
Pepr3D

Authors: Bc. Štěpán Hojdar, Bc. Tomáš Iser,
Bc. Jindřich Pikora, Bc. Luis Sanchez
Supervisor: Mgr. Oskár Elek, Ph.D.

Consultants: doc. Ing. Jaroslav Křivánek, Ph.D.,
Ing. Vojtěch Bubńık (Prusa Research s.r.o.)

Faculty of Mathematics and Physics
Charles University

Contents

I Introduction and Functional Requirements 3

1 Introduction 4
1.1 3D printing basics . 4
1.2 Prusa environment . 4
1.3 Multimaterial printing . 5
1.4 Our project . 5
1.5 Related works . 5
1.6 Challenges in this project . 6

2 Use case 8
2.1 Wireframe of the application . 8
2.2 Workflow and editor tools . 8

II Non-Functional Requirements 14

3 Architecture 15
3.1 Overview . 15
3.2 Modules . 16
3.3 Data flow . 16
3.4 Choosing a language . 17
3.5 Dependencies . 17

4 Core modules 19
4.1 Commands . 19
4.2 Command Manager and Command Stack 21
4.3 Tools . 21
4.4 Examples of data flow within the center section of the achitecture 22
4.5 Geometry model . 23

5 User interface 25
5.1 Introduction . 25
5.2 Our requirements . 27
5.3 Choosing a 3D rendering library 28
5.4 Choosing a UI widgets library . 29
5.5 Final proposal . 31

1

III Execution and minimal implementation 33

6 Execution of the project 34
6.1 Time schedule . 34

7 Minimal implementation 37
7.1 Minimal implementation features 37
7.2 Feature extensions . 38
7.3 Nonsupported features . 40

2

Part I

Introduction and Functional
Requirements

3

Chapter 1

Introduction

In this project, we hope to create an intuitive application that allows the user
to interactively color a 3D model and export it in a 3D printable format. This
chapter will provide a brief summary of the 3D printing environment, the related
work, the goals of the project and the challenges we will have to overcome.

1.1 3D printing basics
3D printing is a new technology that has seen rapid developement in the last years.
It comes in many different forms, melting plastic, fusing metals, shining UV on
photopolymers, etc. Fused Deposition Modelling (FDM) is the most popular and
accessible to the general public and for the purpose of this project, when we talk
about 3D printing, we will always mean FDM printers, unless stated otherwise.

FDM printing is a relatively simple process - a printer head melts the plastic
filament and deposits it on a preheated platform layer by layer, from the bottom
towards the top. The printer has to regulate the temperature of both the filament
in the head and the moving platform for the deposited material to bond correctly.
Several types of filaments are used, namely PLA, ABS, PET and others.

1.2 Prusa environment
The Prusa environment is very similar to the general description we provided in
the section 1.1. For the puprose of our project, the most important concept in
the Prusa environment is the slicer. The slicer is a program that receives the
3D model the user wishes to print out and creates the instructions for the Prusa
3D Printer – a G-code file. The file is then transfered to the printer, which then
executes the commands in the G-code file. The slicer has to plan the movement
of the head for the whole print. This includes several crucial things:

• Covering the whole area of each layer

• Reinforcing the walls of the object to make them sturdier

• Filling the inside of the object with a rougher print, because it won’t be
visible when finished

• Planning the path so the head can stay in one Z level - an ”Eulerian path”.

4

• Switching the materials for multimaterial printing (more in 1.3)

Prusa develop their own slicer - a forked branch of an open-source program
called Slic3r 1, called Slic3r Prusa Edition 2. This slicer can do all we listed above
very well.

1.3 Multimaterial printing
Multimaterial printing is a very new concept, even in the fairly new world of
3D printing. Many of the simpler and cheaper 3D printers can only print one
material models - one color for the whole object. However, many users would
like to print models that include more than one color. Even though the more
advanced printers are capable of combining up to four different materials into
one print, the process to achieve this is rather cumbersom for the end user - the
user has to manually split the 3D mesh of the object into parts that he wishes to
have a different color.

For example, if we are printing a dragon, want the dragon to be black and
have white teeth, we have to take the dragon model, and split off each individual
tooth. Then tell the slicer that the remaining file - the toothles dragon should be
black and the teeth should be white.

This model splitting has to be done in a full 3D editing software like Blender
or 3ds Max, which is difficult to control for newcomers and overly complex.

1.4 Our project
Our project aims to make printing a multi-colored object a lot easier, by develop-
ing an application that will allow the user to simply paint on the 3D model (i.e.
the dragon) with different colors (i.e. color the teeth white), then simply click
export and generate the files of the split-off models automatically.

Our application will allow for free hand painting as well as some forms of
guided painting – bucket fill and some smarter tools, for example a bucket fill
that studies the object’s geometry and stops the filling if it detects a sharp edge
(i.e. the transition of the tooth into the dragon).

The main goal is to make the application for desktop PCs, with main devel-
opement time being focused on the Windows operating system. We are, however,
trying to use software engineering tools that can also be ported to a plethora
of other platforms like Linux based OS, Mac OS and mobile, if the need should
arise.

1.5 Related works
Based on the analysis of the experts from Prusa Research s.r.o, there, at the
moment, does not exist a software that does what this project is trying to achieve.

1http://slic3r.org/
2https://www.prusa3d.com/slic3r-prusa-edition/

5

The closest existing software is Autodesk Meshmixer 3, which is very compli-
cated and is not targeted for FDM printing specifically. As such, it includes a lot
of features that are not important for the FDM users and end up being confusing.

Microsoft 3D Builder 4 is another application that handles 3D models but we
have not found a way to make it create anything remotely applicable to FDM
printing.

Any 3D computer graphics program designed to handle 3D models which
allows for the model to be created or split by colors manually. This section
would include software as 3ds Max, Maya or Cinema4D. Using these applications,
however, would be very time comsuming for the user and practically unusable on
a larger scale.

1.6 Challenges in this project
This section should briefly familiarize the reader with some of the parts of the
application we think will be difficult to implement correctly, before we present
the full program specification.

1.6.1 Handling the geometry during editing
We want our application to be able to emboss text on the surface of the object,
detect edges and stop painting the color during bucket fills, allow the user to
paint fine details on a rough triangle mesh. All of these things require some
degree of subdividing the triangle mesh to allow the user to create small details.
We think that this will involve some difficult problems – we have to allow the user
to subdivide the triangle mesh enough to actually allow him to create fine details
on the surface. However, the if the user goes overboard with the subdivision, the
model will be too complex to print or even handle inside a desktop PC.

1.6.2 Exporting the finished objects
After the user is done painting, the application will have to separate the desig-
nated objects and areas into distinct meshes. This is potentially a very compli-
cated task to do correctly for non-convex meshes. For example: if we are writing
a text on a ball, we really only want the text to be carved deep enough into the
ball for the printed material to hold firmly, we do not want it to be too deep.
However, if we want the dragon’s teeth to be white, we would prefer the whole
tooth to be white, not just its surface. The distinction between these two cases
is non-trivial.

1.6.3 Performance
Handling complex geometry is a very taxing task for the user’s computer. This
application is targeted on beginner-level customers of simple and non-expensive
3D printers. Therefore the application cannot be too hardware demanding – it

3http://www.meshmixer.com/
4https://www.microsoft.com/en-us/p/3d-builder/9wzdncrfj3t6?activetab=pivot%3Aoverviewtab

6

has to run smoothly on an average 3 year old PC or laptop. We expect it is going
to be hard to ensure this is the case.

7

Chapter 2

Use case

In this chapter we will outline our vision for both the application’s user interface
and its toolset.

2.1 Wireframe of the application
Figure 2.1 provides a simple wireframe sketch of the application graphical user
interface (GUI). The window consists of several usual components:

• A horizontal toolbar at the top, allowing for a fast selection of tools and
file manipulation

• A 3D preview window, with live preview of the object. This window allows
rotating and magnifying the object, as well as the application of selected
tools (e.g. painting with a brush). A simple grid and a 3D cross is provided
to ensure the user is always aware of object orientation, as it is important
for 3D printing.

• An options window on the right allows the user to customize the settings
of the currently selected tool (e.g. selecting the color for a brush).

2.2 Workflow and editor tools
In this section we describe the intended workflow for a user who has a 3D model
he wishes to color and then print on a multicolor FDM printer. This application
is intended for users of varying degrees of experience and our goal is to create as
easy-to-use application as possible.

2.2.1 Importing the model
First, the user has to import the model he found or created. Clicking on the
import button creates a dialog, the user selects the 3D model and the model gets
loaded. The application should accept at least a few standard formats – namely

8

Figure 2.1: A simple wireframe sketch of the application.

9

Wavefront .obj and .stl 1, both of which are widespread and well known among
the 3D printing community.

The user should also be able to continue on an already existing project made
earlier with Pepr3D.

After the model is loaded, it will be rendered in the 3D preview window. The
window allows the user to rotate, zoom in and out and preview the wireframe
of the model (rendering only edges and no faces of the model). The user is able
to set the number of colors he wants to use (by default 4 because current Prusa
printers support up to four colors). The model is colored with the first color by
default.

The user then selects one of the tools from the toolbar. This will bring up
the Tool options menu on the right hand side allowing the user to customize the
tool.

Our application should support the Drag & Drop feature, so importing both
the model and an already existing Pepr3D project is possible by dragging the file
directly onto the viewport.

2.2.2 Tools
In this section we present the list of tools we think are best suited for our task.
For each tool we provide the basic overview of its function, a simple reasoning
why the tool is valuable for the user and a general sketch of the tool’s properties.

Edit history

The user is always able to revert his last action by using an Undo button or a
keyboard shortcut. Depending on the technical difficulties, this feature could also
persist through different sessions.

Save as Pepr3D project

Saves the current project as a Pepr3D project file. Upon re-opening Pepr3D, the
user can load the project back and continue the work as if he never left. Does
not include exporting the file into a slicer-compatible format.

Export

Export the file into a slicer-compatible format. This file is then handed to the
slicing program (e.g. Slic3r Prusa Edition we mentioned earlier) and can be
printed directly.

Triangle painter

After selecting a color, the user can assign said color to triangles he clicks on.
Backside filtering is always on, so the user can only ever color a visible triangle,
which should prevent a lot of accidents a lesser experienced user might make.

This is the simplest way to color the user’s model and may be desirable as a
quick way to correct any small errors made by either the user or the automatic

1https://en.wikipedia.org/wiki/STL (file format)

10

segmentation itself. This tool also allows for very quick and easy coloring of very
simple models (like a cube) that have a very low triangle count when the user
wishes for a simple outcome – for example a playing dice with six differently
colored sides.

The properties of this tool are very simple – the user chooses a color to assign
to the triangles that he clicks on. Depending on testing and remaining time,
this tool could be expanded to include a radius and instead of coloring the single
triangle the user clicks on, we could color all triangles in the vicinity of the clicked
triangle instead.

Bucket painting

The user selects a color and by clicking anywhere on the model paints all trian-
gles with selected color until an edge criterion is met. The simplest and most
intuitive edge criterion is continuity (a hole stops the bucket spread). Several
more criterions could be useful when in 3D, namely the sharpness of the normal
(if two neighbouring triangles are at an angle greater than X, stop.) or a big
gradient in a shape diameter function (SDF).

A little more complex but a very intuitive tool that allows the user to get a
quick initial paint on the model, which can later be adjusted with the Triangle
painter tool, or made more complex with the finer Brush tool.

We already mentioned the main property of the tool — the edge criterion. A
color-picker is, of course, necessary as well.

Automatic segmentation

Pepr3D fully automatically colors the whole model using the selected colors, ac-
cording to a edge criterion as discussed in the Bucket painting section. The
user can then decide if he wants to merge some segments together, reducing the
number of colors.

This tool should serve as a reliable way to color simple models which can be
very distinctly separated into a number of regions, like a guitar which has two
main parts – the body and the neck.

The properties of this tool are as following:

• The number of regions

• The colors assigned to the regions

• The edge criterion settings

Semi-automatic segmentation

The user roughly paints over triangles in areas that should have distinct colors,
as indicated by Figure 2.2. The program then finishes the coloring by executing
a clever flood-fill algorithm utilizing SDF, sharp edges, etc.

This tool is primarily aimed at models that do not clearly separate into a few
regions, and as such the computer would have a hard time guessing which regions
the user had in mind. It is quick to use, since it requires non-precise brush strokes
and should be a significant speed up when compared with just using the Bucket

11

Figure 2.2: Semi-automatic segmentation as seen from the user’s perspective.
The ears of the rabbit are yellow as indicated by one stroke on each ear. The
body is orange as indicated by the stroke on its back. The rabbit’s feet are pink
– four pink strokes.

and Triangle painters to do all the work manually. Some manual adjustment
is expected from the user but the main bulk of the painting should be done
automatically.

The properties are very similar to automatic segmentation, the only exception
being that the program will actually require the user to paint with the colors
assigned to each region, after the user chooses the colors. If any of the brush
strokes are missing, the program can either completely skip the color or generate
the missing region automatically. The specific behavior will be chosen once both
approaches are tested by the team.

Brush

A simple to use brush tool that allows to paint onto the model with a selected
color. This tool allows the user to paint finer details, even though the geometry
does not include them. For example painting the nose of the rabbit from Figure
2.2 black – there is no distinct edges on the nose, but the user can color only the
nose by fine strokes of the brush.

The implementation of this tools is harder, because the program needs to
adaptively subsample the triangle mesh to allow for finer details. This poses a
lot of problems, which will later be discussed in the implementation parts of the
document.

The properties of the Brush tool include the color the user wishes to paint
with, the shape of the brush itself and the size of the brush. A fail-safe setting
that will stop subdividing triangles if they are smaller than the set number should

12

Figure 2.3: Three stages of triangle numbers. The bunny on the left has the most
triangles and most complicated geometry. Several decimations can reduce the
number of triangles but also the number of details as shown on the second and
third bunny.

be present, to avoid the user accidentally creating a model too complex for their
computer to handle.

Text

Using the tool options window, the user selects a font and types a custom text into
a window. The text gets projected onto the model using some sort of projection
transformation (customizable by the user from a limited range of projections).
The software also allows extruding the projected text in the direction of the
surface normal to create a 3D effect.

We anticipate that this will be a very popular feature, especially among com-
panies, since printing their own promotional items, with the ability to emboss the
items with the company’s name and logo seems very useful.

The properties of this tool include the standard feature-set of text editing –
the font, size, style (bold, italics, underlined, etc.) as well as the color of the
letters. The more advanced settings of this tool include the projection type, and
since we allow the extrusion of the text above the surface itself, the height will
have to specified as well.

Triangle subdivision/decimation

The user selects a section of triangles and then presses either subdivide or dec-
imate, which will either make the geometry more complicated, or more simple.
See Figure 2.3 for visual aid. Please note that our tool is not a sculpting tool and
such this tool might not allow the same extent of modifying the model as some
3D editors do.

We anticipate this to be a niche tool, used only by the more experienced users.
We chose to include it, since it allows the professional printers to fine-tune their
models for better performance or more precise coloring or printing.

13

Part II

Non-Functional Requirements

14

Chapter 3

Architecture

Now that we understand the background and use case of Pepr3D, we can propose
a software architecture for the project. In this chapter, we show an overview of
the whole architecture. Further details are then available in next chapters.

3.1 Overview
A good software architecture should be easy to maintain and refactor, it should
be possible to replace parts of it with new ones. It should be as simple as possible,
resistant to bugs and errors, and programs built with such architecture should
run reasonably fast without any major bottlenecks.

This can be achieved with modularity, i.e., separating a project into multiple
parts that are as independent as possible. It is important to define data flows and
dependencies between the modules. Keeping the data flows and dependencies as
simple as possible makes it easy to replace modules in case it is necessary, e.g.,
when a certain library is not developed anymore or new technology is created.

In our case, we tried to come up with a modular and simple architecture.
As Pepr3D is a 3D editor, it consists of both a complex backend with geometry
manipulation, and a complex frontend for displaying and editing this geometry
by a user. We propose an architecture consisting of several parts ranging from
backend to frontend. Details are in Figure 3.1 and in the next section.

Figure 3.1: An overview of the Pepr3D architecture.

15

3.2 Modules
For the Pepr3D architecture, we propose the following modules:

• We need a module responsible for the geometry of the edited 3D object,
including importing, exporting, and editing the object. Geometry model
is a data structure describing everything Pepr3D needs to know about the
3D model. A 3D view is also rendered based on this structure.

• Then we need a module allowing undo and redo functionality. In editors,
this is mostly done using a command pattern, in our case encapsulated in the
command stack module. This module receives commands and changes
the geometry model accordingly.

• The commands are created and sent either directly from the application
module or from tools. Application is responsible for generic commands
such as loading and saving files, importing and exporting, or invoking undo
and redo. Tools are responsible for their corresponding actions such as
changing a color of a triangle or running a segmentation. Both application
and tools also have properties, e.g., a brush size of a brush tool.

• The application and tools are managed by a UI application module which
is a bridge between what the user sees and what the application does.
It manages a window, handles events such as user input, processes asyn-
chronous events in the event loop, manages an OpenGL context, etc.

• Finally, views are responsible for actually displaying information on user’s
screen. They describe a toolbar, side pane, and a 3D model view. They
correspond to buttons, text inputs, icons, numerical sliders, etc. The user
interacts with Pepr3D through the views.

3.3 Data flow
In software such as editors, when we interact with the application, data first flow
from frontend to backend (1.), and then from backend to frontend again (2.).

1. Front to back In our case, when a user uses a certain tool, e.g., a brush,
and paints on the 3D model, this painting gets first registered in a view. An
asynchronous event is created through the UI application and a corresponding
command is invoked from a current tool according to its properties. The com-
mand is processed through the command stack to allow us to undo it in the
future. The command then modifies the geometry model accordingly.

2. Back to front After changing the geometry model, the command gets
resolved and the command stack saves it to its history. If no other commands
are required by the tool, it notifies the UI application that the asynchronous
event has finished. The new geometry data are then immediately visible in the
view, which renders the new geometry model.

16

3.4 Choosing a language
When selecting a programming language for a certain project, there are basically
two important things to consider. First, do we already have experience with the
language or at least with a similar one? Second, does this language provide all
features necessary for the project? Are there libraries available to help us building
the software? Is it not too complicated for the use case?

The first question is important because building a big project with a brand
new language is very difficult. It is too easy to start with a project and halfway
through find out that one has been using the language concepts wrong the whole
time. We should have at least one person with some experience before starting.

The second part is important as some languages might be better for certain
use cases. For example, it would not make much sense making a web application
in C++ instead of JavaScript, and vice-versa for complex geometry applications.

In our case, we had quite a lot of experience with C++, C#, JavaScript, and
Python. We want Pepr3D to be cross-platform and do heavy manipulations with
3D geometry as fast as possible. We prefer compiled languages with optimized
compilers, complex debuggers, profilers, and fast 3D libraries.

Other 3D editors are mostly developed with C++ and most suitable libraries
(see section 3.5.2) also primarily target C++. It is also a language with cross-
platform heavily optimized compilers. Hence, we decided to choose C++ as a
primary language for Pepr3D.

3.5 Dependencies
In software development, it is a good idea not to reinvent the wheel. It means
that if there is a library available for a certain task that we would like to do, it
makes sense to consider using such library.

3.5.1 Why yes, why not
Libraries are useful for solving complex error-prone tasks that might be too dif-
ficult to implement ourselves. As libraries typically have other users, there is
a chance they have already spotted important bugs and reported them. Hence
there is a high chance they have already been fixed, which is not the case when
we decide to develop our brand new custom solution. Also, when a library is
actively developed, it can keep improving and we do not even need to touch it.

Obviously, for certain tasks, a library might not exist, it might be too old and
not maintained anymore, or it might not be in a good condition in general. Using
third party libraries makes maintenance of the project more difficult. We need
to keep checking if our dependencies are up to date, if there are known bugs or
security issues in them. Also in case we need to modify the library, we need to
keep our custom fork of it and keep merging latest changes. Different libraries
also tend to use their own classes and structures for the same thing, which makes
the source codes more difficult to understand.

17

3.5.2 Libraries used by Pepr3D modules
We have made a list of libraries that we would like to use to implement Pepr3D.
Details about why we have decided to use exactly these libraries are available in
specific chapters related to the modules. This is just a brief overview:

• Assimp1 library should be used for importing and exporting 3D models
for the Geometry Model module.

• Cereal2 library should be used for (de)serialization of Geometry Model and
Application data.

• CGAL3 library is considered for complex 3D geometry and topology cal-
culations in the Tools commands affecting the Geometry Model.

• Cinder4 library will be used in the UI Application for managing cross-
platform windows, input handling, asynchronous event loop, OpenGL con-
text handling, and other related tasks.

• Dear ImGui5 library will be used in Views as a UI widgets library for
managing buttons, text inputs, checkboxes, and other UI widgets.

• This list of dependencies may not be final. Other libraries are also consid-
ered, such as spirit-po6 for translating UI into different languages.

1http://www.assimp.org/
2https://uscilab.github.io/cereal/
3https://www.cgal.org/
4https://libcinder.org/
5https://github.com/ocornut/imgui
6https://github.com/cbeck88/spirit-po

18

Chapter 4

Core modules

This chapter takes a closer look at the portion of the architecture highlighted
in Figure 4.1. We will explain how each task is performed once the UI element
has received the input from the user. The UI portion of the architecture will be
covered in the next chapter.

Figure 4.1: The part of architecture covered in this chapter.

4.1 Commands
Commands are the primary means of altering the geometry model. Each of them
gets executed and placed on the command stack, which allows for the Undo and
Redo operations to function correctly. The commands then interact with the
geometry model (this interaction will be explained in greater detail in section
4.5) to modify it according to the user’s wishes.

Because each command gets put on the command stack, and each Undo step
removes one command from the stack, each command has to have a visual im-
pact on the user’s work. This means that internal computations, such as geometry
queries, cannot be represented as commands, because pressing the Undo button
would not have any visual effect and would confuse the user. Examples of com-
mands include: coloring a single triangle (triangle painter tool), adding a brush
stroke (as in semi-automatic segmentation we looked at in Chapter 2) or a single
step of triangle mesh subdivision.

19

Implementation details
There are several ways of implementing a command stack for Undo and Redo
operations, here we highlight two, each with its pros and cons. We expect to
test both variants and see which works better. We will use A to refer to the
object after applying the newest command, and B as the object before the
latest command was applied.

One variant of the implementation requires each command to be able to per-
form the Undo step by itself. This is usually done by remembering the state the
object was before applying the command (B), and if Undo is pressed, replacing
the current object A with the saved B. A command in this variant is a class with
three primary methods.

• constructor – Once the command gets created, the main thing to do is re-
member the state the geometry model was in before the command modified
it – B. This will allow for the command to restore the model if Undo is
pressed. The advantage of saving the state in the constructor and not in
the execute function itself is because of the Redo mechanism – if the user
repeatedly presses the combination of Undo + Redo, the model gets saved
only once as opposed to each execute.

• execute() – The execute function will perform the task the command is cre-
ated to do. This will typically get called immediately before the command
gets placed onto the command stack. This will change the object B into
the object A.

• undo() – This method will take the state of the model saved by the con-
structor of the command and apply it to the current geometry model A,
effectively reversing the command and obtaining B. In other words, this
method will change the object A into the object B.

This variant is mostly desirable if the operations can be undone easily (e.g.
deleting a single letter is a very easy operation to undo). For our purpose, this
approach might not be the best because geometric operations usually do not have
an easy inverse operation. This means that each command would have to save
the whole state of the geometric model, which might prove too straining on the
computer’s memory.

The other possible variant of implementation is snapshotting the model every
few commands (with the latest snapshot called S), and when the user requests
an undo, simply restoring the previous snapshot S, and re-applying every but the
last command L. This version is a bit more CPU-intensive but should result in
much less memory being used.

In this version of the implementation, the only method of the command class
that remains from the previous list is execute(), as all others are managed by
the command manager.

20

4.2 Command Manager and Command Stack

4.2.1 Command Stack
As the name suggests, the Command Stack is a LIFO type structure, its main
purpose to store the executed commands to allow for the Undo and Redo op-
erations to be performed. As we have outlined in the previous section, either
each command carries all necessary information to perform both actions (in the
first variant) or the command manager remembers the snapshots and is able to
perform the Undo and Redo actions. Hence the Command Stack can only be a
simple container without any significant logic behind it.

4.2.2 Command Manager
The command manager is a object to manage the command stack. It receives the
commands from tools, executes them and stores them in the command stack.

In the first variant of the implementation, when the user wishes to Undo an
operation, the command manager retrieves the top command from the stack (L)
and invokes its undo() method, replacing the current A with the original B.

In the second variant of the implementation, the command manager also saves
the complete geometric data every N steps (we expect N < 5) – so called snap-
shots. The snapshotting is invoked during after the execute() method of the
incoming command gets called. When the user wishes to Undo an operation,
the command manager retrieves the last snapshot S, i commands behind the
current model. It then re-applies all commands from i + 1 to the next to last
command (ending before applying L), effectively undoing the operation and re-
placing the current A with the original B. Unlike the previous version, the state
B is not saved anywhere but it is re-constructed from the last i − 1 commands
that originally transformed S into B.

4.3 Tools
A tool is the main programable component which connects the low-level command
structure we outlined above and the high-level UI components (such as color-
pickers, the user performing brush strokes and file operations like exporting the
file). This design should also allow for later advancements of the software easily
– adding a tool to the software should be a matter of writing the new tool’s Tool
class, unless the tool is advanced and needs some complicated custom geometry
processing functions.

Each tool is composed of two main components:

• properties – a methodless object holding the tool’s properties which can be
customized by the user. This includes, for example, the color which gets
assigned to the triangles in the triangle painter tool, the number of colors
for automatic-segmentation, the subdivision level or the gradient thresholds
for region detection in bucket painting. The information in this object gets
changed directly when the user interacts with the UI.

21

• commands – Each tool generates at least one command, which it creates,
fills with all necessary information the command needs to execute itself,
and passes it to the command manager. More complicated tools can create
more commands, as we will illustrate in the following section. The tool
is able to do some pre-processing before a command is issued, in case the
pre-processing isn’t visible on the screen, as shown in example 4.1.

4.4 Examples of data flow within the center sec-
tion of the achitecture

We include a few example use cases which should illustrate what happens in the
application (normal font) when a user interacts with the UI (italics). The first
example shows the need for preprocessing power within the tool class, while the
second example illustrates the need for multi-command tools.

4.4.1 A preprocessing example - triangle painter
The user selects the triangle painter from the tool box, and in the Side Pane, he
changes the color from default red to green.

This action makes the UI manager change the color property of the Triangle-
Painter tool from red to green.

The user then clicks on a triangle that he sees on the screen, in Model View.
This makes the UI generate a ray in a direction of the user’s mouse input. It

then calls the TrianglePainter tool, passes the ray and tells it to color it, according
to the tool’s settings. The tool first calls the Geometry Model, to retrieve the
triangle that gets intersected by the given ray, then creates a command to color
the triangle with the color it has in its properties. The command is then passed
to the CommandManager and executed. The query for the ray intersection is not
passed as a command, because it is not visible for the user, hence should not be
reversible.

4.4.2 A multicommand tool example - the semi-automatic
segmentation tool

The user selects the number of colors – 4. The user also selects which colors he
would like to use – C, M, Y, K.

The UI updates the tool’s properties to reflect these values.
The user then selects the color C, and performs a stroke.
The UI first tells the tool that the current color is C. Then the tool receives

the parameters of the stroke (much like the ray for a click), creates the command
for a stroke with color C and sends it to the command manager.

This gets repeated for the other 3 colors. So far the tool generated 4 com-
mands. If at any point the user presses Ctrl + Z, only one of the strokes disap-
pears.

The user confirms the hint strokes are complete and the segmentation can
start.

22

The tool now generates the final command to complete the segmentation and
passes it to the manager.

If the user presses Ctrl + Z now, only the segmentation will get removed, with
the strokes still remaining on the object.

4.5 Geometry model
The geometry model is responsible for keeping the geometry data (triangles of the
model) in memory and implementing geometric operations, that then get used in
commands, to perform the tasks specified by the tools.

4.5.1 Implementation variants
There are two main approaches to programming the geometry model. One ap-
proach is to look at the model as a state-less chunk of data. The functions that
operate on the model (e.g. return the triangle that intersects this ray) are free
functions that just get called on the geometry model. The second approach is to
implement the model as a full object. This means that the model has its private
data – the triangles of the user’s model, and it has its methods – the geometric
operations it allows the user (i.e. the programmer of the commands and tools)
to perform upon the private data.

Both solutions have their pros and cons and we, at the time of writing, do not
know which will shape up to be a better fit to the application. We will briefly
mention some of the reasons we might choose either one. The state-less struct
version is better for handling the data. We will need to make some kinds of
copies both for saving the model on the disc and for the undo Undo and Redo
operations. This approach would allow us to simply copy the struct and not
waste any space or time. The object-oriented approach is easier to work with and
probably less confusing for new programmers trying to implement a new tool or
other extensions to the application.

4.5.2 Libraries
There are several libraries that the geometry model could benefit from. We
have been searching on the internet and did research and we found the following
libraries that we will try to use to augment the geometry model.

• Assimp1 – a portable Open Source library to import various well-known
3D model formats in a uniform manner2. This library is very important to
our application as it will allow us to support a plethora of 3D formats for
the users to use. This should help the less experienced users by not forcing
them to convert their objects to different formats before our program can
import them.

1http://www.assimp.org/
2Description taken from http://www.assimp.org/

23

• cereal3 – cereal is a header-only C++11 serialization library. cereal takes
arbitrary data types and reversibly turns them into different representa-
tions, such as compact binary encodings4. We need to serialize data to
enable saving the current state of the user’s project on disc, and then be
able to de-serialize them when the user wishes to continue working on the
saved project and presses load existing project. We have had positive expe-
rience with cereal and that is the reason we chose this library.

• The Computational Geometry Algorithms Library or CGAL5 –
a software project that provides easy access to efficient and reliable geo-
metric algorithms in the form of a C++ library6. We have heard very
positive feedback on CGAL and therefore will attempt to use the library
for the more complex geometry problems. We have, however, not had any
previous experiences with CGAL, so we are unsure as to how well it will
fulfill our requirements and might drop the use of it if it does not meet our
expectations.

3https://uscilab.github.io/cereal/
4Description taken from https://uscilab.github.io/cereal/
5https://www.cgal.org/
6Description taken from https://www.cgal.org/

24

Chapter 5

User interface

A user interface (UI) is the front-facing part of Pepr3D that the users are go-
ing to interact with. It is responsible for managing windows, showing buttons,
texts, rendering the 3D model, handling mouse clicks, and much more. In case of
Pepr3D, it needs to be a cross-platform, easy-to-use, intuitive, and fast abstrac-
tion of the complex 3D geometric algorithms at the backend, see Figure 5.1.

Figure 5.1: An overview of the Pepr3D UI architecture, based on Figure 3.1.

5.1 Introduction
We did not want to reinvent the wheel, so we investigated how other developers
recommend to implement user interfaces. In our case, we have 3D rendering, i.e.,
displaying the 3D model, and UI widgets, i.e., the windows, buttons, check boxes,
text labels, etc. Here we describe what we found important to understand.

5.1.1 Existing patterns
Let us have a look at existing generic UI architectural patterns. A detailed
overview of them was written for example by Derek Greer1. The most common
pattern is called Model-View-Controller (MVC), where model is a state, views
visualize the state, and controllers react to user input to manipulate the model.
The MVC pattern got so famous that there are a lot of alternatives nowadays

1https://lostechies.com/derekgreer/2007/08/25/interactive-application-architecture/

25

based on the similar principles, like Model-View-Viewmodel (MVVM), Model-
View-Presenter (MVP), or Presentation-Abstraction-Control (PAC).

But we can go even further: Johannes Norneby mentions2 a common paradigm
of UI, which he objects is not valid: “The user interface and / or visualization
of any program is inherently stateful.” He objects that this is a broken paradigm
and devotes his book into explaining the so called immediate user interface, which
instead provides a stateless alternative to rendering UI.

The main difference between immediate and retained modes is that in the
latter, the visualization library retains internally a complete model (state) of
objects to be rendered, while the former is procedural and redrawn every frame.3
The major benefit of a stateless immediate UI is the ability to maintain and reuse
it much easier. Norneby suggests that every view should be as pure as possible,
meaning that in languages like C++, all views should in fact be free functions.

5.1.2 Immediate vs. retained
Even when one sticks to MVC principles, there does not seem to be a consensus
for which applications one should prefer the retained mode over immediate and
vice versa. At its core, MVC principles can be used in both of them. Norneby
goes as far as saying that MVC and immediate UI are two implicitly connected
concepts. Arguments were made4 for both approaches without a clear winner.

The main downside of retained UI is the necessity to maintain a UI state.
This often leads to complex libraries that are difficult to learn to work with and
introduces out-of-sync bugs that are hard to fix. This is why video game and
interactive applications developers (including Blizzard Entertainment) support
immediate UI, because it interlocks the application data and the current state of
the UI, meaning the state and UI never get ouf of sync. The libraries are also
usually very simple to use.

The main downside of immediate UI is a poor separation of logic and pre-
sentation and the necessity to rerender the UI more often. What developers at
uiink5 suggest is to just use the best of the both worlds. And it is not different
from what Norneby actually proposed in his never-finished book. We should only
use immediate UI in the actual views, which are just free functions procedurally
explaining how the UI should be rendered each frame. The rest of the application
should know nothing about immediate UI. In theory, we should be able to swap
immediate UI and retained UI, or use both of them together without the need to
touch the rest of the application.

5.1.3 Real-time rendering
In Pepr3D, a regular user interface with a few buttons and texts is not enough.
We primarily need real-time 3D rendering and manipulation of the 3D model that
the user is editing. Hence the whole user interface needs to take this into account
and should be primarily based on real-time rendering.

2http://www.johno.se/book/immvc.html
3http://msdn.microsoft.com/en-us/library/windows/desktop/ff684178(v=vs.85).aspx
4https://gamedev.stackexchange.com/questions/24103/immediate-gui-yae-or-nay
5https://uiink.com/articles/data-driven-immediate-mode-ui/

26

As already mentioned, real-time applications such as video games favor im-
mediate UI. They need to rerender the whole screen all the time anyway. For
Pepr3D, it is perfectly possible to make immediate UI a part of the renderer.

5.1.4 Presentation separated from logic
Nowadays, a lot of UI is being developed for web applications. We can investigate
the most used frameworks and libraries for single-page applications6: React by
Facebook, Angular by Google, or Vue.js.

We observed that these tend to follow the principle that a view should be just
a thin front-facing layer only responsible for displaying data. Calculations and
data manipulation should be done in other parts of the application.

It is not a surprise that even Qt7, a widely used C++ UI framework, en-
courages people to eliminate data consistency problems by using separate views.8
Even though there are so many different UI libraries and frameworks, they all
seem to share the same common principles about the separation of presentation.

5.1.5 Internationalization and accessibility
There are many other observations one can make when studying existing appli-
cations that heavily rely on user interface. A lot of energy has been invested into
creating standards and guidelines for them. It is not in the scope of this work to
list all details about building good user interfaces, but we should still mention at
least two more concepts: internationalization and accessibility.

Typically, when applications are used by users from different countries, the
UI needs to support internationalization (abbreviated as i18n)9, i.e., different
languages, number formats, time formats, etc.

Applications should also be accessible (accessibility, abbr. a11y), meaning
they should support keyboard navigation for people who cannot use mouse, screen
readers for people who are blind, high contrast themes for people with worse
eyesight or color blind users, etc. Especially in the “web world”, there exist
important accessibility guidelines called WCAG.10

5.2 Our requirements
Based on the observations made in the previous section, on the expected usage
of our application, and on general advice gathered from Vojtěch Bubńık from
Prusa Research s.r.o., we decided on the following set of requirements for the
user interface of Pepr3D.

The user interface of Pepr3D and the library we are going to use for it should:

1. separate presentation from application logic, i.e., in theory, we should be
able to easily replace the UI with another one, should it be necessary,

6React: https://reactjs.org/, Angular: https://angular.io/, Vue.js: https://vuejs.org/
7https://www.qt.io/
8http://doc.qt.io/qt-5/modelview.html
9https://blog.mozilla.org/l10n/2011/12/14/i18n-vs-l10n-whats-the-diff/

10https://www.w3.org/WAI/standards-guidelines/wcag/

27

2. support real-time 3D rendering of the 3D model, provide an easy-to-use
abstraction, e.g., for rendering 3D primitives, using custom shaders with
uniforms, uploading textures to the GPU, keeping constant framerate, etc.,

3. look visually good and allow us to unify the design of the 3D rendering part
and the rest (toolbar, controls, etc.), e.g., by supporting custom themes,

4. be cross-platform at least on desktop (Windows, Mac, Linux), ideally on
tablets as well (Android, iOS), i.e., the “cross-platformity” of Pepr3D should
not be limited by the UI library,

5. support keyboard navigation, e.g., tabbing to buttons and input elements,
using keyboard to enter values,

6. support high DPI, e.g., Apple Retina displays, Microsoft Windows scaling,
7. support asynchronous events, e.g., long calculations on background should

not affect the UI thread,
8. support internationalization including plurals, time formats, UTF-8, and
9. the license of such library should be as least restrictive as possible, e.g.,

allowing commercial usage and redistribution, should the development of
Pepr3D continue after this initial school project is finished.

5.3 Choosing a 3D rendering library
There are many cross-platform C++ libraries for 3D rendering and for creating
user interfaces. Picking the right ones for Pepr3D is not an easy task. Fortunately,
as we built a list of requirements in the previous section, we can easily disregard
the libraries that do not conform to our requirements. Let us now describe how
we chose a library for the 3D rendering part of Pepr3D.

In order to support multiple platforms and even older computers, we decided
to use OpenGL rendering API instead of Microsoft DirectX or alternatives like
Vulkan. We cannot use OpenGL on its own as we need a library to handle cross-
platform windows, contexts, keyboard and mouse inputs, etc., so it is necessary
to find a library that can help us with that.

There are many libraries like SDL, GLFW, Cinder, Ogre3D, or bgfx,11 and
some UI libraries like Qt can also help with that. Some of these libraries depend on
others from the list, for example bgfx uses SDL for windows and input handling,
and Cinder uses native code for Windows and OS X but GLFW on Linux.

We had previous knowledge of Cinder and bgfx. The other libraries we exam-
ined did not seem to provide any advantages over these two, either because they
were already included in the two, or because they were too heavy.

We found that Cinder conforms to our requirements better than bgfx: Cinder
has built-in high DPI support, font rendering, event loop for asynchronous events,
a big set of tutorials and examples, and much more. We have decided to choose
Cinder as the library for real-time 3D rendering.

11https://www.libsdl.org/, https://www.glfw.org/, https://libcinder.org/,
https://www.ogre3d.org/, https://github.com/bkaradzic/bgfx

28

5.4 Choosing a UI widgets library
Now that we know what library to use for 3D rendering, we need to choose a way
to display widgets such as toolbars, buttons, check boxes, or text labels. Again,
there are famous cross-platform libraries that already exist for these purposes, so
it would not make much sense to make our custom solution.

5.4.1 Why not wxWidgets nor GTK+
We should definitely mention retained UI libraries wxWidgets and GTK+.12

They are both cross-platform and used by famous software like GIMP or Au-
dacity. Unfortunately, we found major flaws with both of them.

Regarding wxWidgets, we did not really like its default appearance. It uses
native controls where possible making theming very limited and also undocu-
mented. Hence, we would not be able to easily unify the design of the 3D view
and the rest of the application. Also, only desktop is supported.

Regarding GTK+, they do support theming up to some degree, they also
added OpenGL rendering widgets a few years ago. Making Cinder and GTK+
work together would probably cost us some effort as we did not find any already
working solution. The problem with GTK+ is that a lot of developers who
actually use it are not satisfied and warn others about using it.13,14,15

They say that GTK+ documentation is very bad and that different versions
of GTK+ break existing applications, extensions, and themes, because the API
and ABI is changing rapidly providing no guarantees. It did not seem that using
GTK+ for Pepr3D would be a good long-term idea should anyone continue with
its development in the future.

5.4.2 Qt
We have already mentioned Qt on previous pages of this specification. It is a
rather large actively-developed library providing a lot of features including their
own internationalization solutions and so on. Qt conforms to all our requirements
stated in the previous section. There are two major drawbacks with Qt: its
controversial licenses16 and its huge size.

The licensing is controversial because either one can pay for the commercial
license, or one can use the LGPLV3 one, but it requires dynamic linking, provid-
ing users the ability to relink the application, and also the necessity to deliver
complete Qt source codes to users including all changes made if any. The huge
size is also an issue, because using only the basics of Qt (widgets, GUI, and core)
is already around 17 megabytes in libraries, which together with Cinder would
lead to a very large size of the final Pepr3D application. It is also uncertain
whether it would be a good idea to use Cinder together with Qt, so we would
possibly need to rely on a different library.

12https://www.wxwidgets.org/, https://www.gtk.org/
13https://davmac.wordpress.com/2016/07/05/why-do-we-keep-building-rotten-foundations/
14https://fosspost.org/opinions/are-gtk-developers-destroying-linux-desktop-with-their-

plans
15https://www.reddit.com/r/linuxmasterrace/comments/7xkcwo/
16https://www1.qt.io/licensing-comparison/

29

5.4.3 UI libraries for OpenGL
There are also libraries that do not use native controls at all, but rather generate
draw instructions and lists that can be used by renderers like OpenGL directly.
The libraries itself do not handle window creation, native calls to operating sys-
tems, etc. Users of such a library need to bind the input handling and draw
commands of these libraries to their own OpenGL/DirectX/other renderer. In
our case, we would need to connect the library to Cinder, which handles windows,
inputs, and rendering itself.

There are many such libraries, e.g., Dear ImGui, Nuklear, NanoGUI, and
FlatUI.17 While some of them like NanoGUI and FlatUI seem to be rather small,
without that many users, and not under active development, Nuklear and Dear
ImGui are still under active development and maintenance.

Nuklear is an ANSI C header-only library with a C API and C naming con-
ventions. We did not manage to find existing Cinder–Nuklear bindings that we
would be able to use, so we would need to develop them ourselves. For this reason,
we did not continue investigating Nuklear, because we found an alternative.

Dear ImGui (or just ImGui) is a modern bloat-free C++11 library that we
already mentioned in the previous sections. It is backed by large companies
like Blizzard Entertainment or NADEO. Its community is very active providing
different bindings for different renderers and libraries including Cinder. It is easily
themable and we have created a prototype with completely custom controls.

5.4.4 Final decisions
For our final decisions, we have selected two libraries: Qt and ImGui. When
looking at our requirements from Section 5.2 (numbering refers to Section 5.2):

1. separation can easily be achieved in both using Views and Models,
2. OpenGL rendering is implicit in ImGui, there is a widget in Qt,
3. theming in Qt: QSS stylesheets, in ImGui: styles and custom drawing,
4. both are cross-platform even on mobile devices,
5. both support keyboard navigation, ImGui since version 1.60,
6. high DPI possible in Qt, for ImGui we can use Cinder high DPI support,
7. Qt has its own thread pool, signals, and promises, for ImGui we can use

C++11 and Cinder/ASIO event loop using dispatchAsync,
8. Qt has its own i18n support, for ImGui we can use PO files and gettext18

together with a translation editor, e.g., open-source PoEdit19,
9. Qt is unfortunately commercial or LGPLV3 (see above), ImGui has much

less restrictive MIT License.

As we can see, there is no clear winner: both libraries have positive and
negative attributes. In fact, Qt and ImGui are very different. Qt is a large
retained UI library and ImGui is a small bloat-free immediate UI library.

17https://github.com/ocornut/imgui, https://github.com/vurtun/nuklear,
https://github.com/wjakob/nanogui, https://github.com/google/flatui

18Free i18n system commonly used on Linux, see https://www.gnu.org/software/gettext/
19https://poedit.net/

30

Using Qt together with Cinder is rather questionable as they both overlap
in certain areas like window management and event handling. Whereas ImGui
needs a renderer and a window handler anyway, so using it with Cinder seems to
be a good idea. ImGui is much closer related to the actual OpenGL rendering
and offers us quite a bit more flexibility. It also has a very simple source code
that one can read in an evening, meaning we can actually learn a lot about how
such a library is made.

We think that Qt would probably be an unecessary huge piece of middleware
that we would have to learn just for the sake of this project. We have decided to
use ImGui for the Pepr3D user interface.

5.5 Final proposal
In Section 2.1 and in Figure 2.1, we have already proposed a wireframe of Pepr3D
and explained why we find it reasonable and easy to use. In this chapter, we
explained our requirements and investigated existing patterns for actually imple-
menting the UI. Let us now propose how we can use these together.

5.5.1 Overview
We propose to divide the Pepr3D UI into the following main parts that correspond
to the wireframe in Figure 2.1 and to Figure 5.2:

• a toolbar with toggleable buttons representing tools, undo/redo, etc., im-
plemented as an ImGui widget rendered with Cinder,

• a side pane with buttons, checkboxes, sliders, etc., representing configu-
ration of the currently selected tool, also implemented as an ImGui widget
rendered with Cinder,

• and a model view with the 3D model which the user can rotate, zoom,
paint on it, etc., implemented in OpenGL using Cinder.

Even though the toolbar and side pane are to be implemented in ImGui, they
will in fact be rendered using Cinder and OpenGL as well. The whole window is
managed by Cinder and has a single large OpenGL drawing context.

5.5.2 Stateless views / widgets
Inspired by the immediate UI advice, we propose to use stateless views that will
be responsible for drawing the UI. We can implement these views as C++ free
functions without encapsulating them in any classes. This is a common pattern
in C++, e.g., in the standard library, because unlike in languages like Java and
C#, functions in C++ do not need to be enclosed in classes.

Having stateless views means that we do not have to program any explicit
synchronization between the UI and the backend. Whenever we rerender the UI,
it will be rendered with the newest data. We should try to avoid retained state in
the UI as much as possible, but it might be necessary in specific situations, e.g.,
for scrollbar positions or complex calculations that we do not want to do each
frame. The ImGui library provides ways for retaining states. Where necessary,
we can also use regular C++ classes and their instances.

31

Pepr3D - ×toolbar side panemodel view
Cinder OpenGL ImGui

ImGui

Cinder cross-platform window

Figure 5.2: An overview of the Pepr3D UI.

There is also a huge ImGui community at GitHub, where we can find both
simple and complex widgets available from other users of the library. We should
aim at making our UI composed of reusable ImGui widgets.

5.5.3 Internationalization and accessibility
It should be possible to change a language of the application. For this purpose,
we propose to use PO files that are used by a lot of Linux distributions and
applications including PHP. Loading the PO files can be handled by lightweight
libraries that already exist and are suitable for our project, at a first glance sporit-
po20 looks perfect for our purposes. The files themselves can be generated from
source codes and translated using for example the already mentioned PoEdit.

The UI should provide basic keyboard navigation including hotkeys (short-
cuts). It is especially important that the currently selected tool can be changed
by pressing a single key on a keyboard. We also considered adding a radial menu
to a specific mouse button (e.g., middle button click), but it is not a top priority.
The default theme of Pepr3D should provide sufficient contrast and it should be
easy to see which tool is selected and what options are enabled.

20https://github.com/cbeck88/spirit-po

32

Part III

Execution and minimal
implementation

33

Chapter 6

Execution of the project

6.1 Time schedule
These are rough estimates of difficulty. During the summer months (August,
September), we count approx. 8 hours a week of work for every team member
(1 MD = 8 hours of work). Since October, i.e., during the rest of the project, we
count approx. 16 hours (2 MD) a week per member.

For detailed estimates see the following subsections. The final product should
be ready within 6 months from the project start. Considering we started in
August 2018, we expect to finish around January 2019.

6.1.1 Research
This part was completed during winter 2017 and spring 2018 by all team members.

• Communication with Prusa Research s.r.o., visiting the company, consulta-
tion.

• Communication and consultation with the supervisor.

• Familiarization with 3D printing technologies, limitations, existing and sim-
ilar software, printing first multi-material models, etc.

• Preparation of the project assignment.

6.1.2 Detailed specification
During summer, approx. 8 MD for every team member, i.e., two summer months.

• Detailed survey of technologies, continuous consultation with Prusa Re-
search and with the supervisor.

• Consideration of specific implementation of all tools, studying the necessary
topics of computational geometry.

• Writing detailed binding specification: UI mockups, data structures design,
connection of particular modules, design of module interface, etc.; text cor-
rection, printing and submitting the specification.

34

• Preparation of the repository and division of tasks among team members,
including time estimation.

6.1.3 Basic application
Approx. 8 MD for each team member, i.e., a month.

• Basic application with UI: OpenGL graphical pipeline (3D model view,
basic shaders), connection with user interface – must be possible to add
buttons, texts and text fields, mouse control must work (rotation, zoom).

• Basic module for models: Import of at least one 3D object file for-
mat (.obj, .stl), data structures to represent a multi-color model, support
working history (undo/redo), custom file format for loading/storing model
– (de)serialization, exporting multi-color models to 3D print slicers (.stl).

• Basic computational geometry: Geometric data structures (e.g. BVH
tree), mouse position detection on model, basic triangle painter tool, usage
of computational libraries (OpenMesh, CGAL, ...).

• Synchronization between members: plugging modules into UI, preparing UI
for other tools, printing errors and exceptions in UI.

6.1.4 Complete UI and painting tools
Approx. 16 MD for each team member, i.e., two months.

• Production UI: Toolbar with icons, taskbar with tool settings, keyboard
shortcut support, display current colors on model, option to change printer
colors, system windows to load/save files, menu to save file before closing
window, opening window before loading model, resize window correctly
(scrollbars for content that does not fit or resize fonts, etc.), etc.

• Preparing to locate the UI.

• Multi-color .stl export: In order to be able to actually print the model,
it is necessary to sufficiently divide it to multiple .stl files by color. It
will be necessary to prepare “deep cut” of the model at least for some
elementary shapes, so the slicer can handle it for FDM printing (needs to
be experimentally verified). This task can be arbitrarily large, it is almost
impossible to produce such a robust export to work for any model – the
greater the robustness, the better.

• Basic tool for triangle painting: Including back face filtering, UI visu-
alization, adjustable brush size, etc.

• Flood-fill tools: Paint bucket tool, automatic and semi-automatic seg-
mentation. It will be needed to implement practical UI for segmentation,
so the user could choose the specific colors applied to the model.

35

• Adaptive triangulation: See the brush tool section. This task can be
also arbitrarily hard and can be extended because sufficiently robust trian-
gulation is a considerably non-trivial task.

• Brush tool based on triangulation: See the brush tool section. Also
can be arbitrarily hard and can be extended.

• Flat text tool: See text tool section. The task can also be extended, for
example, by different projection of the text (plane, cylinder, circle, etc.)
that can by useful in different shapes of models. Sufficient robustness for
different fonts may also be non-trivial (such as fine Japanese characters,
UTF-32 symbols, etc. – may require very fine triangulation, which may
cause modification of the implementation).

• Support for 3D text: Add the option that 2D designed text (see previous
tool) can be transferred to 3D. Optionally, add collision detection (so that
text does not intersect the model).

• Triangle subdivion/decimation: See triangle subdivion/decimation sec-
tion. It can be also extended. The task has no trivial robust solution.

6.1.5 Finalization
Approx. 5 MD for each member, i.e., around a month, ideally with project
defense. We will try to finish the project as soon as possible.

• Final version of UI: ensure that UI conforms to specification, that tools
have unified UI, error messages are meaningful, etc.

• Try to compile a project for other platforms (Mac OS, Linux), verify func-
tionality; eventually, write documentation of/repair platform-dependent
bugs (primarily the application have to work on Windows 8/10, but it
is appropriate to at least make documentation of what should be corrected
for functionality on other platforms).

• Some more time for missing features, bug fixes, extensions.

• Preparation of the final development documentation (ideally, it should copy
this specification).

• Final project testing, preparation of nice examples for demonstration.

• Preparation of installation packages and user documentation.

• Project submission and defense.

36

Chapter 7

Minimal implementation

This chapter contains minimal project implementation and several possible ex-
tensions of tools and features. This chapter serves two purposes – if a serious
problem is encountered, for example a member of the team leaving or a difficult
programming roadblock is hit, we still want to deliver a product that is some-
what usable. This minimal usability is described in the minimal implementation
section and should be extendable into the complete product we specified earlier
in Part I – Functional Requirements.

The second purpose of this chapter is to show how the difficulty of several
tools we set to implement can be scaled up and down, depending on our time
schedule. Not all extensions of all features will be implemented, the final product
depends on how fast the team is able to implement the minimal implementation.
We also explicitly mention features that will not be supported in our application,
to avoid any confusion now or later.

7.1 Minimal implementation features
The following tools and features are required for the application to fulfill its
purpose on the simplest level:

• Load a model from a basic 3D format (like .OBJ).

• Export a multi-colored .STL file, which can be entered into the slicer.

• Triangle painter – the simplest tool for coloring each triangle by hand.

• Bucket painter with a simple criterion (sharpness of the angle of two neigh-
boring triangles).

• A basic form of edit history with at least a few Undo and Redo steps (ideally
infinite amount).

• Functional 3D user interface allowing zooming and rotating the 3D model
and using the tools mentioned above.

Now we sort the remaining features by importance to the resulting product,
with the most important features up top:

37

1. Semi-automatic segmentation – as our goal is to simplify the multi-color
printing, this feature is very important since it should speed up the process
significantly and make it overall easier and more accessible.

2. Text tool – writing text on a model in the existing applications is difficult,
so this tools is very important to finish, at least in a basic form (which will
be discussed in the following section).

3. Brush tool with full support of subsampling the geometry – a potentially
difficult feature to implement, however it is the most intuitive and again
offers something the other editors do not.

4. Pepr3D projects – saving a project and interrupting the work in the middle
is a handy feature, but not critical to the application’s functionality.

5. Fully automatic segmentation.

6. Triangle subdivision/decimation.

Both of the last two features will probably only see use by a smaller userbase
than the other tools and therefore are not the top priority in case difficulties are
encountered.

7.2 Feature extensions
Some project features and tools can be extended or reduced in scope. This section
highlights some of the room for reducing and increasing the complexity of a few
features in several steps.

7.2.1 Menu
The basic version that is included in the minimal implementation scope is ex-
actly as it was highlighted in the chapter about user interface – a horizontal tool
selection panel and a vertical tool properties panel.

In addition we were thinking of radial menu around cursor, which would ap-
pear after a specific mouse button is pressed. The radial menu has the advantage
that the user does not have to move the cursor off the model, however, a decent
percentage of users either does not use the radial menu or finds it obstructive.

7.2.2 Customizable key-bindings
We expect that the vast majority of the userbase probably will not use keyboard
shortcuts at all, as the program is primarily targeted at basic level users. However
we still want to implement basic shortcuts (e.g. B for Brush, T for Text, etc.).

An extension of this feature is to make these shortcuts customizable in a set-
tings panel. This allows the professional power users of other 3D applications
(such as 3ds Max or Maya) to customize Pepr3D’s shortcuts to match their al-
ready developed muscle-memory and increase the comfort of using Pepr3D. Again,
this feature is not required for the minimal implementation because we expect
that only a fraction of the userbase will benefit from it.

38

7.2.3 Text projection
In addition to simple planar projection of a text onto a model we considered some
more complex projections like a cylindrical or a spherical projection. Adding these
projections simplifies the process of writing a big inscription along the object, in
big letters.

With only the planar projections in the X/Y/Z axes, writing ”Coca Cola”
around a plastic bottle is not possible and the user has to manually position each
letter due to the cylindrical distortion. Using a cylindrical projection, the task
becomes trivial.

These various projections, on the other hand, will confuse the less experienced
users so a solid UI is paramount.

Other options to make this feature more user-friendly include to have the
tool automatically switch projections if some criteria is met – for example, if the
user sets the font size so that each letter is almost as tall as the model itself, a
cylindrical projection makes a lot more sense than planar.

As you can see, this feature has a lot of room for extension or reduction in
complexity and we will have to find the most-user friendly combination of these
extensions.

7.2.4 Text fonts
No members of our team have any experience with text fonts, so we do not know
how difficult it is to support an arbitrary font. As such, we mention the feature
as an extension. At the basic level, the application should use a pre-selected and
hardwired font. However, supporting multiple fonts significantly increases the
power of this tool – importing a font full of symbols 1 allows the user to paint a
lot of different and popular symbols for free (e.g. a WiFi sign, vehicle signs for
public transport, etc.).

7.2.5 3D text collision
Since we allow the extrusion of the text above the surface itself, the collision
between text and another part of the model (or text) may occur. To prevent
unwanted text extrusion we can add a collision detection feature.

7.2.6 Model exporting
Complexity of model exporting can be very different. Minimal implementation
will be somehow usable in all situations. We can try to extend it closer to a
possible optimal solution.

7.2.7 Subdivision and decimation
The geometry of this feature is very hard and finding the optimal solution is not
easy. As such, there is almost an arbitrary room for improvement in implementing
different and more complicated algorithms. Since the feature does not have the
highest priority, we mention the advanced algorithms as an extension.

1https://www.1001fonts.com/glyphyx-one-nf-font.html#gallery

39

7.2.8 Adaptive triangulation
As mentioned in the tools section (Brush), this feature can also be arbitrarily
difficult. Our goal is to make this tool intuitive and safe to use, which means the
user should not be able to easily create a model that is too complicated for his
computer to handle. However, as is the case with Subdivision and decimation,
the geometry problem of adaptive triangulation is very difficult and we are not
sure how robustly we can implement it.

7.3 Nonsupported features
In order to avoid any misunderstandings in functionality of our application, there
are features that will not be supported. Most of these features can be found in
various 3D modeling applications for 3D printers.

• 3D object modelling, sculpting, adding vertices/triangles; there are many
other programs (such as Maya or Z-brush) that can perform this task better
than Pepr3D.

• Repairing 3D model (e.g., filling holes, avoiding model intersection); our
model splitting should not break the model or make holes in it.

• Creating any model support for better 3D printing or generating model
infill.

• Solving any printing problems or setting printer settings.

• Generating G-code for 3D printers.

40

