee for approval. But before a proposal can
be sent, the author of the project must specify a basic description including
the name of the project, a short name, a short description and keywords
(the description and keywords can be edited later but not after the project
starts running). The author of the project also automatically becomes its
supervisor. During the time the committee is deciding about whether the
proposal will be accepted or not, no additional proposals about the same
project can be sent. If the proposal is declined, the academic can make
suitable adjustments and resend it. Otherwise, the project becomes visible
in searches and eligible to run.

(a) The supervisor can view the history of all the declined proposals and
the comments from the committee about the reason a specific proposal
was not accepted. Proposals can be created and edited on site in
markdown or uploaded as PDF. Proposals in markdown can be saved
as drafts to be finished and sent later.

Once the supervisor of a new project has a team ready to tackle it, he or she
can issue a request to run the project, listing the members of the team. The
date of start is specified by the supervisor in the request. It is not possible
to specify members of the team who are not students. The supervisor can
add consultants to the project, but that must be done before the request
to run is sent (after that, none of the basic info can be edited anymore).
A consultant is another interested party - if a project is commissioned by
some company, a representative from that company would be a consultant
of the project. Consultants can either be registered users (academics) or
not part of the information system at all, in which case they are identified
simply by their email address. When a supervisor adds a consultant, he
or she must add a comment explaining the consultant’s relationship to the
project. The supervisor can view any file that the team has uploaded to

12

the project and do anything a team member can do including scheduling
their project for a defence.
Once the implementation is finished, an opponent is assigned to the project
with the task of finding out any shortcomings. The opponent can view only
that which a guest is allowed to see with one exception - he can also access
the files uploaded for the defence.

2. Defence - Much like a student working on a project, the supervisor of
a project can schedule it for a defence. They cannot pick the hour, only
the day of the defence. No later than two days before a defence of the
implementation both the supervisor and the opponent must upload their
reviews of the project for the defence.

Figure 2.6: Project details page

13

Figure 2.7: Academic use case

Use Case Make proposal for project

Primary Actor: Academic

Main Success Scenario:

1. The academic navigates to the project page where he clicks the New Project button. The
user fills out the appearing form with the project details, which are the name of the project,
a compulsory abbreviation for it and a link to the consultants and the students assigned to the
project. Furthermore, he provides a short description of the project and types the proposal
directly on the webpage (A1). After clicking the Send button (A2), a pop-up dialog appears
to ask the academic to confirm his choice to send the proposal (A3).

Alternate scenario:
A1: The proposal can also be uploaded as a PDF file by clicking the Upload proposal button, which

will display a file-selection window. The academic selects the file from the disk and clicks on
the Open button to upload it.

A2: The academic can choose not to send the proposal to the committee right away and save it as
a draft instead.

A3: By clicking No on the confirmation dialog the user can return to the form to modify the values
of the fields or to rather save the proposal as a draft.

14

2.1.4 Committee member
Members of the project committee can do anything any academic can do.

Specifically, they can supervise and oppose projects as well. Other than that,
they have some additional privileges. The intended use case for a committee
member is the same as for an academic. In addition to that, he or she takes
part in deciding the fate of every project proposal that is sent to the committee.
A large enough portion of the committee also has to take part in every defence. To
that end, each time a new date for a defence is opened, each committee member
lets the others know whether he will be able to be present during the event.

1. Project - Committee members can view any project - even those that are
still in the proposal stage (their proposal has not been accepted yet). They
can also view the history of the states any project went through and display
the list of team members (even though it may have been hidden from anyone
not working on the project). In addition, they can view the history of all
proposals for each project and all documents that were submitted by the
students for any defence the project went through.
Concerning proposals, committee members have access to all proposals sent
to the committee for evaluation. They can comment on them among them-
selves and vote for or against the acceptance of the proposed project. Each
member must vote and until they do so, they are being notified repeatedly.
If any of the comments is intended for the author of the proposal, it will be
sent back to him along with the verdict.
All comments made about any proposal remain visible to the committee
forever. However, no member of the committee can see comments on a pro-
posal that was sent to the committee and responded to during an interval
the committee member did not have this or a higher role (committee mem-
ber, committee admin). This way privacy is protected even in such cases
when a student becomes a member of the committee later on and then tries
to view comments on the projects from his or her student years.

2. Defence - As mentioned above, each committee member can and must let
the others know whether he or she can be present during a defence. If they
cannot be present, they must specify a reason why. Otherwise, they can
add an additional comment (eg. when they can be present, but are only
available in the afternoon). Again, until a committee member announces
his or her presence during a defence, he or she is being reminded of it
repeatedly (via email).
Committee members have complete knowledge about any defence. Specif-
ically, they can also view the supervisor’s and opponent’s reviews - which
they should skim through before they take part in a defence of a project.
These documents are available two days before the defence. After the de-
fence is finished, committee members can view the admin’s final statement.
This can be viewed even by those who were not present during the defence.

3. Users - Committee members can search for users by name or filter them
by role in order to view their info. This way they can write an email to
anyone or find out what their role is. In comparison, students only see the

15

info (including the email address) of users they meet on the website, such
as the authors of advertisements, their comments etc.

4. Dashboard - Committee members have a dashboard containing the most
pressing affairs right on the homepage. It includes new proposals the com-
mittee member hasn’t yet voted about and defence dates, for which his or
her participation has not been confirmed.

Figure 2.8: Committee member use case

Use Case Rate project proposal

Primary Actor: Committee member

Main Success Scenario:

1. The committee member navigates to the page of the proposal by selecting the project on
his homepage and clicking the Proposal link. After reading and examining it the committee
member votes to accept the proposal by clicking on the Accept button below the displayed
text of the proposal (A1)(A2). His vote will be shown to other committee members.

Alternate scenario:
A1: The committee member can also decline the proposal by clicking the Decline button below

the text.

A2: The user can also choose to ignore the request to rate the proposal by leaving the page of the
proposal (in which case he will be reminded to rate it later).

16

Figure 2.9: Committee member homepage

17

2.1.5 Committee admin
The admin of the project committee can do anything a committee member

can. Unlike them though, he or she has the power to override anything in the
whole system. The intended use case for the admin is to accept and decline project
proposals, open new dates for defences and select a subset of the committee to
attend a defence. From time to time, he or she also creates new users (in case
they cannot use CAS), issues news when something extraordinary happens and
edits static pages (eg. when the official rules of the NPRG023 course change).

1. News - Most news are generated automatically, but the admin can also
issue news if something out of the ordinary happens (eg. when the server
should go offline for maintenance.) The admin must issue news in both the
Czech and English language and can specify whether the news is important,
whether it should be visible to guests or not and after how long it should
be discarded. The admin can also edit and delete any news, even the ones
that were generated automatically.

2. Advertisements - The admin can delete any advertisements or their com-
ments (eg. when improper content is presented).

3. Project - The committee admin can view anything about any project,
including files that are visible for the team only. He or she can also carry
out file-modifying operations, including deleting uploaded files, removing
team members from a project, changing the supervisor, the opponent or
even the consultants, or deleting the whole project. He or she is the one
who accepts and declines proposals, but they should only be accepted if all
members of the committee agree. Last but not least, the admin accepts
requests to run a project. All the checks - whether the team comprises
only students, whether the date of start of the project is reasonable and
whether the size of the team is between four and eight - are carried out
automatically. Therefore, the request presented to the admin should not
require any investigation.

4. Defence - The admin opens a new date for defences anytime he sees fit.
After someone from a team schedules their project for a defense (on some
date), the admin chooses the exact time of day for the defence and assigns an
opponent. Once enough committee members have let the admin know that
they can be present during the defence, the admin selects them to attend
obligatorily (not everyone who can be present has to be selected). In the
event there are not enough committee members available, or some have
fallen ill, the admin can restart the attendance inquiry requiring everyone
to let him or her know again whether they can come or not. In case this
doesn’t help or some problem arises, the admin can cancel a defence or all
defence scheduled for one day. If a defence is cancelled, all concerned parties
are notified via email. After a defence is finished, the admin uploads (or
creates and edits in markdown) a final statement and decides whether the
project has passed, failed to defend or passed on a condition. The process
is the same for the defence of the implementation and the analysis, except
that no reviews are made for the analysis and everything about it is a little

18

more lightweight (the deadlines are shorter and less committee members
are required to attend).

5. Static pages - The admin can create, edit (in markdown), show, hide and
delete static pages. All static pages should be present in both the Czech
and English language, even tough the application works even if they are
not. They are versioned and the admin decides which version is currently
displayed. There is a distinction between rewriting a version of page or
using copy-on-write to create a new version. Both options are available.
Static pages are also available for download as PDF documents and the
order of static pages in the menu can be specified by the admin. The
versions work in the following way: each document with the same logical
name is just a different version of the same document and new versions can
be created based on an arbitrarily old version. Also, language versions of
the same document have no connection to each other whatsoever from the
application’s point of view.

6. Users - As mentioned before, the admin can create new users (eg. when
they refuse to use their CAS credentials to log in with this application, or
if they are not members of Charles University, but for some reason they
still need access to the application). He or she can edit anything - with the
exception of the password - about anyone. This includes changing a user’s
name, role, email, expiration date of their role or login type 2.2.5. He or
she can also ban a user or reload their info from CAS.
Regarding the changing of roles, it is the admin’s responsibility to upgrade
their roles when an academic becomes a member of the committee. When
the admin wants to retire, he or she chooses a new admin, who in turn
degrades the old admin’s role back to committee member or academic.

7. Dashboard - Much like any member of the committee, the admin also has
the same dashboard, but his or hers also includes projects that have sent
a request to run, conditionally defended projects whose deadline has passed
and finally, dates which should become open for defences, when a project
needs a defence, but no suitable date is open.

19

Figure 2.10: Committee admin use case

Use Case Specify defence date and committee

Primary Actor: Committee admin

Main Success Scenario:

1. After the committee admin receives the notification that a team is ready to defend their
project, the admin adds a new defence date by clicking on the New Date button under the
Defences header on their homepage. He selects the date and clicks the Save button (A1) after
which the date appears in the Defense dates list below. The admin clicks on the date just
added to the list which displays a form where he can specify the committee members invited
to the defence. He confirms the selection by clicking the Save button.

Alternate scenario:
A1: The admin can cancel the selection of date by clicking the Cancel button, in which case the

date is not added to the Defence dates list.

20

Figure 2.11: Users page

Use Case Create user

Primary Actor: Committee admin

Main Success Scenario:

1. The admin navigates to the Users page where he clicks the New User button. The admin
fills in the requested information about the person he or she wishes to add to the database,
including the name, titles, role in the system, e-mail address, login alias and the date when
the person’s password will expire. When the information is entered the user clicks the Create
button (A1) causing a dialog to appear to confirm the creation of the new user. By confirming
the process (A2), a new user is added to the system.

Alternate scenario:
A1: The admin can cancel the process by clicking on the Cancel button.

A2: By clicking No on the confirmation dialog the admin can further modify the information about
the person.

21

Figure 2.12: Defence evaluation page

22

Use Case Evaluate project (defence)

Primary Actor: Committee admin

Main Success Scenario:

1. After navigating to the page of the defence, the committee admin presents a defence review
either by typing it directly in the markdown field or uploading it as a PDF file and saves it by
clicking on the Save button. (A1) After this, the user makes the decision either to Accept the
project directly or Accept it on condition. (A2) In the pop-up dialog he can also grant extra
credits for the work done after which with a click on the Yes button the project is approved.
(A3)

Alternate scenario:
A1: The admin can cancel the process by clicking on the Cancel button.

A2: The user can also Decline the project, in which the defence is unsuccessful.

A3: The admin can cancel the confirmation process to correct himself by clicking on the Cancel
button.

23

2.2 Shared functionality
The rest of the specification is common to everyone, regardless of their role.

It includes data export, multi-language support, email notifications and user ac-
counts.

2.2.1 Data export
Data available to a guest is exportable via a simple REST API 2.13. The

REST API is public and read-only (it only serves GET requests). The intended
use of the REST API is for other web sites of the faculty to display up-to-date
information about software projects. The offered output formats are XML, JSON
and iCal for defence dates.

2.2.2 Internationalization
The web site is available in two languages - Czech and English. For that reason

all news and static pages supplied by te committee admin should be supplied in
both languages as well.

2.2.3 Email notifications
Any time something of importance happens, the concerned users are notified

via email (2.9). The emails always contain a relevant link (or multiple links) to
the cause of the notification.

2.2.4 Anonymization
Users can have their identity (including name and email) removed from the

application after they left the system (eg. after a student leaves the university).

2.2.5 Accounts
User accounts differ greatly based on which login option the user uses. The

login option also determines how the account is created and how information gets
updated later on. The two login options are login via CAS or classic login where
the password is stored in the local database.

1. Login via CAS -
Login via the universal CAS credentials is the preferred option, which is
used by approximately 98% of the userbase, because every student studying
and every professor teaching at Charles University is in possession of an ac-
count. Our system adopts the CAS system completely, meaning the ”Login
via CAS” button on the project’s website redirects to the CAS homepage.
This way the security viewpoint of our application is strengthened greatly,
because we never work with user’s password in any way. The user accesses
his identity through the official university system (by using his login alias)
after which he gets redirected back to the project’s website.

24

After the first successful login, the user’s account is created and his or
her email address and login alias is downloaded from CAS. A user’s role
automatically expires at the end of the academic year and if they try to log
in after the expiration date, their role is newly derived from the CAS info.
That is, unless they are part of the committee (a member or the admin),
in which case their role never expires and it prevails until it is manually
changed by the admin.

2. Classic login - The other option is the classic login method where the
password is stored in the local database. This options is intended for ex-
ceptional situations when either the user does not have CAS credentials or
he or she refuses to use them. A situation like this can occur, when an
external academic or an MFF alumnus needs access to the system. In both
cases their accounts have to be created by the admin himself, because of
which the admin has to be confident in the identity and the intentions of
the person in order to not risk the system’s integrity.
The users requesting access must specify their name and email address.
When a user’s account is created, an email is sent to them containing a link
to a page where they can change their password. The same mechanism is
also used when a user forgets his password and cannot log in. After the
creation of the account, the person can log in using the website’s GUI by
specifying his email address and password.
A user’s role is automatically set to expire at the end of the academic year
(again, only if they are not part of the committee) and it is not possible to
log in after the expiration date. To regain control of their account, these
users must ask the committee admin to either prolong or change their role
(eg. from student to academic).

No user can use both login methods at the same time (the committee admin
can look up the method utilized by the user). In case a user who uses the classic
login method, acquires a CAS account and wants to start using the login method
via CAS (eg. when the user is an academic who later becomes a member of
Charles University), he or she must seek the help of the committee admin who
can then switch their method of login.

In case it is the other way around (eg. when the user is no longer a member
of Charles University, but wants to stay in touch with software projects), the
committee admin can similarly modify the type of login. As a result of this
switch, the user receives an email in which he or she is asked to change their
password. Technically, one person can have multiple accounts - either if they
forget that they have one and ask the committee admin to create another one or
if they have a classic-login account and then acquire a CAS account and use it to
log in, thus creating a new account. Both these cases (and other similar cases)
are very unlikely and are the doing of a confused user. The solution to such
a situation is to spot it early on and ask the committee admin to delete one of the
accounts.

25

HTTP GET export/v1/defences/id/1
{

"id ":1 ,
"time ":"2018 -02 -14 T09 :30:00.419 Z",
"room ":" S3",
" projectID ":20 ,
" projectName ":" Complexity analysis of important algorithms ",
" projectShortName ":" COMPA ",
" projectDescription ":" This project deals with the complexity analysis of

important algorithms .",
" projectKeywords ":" complexity , algorithm ",
" projectRunStartDate ":"2017 -09 -24 T11 :12:02.419 Z",
" defenceSuccessful ":" true"

}

HTTP GET export/v1/defences
[/* array of all defences */]

HTTP GET export/v1/news
[{

"id ":31 ,
" titleEN ":" No defences during 12 th week",
" titleCS ": null ,
" contentEN ":" There will be no defence dates issued during the 12 th week of

the year due to a conference in Brno .",
" contentCS ": null ,
" createdAt ":"2018 -01 -13 T15 :31:06.419 Z",
" updatedAt ":"2018 -01 -14 T10 :26:39.419 Z"

}, ...]

HTTP GET export/v1/projects/id/20
{

"id ":20 ,
"name ":" Complexity analysis of important algorithms ",
" shortName ":" COMPA ",
" description ":" This project deals with the complexity analysis of important

algorithms .",
" keywords ":" complexity , algorithm ",
"team ":" John Doe , Sam Williams , Jessica Twain , Rick Swan",
" supervisor ":" doc. RNDr. Petr Hnetynka , Ph.D.",
" state ":" defended ",
" runStartDate ":"2017 -09 -24 T11 :12:02.419 Z",
" deadline ":"2018 -06 -24 T11 :12:02.419 Z"

}

HTTP GET export/v1/projects
[/* array of all projects */]

HTTP GET export/v1/ads
[{

"id ":12 ,
" title ":" Looking for Java/C# projects ",
" authorName ":" Bc. Jan Vesely ",
" authorEmail ":" jan@vesely .cz",
"type ":" person ",
" keywordsCSV ":" java;c#; csharp ",
" content ":" Looking for an interesting project written mainly in Java or C#.

I’m proficient in both languages .",
" createdAt ":"2017 -10 -21 T14 :12:35.419 Z",
" updatedAt ":"2017 -10 -24 T19 :11:48.419 Z"

} ,...]

Figure 2.13: REST API JSON data
This shows the structure of the returned data. Other format will be analogous.

26

Cause Sent when Recipients

A proposal sent to the committee immediately all committee members

A committee member hasn’t made
a decision about a proposal yet

every Monday at 8:00 the committee member in
question

A committee member commented
a proposal

immediately all committee members

The committee admin accepted or de-
clined a proposal

immediately all committee members, the su-
pervisor of the project

A new date open for defences immediately subscribers to news

A defence was scheduled for a concrete
time of day or the schedule changed

immediately the team of the project and
their supervisor

At least one project is scheduled for
defence on some date

every Monday at 8:00 committee members who
haven’t let the admin know
about their presence or ab-
sence yet

Voting about defence attendance reac-
tivated

immediately all committee members who
did not vote yes

A member of the committee was se-
lected to attend defences on some date

immediately the committee member in
question

A defence is coming 1 week, 2 days and
2 hours before the de-
fence

all committee members who
will attend, the team of the
project and their supervisor

A defence was cancelled immediately all committee members, the
team and the supervisor of the
project

A project’s deadline for implementa-
tion has passed and no date is open
for a defence in the next 30 days

immediately the committee admin (also in
dashboard) (a date will be of-
fered to the admin the upcom-
ing Friday)

A project’s deadline for analysis has
passed and no date is open for a de-
fence in the next 15 days

immediately the committee admin (also in
dashboard) (a date will be of-
fered to the admin the upcom-
ing Friday)

A conditionally defended project’s
deadline for rework has passed

immediately the committee admin

A project transferred into a new stage immediately the team of the project and
their supervisor

A static page was published immediately all committee members and
news subscribers

News were added immediately subscribers to news

An advertisement was commented immediately the author of the advertise-
ment (if not disabled)

A user’s role was changed immediately the user in question

A user stopped being a supervisor, an
opponent or a team member on some
project

immediately the user in question

A new temporary URL for changing a
user’s password was generated

immediately the user in question

The application cannot connect to
CAS

immediately the committee admin

The application cannot connect to the
database

immediately the committee admin

An error occurred immediately the committee admin

Table 2.9: Email notifications
Users are immediately notified via email about anything they could be interested in. There are notifications
about proposals, defences, the state of a project, miscellaneous (about users’ roles, advertisements, static pages
and news) and also ones about technical problems.

27

3. Analysis
3.1 Technologies

The choice of programming languages is greatly influenced by our choice that
the application will be a classic web application (not single-page), that uses ajax
to speed things up. SPAs are extremely responsive, but they are also harder to
design and implement and have trouble when the internet connection drops. Both
single-page and classic design are for this project equally suitable, but the main
reason for choosing the classic design is that an application of this size needs a
framework (to speed up development, reduce bugs and decrease the volume of
tests) and our team has good experience with classic (backend) frameworks and
limited experience with SPA ones.

3.1.1 Backend (PHP, Yii)
For backend development, the most prominent languages are PHP, C# (asp),

JavaScript (node.js) and Python. Each of them has some pros and cons. Our
choice was PHP due to several reasons like the popularity and the size of the
community of developers. Based on the current statistics, it is the most common
language for the backend web development. Another good indicator is the number
of posts on stackoverflow.com web page with number more than twice as for any
other language for backend development mentioned before. The next and fairly
important reason is that our team has the experience with PHP and the same is
true for those who will take over the project after it is finished.

We came to a decision of using Yii as a PHP framework. It is one of the
most popular frameworks supporting the latest version of PHP with typing/type
hinting feature and is fully object-oriented. The coding experience is comparable
to Java due to a great code readability and maintainability. Framework solves
most common backend problems - DB abstraction, application configuration,
routing, security against all common attacks, sessions, caching, object-relational
mapping, etc. Other PHP frameworks has similar architecture, but do not cover
some of the needed functionality that Yii has. This choice was made also due
to the fact, that some members of the team have more experience with it than
with any other PHP framework. Additional libraries or Yii plugins will be used
as needed (eg. a CAS library, etc.).

Nette framework was considered, but refused in favor of Yii. Both frameworks
cover the same basic functionality (routing, security, config, DI, DB abstraction,
etc.) and both have their pros and cons - there is definately not a clear winner.
However, Yii was chosen because it has faster pageloads, is more robust (comes
with ORM, i18n and widgets out-of-the-box), has better documentation and it
probably has more/better plugins.

3.1.2 Frontend (JS, jQuery)
The programming language for frontend is JavaScript (ES5). Using an ele-

vated form of JS, such as TypeScript, CoffeeScript or newer version - ES6 would

28

bring unnecessary complexity due to the need for code transpilation. This in-
creased complexity is not worth of using those languages taking into consideration
the fact, that the application is orientation more to backend than frontend. The
jQuery framework/library will be used. JQuery became basically a standard for
frontend development providing a vast number of methods for DOM object ma-
nipulation, UI components, AJAX request, etc. Other libraries (eg. a markdown
library, UI libraries and jQuery plugins) will be used as needed.

3.1.3 Database (MySQL, Yii Database)
Based on the project structure, SQL database came to be the best fit for the

project. The other option is NoSQL databases, which are designed for a system
with huge amounts of data and lack of ACID transactions, which are essential for
this project. Due to the fact that there are only 420 software projects from the last
20 years, we may assume, the size of the data in the database is not going to be
big. The only NoSQL databases offering ACID transactions are graph databases.
The project needs a strict database schema with integrity constraints. We were
considering several common SQL engines like MySQL, MS SQL, PostgreSQL,
SQLite and Oracle DB. Oracle does not have a good support in Yii framework
and MS SQL is paid, so these options were rejected. SQLite is suitable for
the small application and does not provide as wide functionality as MySQL.
MySQL is an open source database, which came to be the most suitable choice
due to the functionality, experiences by team members and a wide community of
developers and the usage in the world of web development. Yii framework also
provides object-relational mapping as a database abstraction layer, which will be
used in combination with MySQL. ORM is a good choice, because it simplified
development and decreases the amount of testing.

29

Figure 3.1: Database model

30

3.1.4 Typesetting (Markdown)
Markdown will be used for typesetting. It is a lightweight markup language

that covers everything needed for simple typesetting (bullet points, numbered
lists, different levels of headings, boldness, italics, strike-through, hypertex links,
etc). There are several free JavaScript and PHP libraries that can render it.

There are a lot of makrups with very similar syntax and capabilities to Mark-
down. From the technical point of view there is no clear winner - on the contrary.
The languages are almost exactly the same and most of them have a PHP engine.
However Markdown is chosen for a different reason - its popularity. It is being
used on github.com and bitbucket.com for wikis and readme files (by default)
and it can also be used for typesetting stackoverflow.com question. Therefore,
current and future students are most likely to be familiar with Markdown and
not anything else and therefore Markdown is the most user-friendly option.

Here are a few examples of Markdown competitors. Creole - an effort to
create a markup language as the intersection of all current markups, syntax close
to Markdown, has a PHP engine. ReStructuredText - syntax close to Markdown,
has a PHP engine. AsciiDoc - syntax close to Markdown plus a little more
options than Markdown (color, tables, even variables, built in image icons), does
not seem to have a PHP engine. Mediawiki markup - syntax different from
Markdown (different characters, everything is a little bit longer to write), does
not seem to have a PHP engine. Textile - syntax close to Markdown plus more
options (custom CSS, subscript, superscript, ctation, footnotes, etc.), has a PHP
engine. The syntax and features of Textile are actually quite nice, if Markdown
wasn’t so much more popular, Textile would be a great candidate.

Other alternatives are HTML and TeX. HTML is too hard to write and Mark-
down supports a subset of inline HTML anyway, so if someone really wants to use
it they can. TeX is very popular, but first, it’s meant for very precise typesetting
of text for print, not HTML and second, it relies heavily on downoading packages
and that would bring in unnecessary problems.

3.2 Architecture
As mentioned in the previous section, the application will be backend-oriented.

Diagram 3.2 shows the big picture and interaction with CAS, diagram 3.3 de-
scribes the architecture of the backend with a PHP framework in mind. Fron-
tend may be quite complex, since it will use quite a few libraries and the potential
problems with using JS libraries cannot be overlooked. However the actual cus-
tom code on frontend will be minimal and that is why there is no diagram for
it.

31

Figure 3.2: High level architecture, interaction with CAS
This is a static layered modular usage viewpoint of the architecture. Each layer uses the one directly below it,
arrows represent HTTP requests and responses. Users will be redirected to CAS to log in and then back to our

application after a successful login. At first login a user will be automatically registered and his data
downloaded from CAS without him noticing. CRON jobs will be used to send out periodic emails and perform

other tasks.

Figure 3.3: Backend architecture
This is a static layered modular usage viewpoint of the architecture. Each layer uses the one directly below it.
Green modules are external programs, yellow modules are files. Services are classes that contain application

logic and are injected (via dependency injection) into GUI controls and presenters (which render GUI and react
tu user’s input). A router routes to the correct presenter. Controls are just reusable parts of a presenter. All

services are configured via a config file. The DB can be accessed directly or via models (ORM-mapped classes).

32

3.3 Risk analysis
Table 3.1 lists the most prominent adversities that may arise during develop-

ment along with advice on how to handle them.

problem prob. consequence (1 in-
convenient - 9 critical)

mitigating action

one teammate
works only half the
time

30% see (2) remove them, goto (2)

(2) one teammate
stops working

24% 7 (4 if spec is reduced),
not enough time

reduce spec, work gets split among the rest of
the team, expect to finish after 9 months

two or more team-
mates work only
half the time

10% 7, not enough time bring the whole team to their level, expect to
finish after 12 months

Markdown library
fails/is bugged

30% 1, inconvenience find another and use it (about 1 week work)

Yii turns out to be
seriously bugged

3% 9 (2 if workaround ex-
ists), cannot use it

report bug and try to work around. If not suc-
cessful, learn and switch to a similar frame-
work (perhaps Laravel) and expect to finish
after 10 months

two teammates
stop working

2% 9 (4 if spec is reduced),
not enough time

reduce spec, work gets split among the rest of
the team, expect to finish after 12 months (1st
defense will fail)(*)

not using ORM
turns out to be a
huge nuisance

10% 1, inconvenience consider switching to Doctrine (about 2 weeks
work)

MySQL turns
out to lack some
needed functional-
ity

1% 4 (2 if workaround ex-
ists), cannot use it

try to work around, otherwise switch to post-
greSQL (also consider SQLite)

three teammates
stop working

0% 9, not enough time quit

Table 3.1: Risk analysis
The most consequential and the most probable adverse situations are those where a part of the team fails to put
in sufficient effort or leaves the project. This can be caused by an illness, problems at work or in school, etc.

3.4 Milestones
• 1.2. - 1.3. - write a complete specification and analysis, study PHP frame-

work and libraries

• 1.3 - 1.4 - set up development environment, implement functionality con-
cerning users and projects, create test data for the DB

• 1.4. - 1.5. - write an import script (for existing XML data), implement
REST API for data export and functionality concerning defenses

• 1.5. - 1.6. - write half of the documentation, implement functionality
concerning static pages and advertisements

• 1.6. - 1.7. - finish the documentation, implement homepage/dashboard and
functionality concerning news and finish end-to-end tests

(unit tests will be done along the way)

33

3.5 Work split
• Artur Finger - specification, documentation, helping others, code reviews,

merging, deployment

• Zoltán Betteš - main programmer

• Slávka Ivaničová - second main programmer, misc

• Gergely Tóth - DB, data import and export, misc

• Marek Beňovič - testing, documentation

34

	Introduction
	Context
	Goal(s)

	Specification
	Users
	Guest
	Student
	Academic
	Committee member
	Committee admin

	Shared functionality
	Data export
	Internationalization
	Email notifications
	Anonymization
	Accounts

	Analysis
	Technologies
	Backend (PHP, Yii)
	Frontend (JS, jQuery)
	Database (MySQL, Yii Database)
	Typesetting (Markdown)

	Architecture
	Risk analysis
	Milestones
	Work split

