
SOFTWARE PROJECT

LinkedPipes Applications:
Detailed Specification

Bc. Altynbek Orumbayev, Bc. Esteban Jenkins,
Bc. Ivan Lattak, Bc. Marzia Cutajar, Bc. Alexandr

Mansurov

Title: LinkedPipes Applications

Students: Bc. Altynbek Orumbayev, Bc. Esteban Jenkins, Bc. Ivan Lattak, Bc. Marzia
Cutajar, Bc. Alexandr Mansurov

Faculty: Faculty of Software Engineering

Supervisor: RNDr. Jiří Helmich

Consultants: Doc. Mgr. Martin Nečaský, Ph.D., RNDr. Jakub Klímek, Ph.D.

Annotation: The goal of the project is to create a new component of the LinkedPipes
platform - LinkedPipes Applications. The tool should be focused on easily letting non-
technical users work with data published according to the Linked Data principles. This
new application will provide the user with a simple web interface that will orchestrate
other tools from the LinkedPipes platform on the background, especially LinkedPipes
ETL and LinkedPipes Discovery.

Contents

1 Introduction 3
1.1 Previous work . 3

1.1.1 LDVM . 3
1.1.2 LinkedPipes Discovery . 4
1.1.3 LinkedPipes ETL . 4
1.1.4 LinkedPipes Assistant . 4

1.2 Structure . 4

2 Requirements 5
2.1 Functional Requirements . 5

2.1.1 User authentication . 5
2.1.2 Create Application . 6
2.1.3 Configure Application . 8
2.1.4 Publish and Embed Application . 9
2.1.5 View Applications . 9
2.1.6 Visualizers . 9

2.2 Non-functional Requirements . 12
2.2.1 Error and Exception Handling . 12
2.2.2 Reliability under large datasets . 13
2.2.3 Continuous Integration / Continuous Delivery 13
2.2.4 Testing and Code Coverage . 15
2.2.5 Coding Conventions . 15
2.2.6 Code Quality . 16
2.2.7 Secure access . 16

3 Architecture 17
3.1 Overview . 17
3.2 Backend . 18

3.2.1 Logical structure . 18
3.2.2 Code structure . 21

3.3 Frontend . 21
3.3.1 Code structure . 23

3.4 Component Integration and Communication 23
3.4.1 Discovery . 23
3.4.2 ETL . 24

4 Technologies 25
4.1 Frontend . 25

4.1.1 Frontend development stack . 25
4.2 Backend . 26

4.2.1 Backend development stack . 26
4.3 Database and SOLID storage . 28
4.4 CI/CD . 29

4.4.1 CI/CD development stack . 29

1

5 Project Execution 31
5.1 Difficulty estimation . 31

5.1.1 Sprints . 31
5.1.2 Project implementation plan . 32

List of Figures 33

List of Tables 34

Glossary 35

Acronyms 36

2

1. Introduction
Linked data is a method for publishing structured data in a way that its semantics

are also expressed. This semantic description is implemented by the use of vocabularies,
which are usually specified by the W3C as web standards. However, anyone can create
and register their vocabulary, for example in an open catalog like LOV.

Linked data is usually dispersed across many sites on the internet. Each site usually
contains only a part of the entire data available, thus a machine or a person trying to
interpret the data as a whole needs to link this partial information together using unique
entity identifiers shared across the data stores, hence the name ‘linked’ data.

As more and more open data is published as Linked Data, there has emerged the need
for a tool that allows people without any technical knowledge of Linked Data, RDF and
other related technologies, to consume this data. The primary goal of this project is to
develop such a tool, in which with a simple web interface any user with no prior experience
with concepts of Semantic Web1 can explore, visualize and interact with Linked Data.

1.1 Previous work

The application will interact with other components of the LinkedPipes ecosystem
that were previously developed: LinkedPipes ETL and LinkedPipes Discovery. Moreover,
this project is based on methods and ideas used in LPAssistant. In this section, these
components will be briefly described, and they will be further explained in Chapter 3.

1.1.1 LDVM

Linked Data Visualization Model (LDVM) is essentially an abstraction of the process
of visualizing linked data. In this model, there are four stages:

1. Transform data sources: the input data, whose format is not bound to Resource
Description Framework (RDF), is transformed into an RDF representation to be
used in subsequent stages.

2. Analytic abstraction: in this stage, the relevant data is extracted from the RDF
representation, and can be further transformed or aggregated.

3. Visualization abstraction: a further abstraction is generated based on the model
of the previous step, applying more transformations to the data such that it suits a
particular type of visualization (or visualizations).

4. View: the generated visualization abstraction is simply converted into a graphical
representation and displayed to the user.

These sequential four steps make what is called a Pipeline: a process in which the
raw input data is transformed until it is displayed on-screen to a user with a particular
visualization.

1https://en.wikipedia.org/wiki/Semantic_Web

3

https://en.wikipedia.org/wiki/Semantic_Web

1.1.2 LinkedPipes Discovery

LinkedPipes Discovery component is a Scala application that takes a random data
sample from a dataset and discovers (hence the name) different Pipelines that can be
applied to it. In this process of discovery, the semantics of the data are used to identify
different transformations that can be made. Essentially it discovers the different pipelines
that can be applied to a given dataset.

1.1.3 LinkedPipes ETL

LinkedPipes ETL is an RDF-based, lightweight Extract, Transform and Load (ETL)
tool that was developed by a team of Ph.D. students and researchers from computer
science universities in Prague. It is not only a stand-alone application, but it also exposes
an API through which third-parties can execute the ETL process.

1.1.4 LinkedPipes Assistant

This software that was also developed as a master thesis of the Department of Software
Engineering of Charles University is an assistant to let users create interactive views of
RDF data sources selected by the user. The Assistant analyzes the data and offers a list
of visualizers that can be used to display the data in a useful way.

Our project shares a similar goal with the one of LinkedPipes Assistant. However,
the architectures of the projects vary greatly: LinkedPipes Assistant has its own embed-
ded discovery and ETL, whereas our project interacts with LinkedPipes Discovery and
LinkedPipes ETL, which are standalone and improved applications.

1.2 Structure

This document is structured into several chapters. Chapter 2 explains in detail the re-
quirements for this project, both functional and non-functional. Then, Chapter 3 outlines
the proposed architecture of the system: the internal and external components, connec-
tions and interconnections. Chapter 4 gives an overview of all the different technologies
that will be used in the project. Finally, Chapter 5 describes the methodology that will
be used for the development, the timeline of the project, and the implementation plan.

4

2. Requirements
In this chapter are described both the functional and non-functional requirements for

the system. Functional requirements are those that describe what the system should do.
Non-functional requirements describe how the system should work.

The overall goal is to create a web-based tool that would allow generation of interactive
visualizations by some domain expert, that can then be embedded in an online article or
on another web page or perhaps simply accessed as a standalone page.

To avoid confusion with naming, in this chapter "tool" will refer to the actual appli-
cation that is to be developed for this project, while "application" or "applications" refer
to pre-configured interactive visualizations that a user creates using the tool.

2.1 Functional Requirements

This section describes the essential functionality that the system must provide as user
stories.

2.1.1 User authentication

As a user of the tool, I must be able to register an account in the application, log in
and log out. Moreover, once I am logged in, I should be able to create, configure and
publish applications. To view an application, however, it is not necessary to be logged in
or even registered.

Figure 2.1: Mock-up of the login page, where users get authenticated

5

Figure 2.2: Dashboard of an authenticated user

2.1.2 Create Application

This section uses the following terms and acronyms:

• Internationalized Resource Identifier (IRI) – IRIs are a superset of Uniform Re-
source Identifiers (URI) which allow for the inclusion of Unicode characters such
as Chinese or Cyrillic symbols in the identifier string. IRIs are extensively used as
entity identifiers in Linked data.

• SPARQL endpoint is an interface through which a user can query and inspect data
stored in a particular RDF data storage.

• dataset is a collection of data available for access or download from a single data
store such as a catalog or a SPARQL endpoint.

• TTL – short for Terse RDF Triple Language, one of the RDF serialization formats.

As a user, I want the platform to provide the functionality to specify the data sources
to be utilized so that an instance of an interactive application would be created based on
provided data sources. To do so, I need to have four alternatives:

• Provide a set of dataset IRIs which the tool will de-reference to get the dataset.

• Specify a SPARQL endpoint from which data will be queried and extracted.

• Upload a file in TTL format, containing data source specifications.

• Use some sample dataset provided by the tool

6

Figure 2.3: Mock-up of the step where the data sources are selected

The tool has to be able to obtain and consume RDF data in any of the above forms
and analyze it to provide a list of possible visualization types automatically. Then I will
be able to choose one of the given visualizations so that the newly created application
will display the data according to the selected visualizer. The generated visualization will
not be a static view, but rather an interactive one with auto-generated controls.

Figure 2.4: Mock-up of the step where the user selects the desired visualization

Before creating the actual application, the user will be provided with an option to

7

preview the selected visualization. This preview will use a subset of the processed data
available for the application creation to increase loading and rendering speed of the pre-
view.

It is important to note that the size of the data sources is not known in advance, which
means that the tool has to be able to work smoothly with any size of data and allow its
user to browse all of it.

2.1.3 Configure Application

As a user, I should be able to configure a previously created application. Each ap-
plication, depending on the visualization, will have particular settings that can be set.
Furthermore, I must be able to control, with the use of filters, which data is to be used and
displayed. The available filters should be automatically derived based on the properties
and semantics of the data. This is a list of the things I should be able to do with filters:

• Removing whole data filters to ignore the values of specific data properties

• Removing selected values of some filters

• Setting fixed values for some filters

• Set/change a name for the application

Figure 2.5: Mockup of the configuration of an application

8

It is also important that this configuration is persisted in a database together with the
general application details so that I can publish it exactly as I configured it. This way,
the viewers of my application are not presented with a random subset of the data, nor
the complete data set, but only with those data chosen by me.

2.1.4 Publish and Embed Application

As a user, I want the tool to provide an interface for publishing the configured inter-
active application so that it will be possible to host the data view and make it accessible
using a permanent link. Furthermore, when a third party clicks this permalink, the browser
should open the LinkedPipes Applications website with the respective application opened,
as configured by the publisher.

Besides, when publishing an application I want the tool to offer the possibility to
choose one of the below two settings:

• use and display cached data, making the published application a fixed view

• regularly refresh the data from the previously chosen data sources of the interactive
application

The tool will also need to provide the ability to embed the published view into a data
journalist’s web page, for example, using an iframe.

Furthermore, as a user, I want this publish and embed functionality to be provided in
the form of buttons as can be seen in figure 2.5.

By publishing or embedding an application, the domain expert would be sharing the
pre-configured application with end users who can access it as well as control it through a
user interface with controls allowing simplified filtering capabilities. This will allow them
to interact with and analyze the data.

2.1.5 View Applications

As a user of the tool, I must be able to manage all my previously created applications
so that I want to have to repeat the process in every iteration. Therefore, there should
be a page in the tool where these applications are listed, so that the user can perform
several actions on any of them, that is viewing, editing, publishing, deleting, etc.

2.1.6 Visualizers

As a user, I must be able to choose the visualizer that best suits the data. For this,
the tool must provide me with a list of visualizers that can depict the data extracted from
the data sources. I should be able to have at least the following visualizers:

9

Geo-coordinates Visualizer

Geo-Coordinates Visualizers are a set of visualizers designed for representing data
related to geolocation and coordinates on a map. The LinkedPipes Applications plat-
form should provide the ability for a user to create applications based on geo-coordinates
visualizers. A sample representation of the visualizer is presented in Figure 2.6.

Figure 2.6: The example of geo-coordinates visualizer implemented with GoogleMaps

The specific set of requirements for that category can be described as follows:

1. Must be able to process data represented as a tuple of latitudes and longitudes
called ’markers’.

2. Must be able to visualize and display markers on the map.

Chord

Chord visualizer is used for efficient and descriptive visualization of directed or undi-
rected relationships within a group or between multiple groups of entities.

One particular example of such a relationship is a network data flow diagram. Figure
2.7 shows a Chord diagram visualizing the data flow between four network peers over a
period of time. A larger outer circle sector signifies higher data bandwidth of that entity.
A thicker colored strip between two sectors means higher traffic between those two peers.

10

Figure 2.7: D3.js Chord visualizer example

Hierarchical

The nature of some data is hierarchical, and as so, there must be a visualizer able to
represent these hierarchical relationships in a visual way. Several visualization methods
can be implemented:

1. Treemap

2. Sunburst

3. Tree diagram

Figure 2.8: An example of a treemap, sunburst and tree diagram visualization

At least one of these visualizers must be implemented. As a user, I should be able to
drill down in the hierarchy to see more details about the subset of the data that is being
visualized.

Timeline

Certain data can have a time value or interval attached to individual data points, and
the user might be interested in visualizing the values over time. The simple case to be
implemented is when values are numerical.

There are several ways how to show such data (see Figure 2.9 for samples):

1. simple line graph

11

2. stacked area chart

3. bar chart

4. calendar view/heat map

5. stream graph

At least one of such visualizers should be implemented.

As a user, I might be interested in showing values from a specific period and also in
filtering of data points according to additional attributes.

Figure 2.9: An example of a simple line graph, stacked area chart, bar chart, calendar
view, and stream graph visualization

.

2.2 Non-functional Requirements

This section describes the steps that will be taken to ensure that the system operates
and behaves correctly, as well as the criteria used to judge its quality.

2.2.1 Error and Exception Handling

It is important to have robust exception-handling code to preserve execution flow in
the system, as well as to provide enough details to users and developers for them to
understand what went wrong.

It was decided that a custom exception class will be used on the backend side to throw
exceptions with appropriate error codes and messages. These exceptions will then be
caught by a global exception handler, which if applicable will log the original exception,
and return the desired error code and message back to the frontend. In this way, the
users will not be shown error messages that they cannot understand, while the system
developers and administrators can refer to the history of error logs to identify and resolve
potential bugs.

12

2.2.2 Reliability under large datasets

This non-functional requirement implies that all components of the system must be
able to handle a large amount of data to guarantee a good user experience. In general,
several optimizations will need to be done at each stage of the process so that only the
minimum data is used to minimize processing time and bandwidth usage.

2.2.3 Continuous Integration / Continuous Delivery

CI systems automate the builds of software. Travis CI will be used to check that newly
committed code does not break the build and consequently the system. This will ensure
that developers are not disrupted and that the system remains stable. It will also run the
automated tests available to further check that the system is working correctly, even if
the build didn’t break.

Another requirement is to have a continuous delivery mechanism in place. This is an
extension of the continuous integration to make sure that new changes can be released
quickly and in a sustainable way. Thus, the release process will be automated so that the
application can be deployed at any point in time by the simple click of a button.

Docker deployment

As a part of continuous delivery, it is assumed that each of the implemented compo-
nents of LinkedPipes Applications is going to use Docker for containerizing components
as micro-services interacting with each other independently. Therefore, the consequent
requirements can be defined as follows:

1. Each component of LinkedPipes Applications should have a dedicated Dockerfile
and have a dedicated repository in DockerHub for hosting the latest images.

2. Every start of deployment of latest changes to production server, should start with
an automated process of building the Docker images.

3. The end of the automated deployment should push the latest images to DockerHub
and notify the production server to pull the latest images.

Automated development flow

The following is a description of the various configurations that will be used for auto-
mated testing and delivery of the latest code of backend and frontend components.

The master and develop branches require usage of pull requests: no one within the
team has access to push changes directly to those branches. Develop will be mainly used
as an aggregator of all stable and relatively stable changes before merging into master.
Any pull request to those branches trigger Travis CI that executes automated tests in
parallel for backend and frontend components.

The figure below represents a general development flow when interacting with the mas-
ter branch. Whenever tests with the latest codebase changes pass on pull-request, Travis

13

CI also automatically makes new Docker images of frontend and backend components and
pushes them into DockerHub.

Figure 2.10: Continuous delivery flow on a pull request to the master branch

The flow for branches other than master slightly differ as can be observed in the figure
below. The main difference is that it is only used to report test results for committed
changes to the dedicated Slack channel. Developers then can manually observe the reports
and merge the changes if they satisfy the requirements.

Figure 2.11: Continuous delivery flow on a pull request to any branch except master

Aside from the interactions with Travis CI, upon every merge completion into the
master branch, there is a separate Github Webhook.

14

Figure 2.12: GitHub webhook flow used for continuously pulling latest frontend and
backend images from DockerHub

This Webhook triggers a script on Application Server (the server on which production
ready platform is hosted for end users) to pull the latest frontend and backend images
from DockerHub. This process can be observed in figure 2.12.

2.2.4 Testing and Code Coverage

Code coverage is merely a measure of the proportion of the code that is executed in
a test suite. The project should have a code coverage above 75%, including both unit
testing and integration testing.

Having a testing plan that provides a good code coverage is extremely important to
detect bugs in early-stage of the development and ensure that the system is as error-free
as possible. Because of the architecture of the tool, the testing is done differently for the
backend and the frontend.

The backend testing will be done using Spring Boot’s test utilities as well as JUnit for
the unit and integration testing.

For the frontend, the testing will be done using React’s TestUtils, which essentially
renders a React component by putting its DOM in a variable in which several things can
be checked, such as:

• whether or not all children were rendered

• conditional statements are working as expected

• styling is applied as it should

• the content of elements is correct

2.2.5 Coding Conventions

Code conventions are important as they improve software readability and maintain-
ability. The code must be well-commented and easy to understand, especially for someone
who is unfamiliar with the project.

15

https://reactjs.org/docs/test-utils.html

Java code conventions will also be used for good code readability on the backend side.
For the frontend, the Airbnb React/JSX Style Guide will be followed and ensured using
a linter.

2.2.6 Code Quality

Ensuring high code quality makes system maintainability much easier. For this reason,
it was decided that the Codacy tool will be used to automate code reviews and monitor
code quality in git commits and over time.

Appropriate design patterns will be used to make sure the system developed is made
up of cohesive modules with minimal coupling. This will make the overall system easier
to understand and maintain.

2.2.7 Secure access

The connection between the user’s browser and the server hosting the application
must be secured using an SSL/TLS certificate created specifically for the application.
linkedpipes.com domain. This certificate will be generated using Let’s Encrypt since it
offers free industry-standard certificates and it is a trusted Certificate Authority (CA).

16

https://github.com/airbnb/javascript/tree/master/react
application.linkedpipes.com
application.linkedpipes.com
http://www.letsencrypt.org

3. Architecture
In this chapter, the project will be analyzed and described from the architectural point

of view. The main modules of the project will be identified, and their functionality will be
determined. Each module will be divided into components and described in more detail.
For more detailed information about technologies and terms used in this chapter, refer to
chapter 4.

3.1 Overview

The LinkedPipes Applications is a platform that consists of multiple components ac-
tively interacting with each other. Figure 3.1 represents a high-level overview of all
components defines within LinkedPipes Applications. In general, the following content of
this section will define each of the components presented in figure 3.1.

Figure 3.1: High-level overview of LinkedPipes Applications

• Frontend – the web application that provides a way for the user to interact with
the LPA. Written in React.js. Main functionality includes features such as:

– Adding, deleting and modifying data sources.

– Displaying the discovery results for the end user.

– Discovering pipelines.

– Executing a pipeline.

– Publishing an application.

• Backend – the backend application written in Java using Spring Boot. Main func-
tionality includes:

17

– Communication with the Discovery Service and the ETL Service.

– Datasource management

– Discover pipelines for the given set of data sources.

• Discovery – a backend application of which the task is to discover pipelines for a
set of data sources it receives from the LPA backend.

• ETL – an Extract Transform Load service for Linked Data. Generally, each term
can be described as follows:

– ‘Extract’ - Extracts the data from a certain source to a given application or a
running process.

– ‘Transform’ - Transforms the source data to target representation.

– ‘Load’ - Loads the data from the given application or a process outside - web
server.

• Virtuoso – the RDF Store is used to store data results from the ETL Service, and
data is retrieved from this storage for visualization to the end user in the frontend
application.

• Platform Database – the PostgreSQL database used for all user account related
information, user sessions, templates for assembling the visualizers, etc.

• SOLID Server – an instance of a SOLID server holding so-called pods, that repre-
sent decentralized personal storages for holding all applications created with Linked-
Pipes Applications platform.

3.2 Backend

The function of the backend component is to provide a RESTful API which is used by
the frontend component to execute user-requested actions and can also be used by other
developers to create their user applications. Backend then implements the communication
protocols with external services like LP-ETL, LP-Discovery or databases.

3.2.1 Logical structure

As mentioned, the function of the backend component is to provide a RESTful API
which is used by the frontend component to execute user-requested actions and can also
be used by other developers to create their user applications. To fulfill this goal the
backend component is further divided into multiple sub-components of different logical
types. These logical types are controllers, services, models, query providers, and result
extractors.

18

Figure 3.2: Backend component architecture overview

Controllers

Controllers are sub-components responsible for identifying HTTP requests and map-
ping them to appropriate service sub-components. In a layered view of the backend
architecture, a controller is located in the top-most layer L3, as seen in Figure 3.2. In
detail, a controller’s responsibilities are to:

• define RESTful API endpoints,

• read HTTP requests to determine the correct function to call,

• extract parameters from the requests,

• invoke appropriate services with the extracted parameters,

• process output from services, and

• send appropriate HTTP responses.

Services

Services are intermediate sub-components which facilitate internal functions of the
component to the controller. Because they are used to implement the endpoints of a
RESTful API, service sub-components shall be kept stateless at all times to better facili-
tate the statelessness requirement of RESTful requests. In a layered view of the backend
architecture, a service is located in the intermediate layer L2, as seen in Figure 3.2.

Services can be either external or internal. External services are LinkedPipes Discov-
ery, LinkedPipes ETL and SOLID Storage. Each service has an interface and implemen-

19

tation class. For external service, the implementation class calls the external service by
executing the appropriate HTTP request.

Internal services inspect and operate on data stored in the Virtuoso RDF graph store,
which is generally a set of data that the user of our tool wants to visualize in an application,
and is usually a product of an LP-ETL pipeline execution. The internal services perform
inspection using SPARQL queries. The queries themselves are being supplied by the
subordinate query provider sub-components. The results of the inspections are then
extracted from the RDF responses by sub-components of type result extractor.

Models

Models provide classes for data representation across the backend component. Due to
the nature of LinkedPipes Applications, we need several types of models:

• models related to external services for data passed to those services,

• models related to RDF data for internal processing, and

• models related to data presentation for data passed to the frontend component.

• A special type of a model is an exception, used to carry information about an error
condition occurring in the component.

Query providers

Query providers are subcomponents responsible for supplying the service sub-
components with parameterized SPARQL queries used to inspect and manipulate data
stored in the Virtuoso RDF graph store.

Among other uses, these will enable retrieval of specific types of data from an RDF
graph (such as geographical coordinates, SKOS concepts, etc.) to aid in visualization and
filtering of data in created applications.

These sub-components are located on the bottom layer, L1, in the layered model of
the backend component architecture.

Result extractors

Result extractor sub-components are utilized by the service sub-components to trans-
form visualization data from the result set returned by the query execution into a format
displayable by the frontend visualizers.

Result extractors are logically placed on the L1 layer of the layered model of the
backend component architecture.

20

3.2.2 Code structure

The implementation of the whole backend component is intended to be located inside
the src/backend base directory. It is a Gradle-based project, thus it shall follow the
Gradle directory structure:

src/
|-- main/
| |-- java/ for the Java source code of the component
| |-- resources/ for the related classpath resources
|-- test/

|-- java/ for the test source code of the component
|-- resources/ for the related classpath resources

Backend main module (src/main/)

The main module of the backend component shall contain the entire functional source
code of the backend component. It shall be composed of the following java packages.
Various logical types of the sub-components of the backend component are mentioned in
this list. For a detailed explanation of the responsibilities of each sub-component type,
please consult section 3.2.1.

• com.linkedpipes.lpa.backend.controllers shall contain classes whose instances
fulfill the responsibilities of the controller type sub-components,

• com.linkedpipes.lpa.backend.services shall contain classes whose instances
fulfill the responsibilities of the service type sub-components,

• com.linkedpipes.lpa.backend.sparql.queries shall contain classes whose in-
stances fulfill the responsibilities of the query provider type sub-components,

• com.linkedpipes.lpa.backend.sparql.extractors shall contain classes whose
instances fulfill the responsibilities of the result extractor type sub-components,

• com.linkedpipes.lpa.backend.util shall contain additional utility classes pro-
viding functionality utilized by the other sub-components.

Backend test module (src/test/)

The test module of the backend component shall contain the entire source code for unit
tests testing the correct functionality of classes contained in the backend main module.
It shall be composed of java packages similarly matching those described for the main
module so that it is evident which tests test which group of components and classes.

3.3 Frontend

As mentioned at the beginning of the chapter, the frontend provides a way for the
user to interact with the LinkedPipes Applications. Redux and React are the leading

21

technologies to be used during implementation. Therefore, the architecture on figure 3.3
is demonstrated from the viewpoint of interactions between those technologies.

Figure 3.3: General architecture of Redux store and React components within frontend

The main elements displayed on 3.3 are described as follows:

• React Component – a JavaScript class or function that optionally accepts inputs,
i.e., properties(props), and returns a React element that describes how a section of
the UI (User Interface) should appear.

• Redux – represents a container that stores various states of the web application
per individual webpage.

– State – refers to the single state value that is managed by the store and
returned by getState(). It represents the entire state of a Redux application,
which is often a deeply nested object.

– Reducer – specifies how the application’s state changes in response to actions
sent to the store.

– Actions – are payloads of information that send data from your application
to your store. They are the only source of information for the store. You send
them to the store using store.dispatch().

– Selector – is simply any function that accepts the Redux store state (or part
of the state) as an argument, and returns data that is based on that state.

22

3.3.1 Code structure

The implementation of the frontend component is intended to be located inside
src/frontend and will contain the following structure:

• _actions – shall contain all Redux actions.

• _constants – shall contain all constants used throughout the frontend component
implementation.

• _helpers – shall be dedicated to various handy utility classes, variables, and meth-
ods.

• _reducers – shall contain all Redux reducers.

• _selectors – shall contain all Redux selectors.

• _services – shall contain a set of wrappers for performing calls to Backend API
that communicates with Discovery and ETL services.

• _styles – shall contain global setup for various components as well as the specifi-
cation for the MaterialDesign theme used in the project.

• components – essentially will be the core of the frontend. Shall contain all .jsx
components, visualizers and various UI elements implementations.

• containers – shall define layouts for specific web-pages of the web app.

3.4 Component Integration and Communication

The LinkedPipes Applications relies on a set of external components called ETL and
Discovery. For more details about definitions of those components refer to the glossary.
This section is used to describe and demonstrate how LinkedPipes Applications interacts
and incorporates those components inside the platform. The figure 3.4 demonstrates
one of the primary interaction flows that is happening when backend receives the list
of resources from a user and starts interacting with Discovery and ETL to extract and
process the information for visualizers.

3.4.1 Discovery

The purpose of Discovery within the LinkedPipes Applications is the processing of the
provided datasources to identify whether the platform can provide any of the supported
visualizers for the extracted data. The general flow can be described as follows:

1. Discovery extracts a small chunk of the data from the whole dataset found in Linked
Open Data Cloud (LOD Cloud).

2. A set of validation operations performed on the extracted chunk.

3. Response to the backend provided as a list of datasources for which supported
visualizers could be used.

23

Figure 3.4: Sequence diagram of API interactions between backend, Discovery and ETL

3.4.2 ETL

The purpose of ETL within the LinkedPipes Applications is to prepare a dataset for
a specific visualizer, that is later used by frontend to construct the visualizer and display
the data. In general terms the work of ETL can be described as follows:

1. After Discovery finished processing and user selected supported datasource, backend
sends the request to ETL to assemble a pipeline for that datasource.

2. After ETL assembled the pipeline, backend sends the request back to execute that
pipeline.

3. After ETL finishes execution of the pipeline, prepared data for visualizer is exported
into Virtuoso. Backend and frontend then use the data to continue the workflow.

24

4. Technologies
The following chapter is describing the main stack of technologies that will be used for

development of LinkedPipes Applications. In general, the first set of descriptions describe
technologies used for the frontend, and the consecutive set is dedicated to the backend,
continuous deployment, and delivery setup.

4.1 Frontend

The web user interface of LinkedPipes Applications is one of the main components
of the project. It provides a toolset for users to interact, preview, generate, store and
publish their applications. JavaScript1 was chosen as a primary development language
due to the experience of the team with the language, as well as the availability of a large
set of open-source libraries for interacting with LinkedData and SPARQL.

4.1.1 Frontend development stack

The LinkedPipes Applications frontend is entirely separated from the backend compo-
nent. That means that all interactions with backend are performed over the RESTful API
provided by backend implementation. The following section provides a detailed overview
of the main development stack that includes such technologies as React2, Redux3, and
Material-UI4.

React

React (also known as React.js) is a JavaScript library for building user interfaces. Re-
act can also be used as a base in the development of single-page or mobile applications.
Complex React applications usually require the use of additional libraries for state man-
agement, routing, and interaction with an API. The following list represents the main set
of features provided by the framework.

• Declarative: React makes it painless to create interactive UIs. Design simple views
for each state in your application, and React will efficiently update and render just
the right components when your data changes. Declarative views make your code
more predictable, simpler to understand, and easier to debug.

• Component-Based: Build encapsulated components that manage their own state,
then compose them to make complex UIs. Since component logic is written in
JavaScript instead of templates, you can easily pass rich data through your app and
keep the state out of the DOM.

1https://www.javascript.com
2https://reactjs.org
3https://redux.js.org
4https://material-ui.com

25

https://www.javascript.com
https://reactjs.org
https://redux.js.org
https://material-ui.com

• Learn Once, Write Anywhere: We don’t make assumptions about the rest of your
technology stack, so you can develop new features in React without rewriting exist-
ing code. React can also render on the server using Node and power mobile apps
using React Native.

Redux

Redux is an open-source JavaScript library for managing application state. It is most
commonly used with libraries such as React or Angular for building user interfaces. Redux
can also be described as a predictable state container for JavaScript apps. It allows to
write applications that behave consistently, run in different environments (client, server,
and native), and are easy to test.

Material-UI

Material-UI is a collection of React components that implement Google’s Material
Design.

4.2 Backend

The backend component of LinkedPipes Applications contains the main logic for in-
teracting with such services as LinkedPipes Discovery and LinkedPipes ETL as well as
communicating both with the Database and SOLID Storage.

4.2.1 Backend development stack

Java5 was chosen as the main development language due to extensive use of Spring
Boot6 which is a Java-based open source library used for creating Micro Services. Aside
from that, Gradle7 was chosen as the main build platform due to its simplicity and easy
integration with various CI/CD aspects of the project.

Spring Boot

The Spring Framework is an application framework and inversion of control container
for the Java platform. The framework’s core features can be used by any Java application,
but there are extensions for building web applications on top of the Java EE (Enterprise
Edition) platform. Although the framework does not impose any specific programming
model, it has become popular in the Java community as an addition to, or even replace-
ment for the Enterprise JavaBeans (EJB) model. The Spring Framework is open source.

5https://www.java.com/en/
6https://spring.io
7https://gradle.org

26

https://www.java.com/en/
https://spring.io
https://gradle.org

Apache Jena

Apache Jena8 is an open source Semantic Web framework for Java. It provides an
API to extract data from and write to RDF graphs. The graphs are represented as an
abstract "model". A model can be sourced with data from files, databases, URLs or a
combination of these. A Model can also be queried through SPARQL 1.1.

Jena is similar to RDF4J (formerly OpenRDF Sesame); though, unlike RDF4J, Jena
provides support for OWL (Web Ontology Language). The framework has various internal
reasoners, and the Pellet reasoner (an open source Java OWL-DL reasoner) can be set up
to work in Jena.

Jena supports serialization of RDF graphs to:

• a relational database

• RDF/XML

• Turtle

• Notation 3

Gradle

Gradle is an open-source build automation system that builds upon the concepts of
Apache Ant and Apache Maven and introduces a Groovy-based domain-specific language
(DSL) instead of the XML form used by Apache Maven for declaring the project con-
figuration. Gradle uses a directed acyclic graph (DAG) to determine the order in which
tasks can be run. Gradle was designed for multi-project builds, which can grow to be
quite large. It supports incremental builds by intelligently determining which parts of the
build tree are up to date; any task dependent only on those parts does not need to be
re-executed.

Lightbend Config

Lightbend Config is a configuration library for JVM languages. Due to extensive usage
of various Docker configurations and usage of Docker Compose, the library was chosen
as an optimal solution for passing various configurations to components before they are
being loaded inside the container. Library provides a convenient set of features described
as follows:

• Supports files in three formats: Java properties, JSON, and a human-friendly JSON
superset merges multiple files across all formats.

• Can load from files, URLs, or classpath.

• Good support for "nesting" (treat any subtree of the config the same as the whole
config).

• Users can override the config with Java system properties
8https://jena.apache.org

27

https://jena.apache.org

• Supports configuring an app, with its framework and libraries, all from a single file
such as application.conf.

4.3 Database and SOLID storage

The LinkedPipes Applications platform is using a Database instance for storing all
information related to users of the platform such as:

• User accounts.

• Running Discovery instances.

• Running ETL pipelines.

• Custom templates of Discovery datasources generated by users and etc.

.

PostgreSQL9 was chosen as the main technology for the database of LinkedPipes
Applications. Open-source community support, the maturity of the solution as well as
the previous experience of team members with that platform were the significant factors
for choosing this technology.

Aside from PostgreSQL, another important database technology is OpenLink Vir-
tuoso10 which is used for storing all LinkedData processed by ETL pipelines, and that
is later used by LinkedPipes Applications visualizers. The important note to mention is
that in contrast with PostgreSQL that is only used for all individual platform user-related
information that needs to be stored, Virtuoso is only used for storing the LinkedData.
Therefore, the usage of both databases is justified.

In addition to that, one of the unique features of LinkedPipes Applications is the usage
of SOLID11, which is a new project by Tim Berners Lee12. Every application created with
LinkedPipes Applications platform is encoded into RDF and stored inside a so-called
SOLID pod, which is decentralized personal storage where the user can specify who can
access that data. More details on the definition of SOLID will be provided later in the
section below.

PostgreSQL

PostgreSQL, often simply Postgres, is an object-relational database management sys-
tem (ORDBMS) with an emphasis on extensibility and standards compliance. It can
handle workloads ranging from small single-machine applications to large Internet-facing
applications (or for data warehousing) with many concurrent users; on macOS Server,
PostgreSQL is the default database. It is also available for Microsoft Windows and Linux
(supplied in most distributions).

9https://www.postgresql.org
10https://virtuoso.openlinksw.com
11https://solid.mit.edu
12https://en.wikipedia.org/wiki/Tim_Berners-Lee

28

https://www.postgresql.org
https://virtuoso.openlinksw.com
https://solid.mit.edu
https://en.wikipedia.org/wiki/Tim_Berners-Lee

Virtuoso

Virtuoso Universal Server is a middleware and database engine hybrid that combines
the functionality of a traditional Relational database management system (RDBMS),
Object-relational database (ORDBMS), virtual database, RDF, XML, free-text, web ap-
plication server and file server functionality in a single system. Rather than having dedi-
cated servers for each of the aforementioned functionality realms, Virtuoso is a "universal
server". It also enables a single multithreaded server process that implements multiple
protocols.

SOLID

Solid (derived from "social linked data") is a proposed set of conventions and tools for
building decentralized social applications based on Linked Data principles. Solid is modu-
lar, extensible and it relies as much as possible on existing W3C standards and protocols.
More details on how exactly SOLID is being utilized inside LinkedPipes Applications are
described in the Architecture section.

4.4 CI/CD

One of the main requirements for implementation of LinkedPipes Applications was
to establish a reliable and efficient continuous integration and delivery. Therefore, the
team was aiming to implement a simple yet effective flow that is described in detail in
subsequent sections. In addition to that, the general overview of technologies used is
provided.

4.4.1 CI/CD development stack

Each of the components of LinkedPipes Applications has its own Dockerfile that can
be observed inside the specific component folder inside /src/ folder. In addition to that,
the whole application is set to be executed using Docker Compose that is responsible for
managing Dockerized frontend, backend, storages as well as Discovery and ETL which are
external services used for exploring and extracting Linked data. Aside from that, this
section provides an overview of Travis CI and several continuous integration services that
are being used within the project.

Docker

Docker is a computer program that performs operating-system-level virtualization,
also known as "containerization". It was first released in 2013 and is developed by Docker,
Inc. Docker is used to run software packages called "containers". Containers are isolated
from each other and bundle their own application, tools, libraries and configuration files;
they can communicate with each other through well-defined channels. All containers
are run by a single operating system kernel and are thus more lightweight than virtual

29

machines. Containers are created from "images" that specify their precise contents. Images
are often created by combining and modifying standard images downloaded from public
repositories.

Docker Compose

Docker Compose is a tool for defining and running multi-container Docker applications.
With Compose, the configuration on which containers to run is specified inside YAML
file to configure your application’s services. Then, with a single command, you create and
start all the services from your configuration.

Travis CI

Travis CI is a hosted, distributed continuous integration service used to build and test
software projects hosted at GitHub.

Renovate

Renovate is an automated dependency updater. Multi-platform and multi-language.
Due to various dependencies used in the frontend web component, it is crucial to keep the
project up to date with the latest stable software releases. Renovate is setup and being
triggered using Github Webhooks each weekend to check for updates in package.json and
make a pull request to master and develop branches if any available.

Codacy

Codacy is an automated code review tool that allows developers to improve code
quality and monitor technical debt. Codacy automates code reviews and monitors code
quality on every commit and pull request. It reports back the impact of every commit
or pull request in new issues concerning code style, best practices, security, and many
others. It monitors changes in code coverage, code duplication, and code complexity. It
allows developers to save time in code reviews and tackle efficiently technical debt.

30

5. Project Execution

5.1 Difficulty estimation

The project is to be carried out by 5 team members following the agile methodology
of development. The deadline is 9 months from the start of the work on the project. The
official start date of the project is 15 November 2018. The project is estimated to be ready
for defense in July 2019. The rest of the section provides a general overview of work and
task distribution among team members as well as the carried out plan of high-level goals
to be accomplished during monthly sprints.

5.1.1 Sprints

The work among team members is organized in weekly sprints. At the end of each
sprint, a meeting with project supervisors is carried out where the team discusses the
results of the previous week, identifies new problems to solve and asks questions to su-
pervisors. After the meeting event with supervisors, another event is carried out where
all team members meet, discuss the results of the meeting with supervisors, define the
problems as tasks on a collaborative task management tool called Asana1 and then the
next weekly sprint starts. Communication among team members and supervisors is car-
ried out in a team collaboration tool called Slack2, that is as mentioned before, also used
as a workspace for aggregating notifications from various CI/CD integrations and bots
working within LinkedPipes Applications.

1http://asana.com/
2https://slack.com

31

http://asana.com/
https://slack.com

5.1.2 Project implementation plan

The section represents the table with a carried out plan of project implementation.

Month Implementation plan

1

• setting up team processes (VCS, e-mail group, issue tracking, etc.)
• getting familiar with Linked Data, RDF
• getting familiar with LinkedPipes platform
• requirement analysis
• determination of data types for which interactive application will be implemented for (map, data cube, ...)

2
• analysis and design of individual applications
• determination of common application parts and components that will be implemented into the framework itself
• design of the framework API (will be implemented by individual apps)

3 • deployment setup via Docker and related technologies.

4 • framework implementation
• applications implementation

5 • testing of the current implementation
• requirements refinement

6 • revision of the framework implementation based on the refined requirements

7 • testing of the current implementation
• documentation

8 • debugging
• acceptance testing and finalization of documentation9

Table 5.1: Implementation plan for a duration of nine months

Each of the weekly sprints is referring to a monthly goal defined in the table above
when new tasks are being created and distributed, in order to have a high-level monthly
goal defined for each team member and improving productivity.

32

List of Figures

2.1 Mock-up of the login page, where users get authenticated 5
2.2 Dashboard of an authenticated user . 6
2.3 Mock-up of the step where the data sources are selected 7
2.4 Mock-up of the step where the user selects the desired visualization 7
2.5 Mockup of the configuration of an application 8
2.6 The example of geo-coordinates visualizer implemented with GoogleMaps . 10
2.7 D3.js Chord visualizer example . 11
2.8 An example of a treemap, sunburst and tree diagram visualization 11
2.9 An example of a simple line graph, stacked area chart, bar chart, calendar

view, and stream graph visualization . 12
2.10 Continuous delivery flow on a pull request to the master branch 14
2.11 Continuous delivery flow on a pull request to any branch except master . . 14
2.12 GitHub webhook flow used for continuously pulling latest frontend and

backend images from DockerHub . 15

3.1 High-level overview of LinkedPipes Applications 17
3.2 Backend component architecture overview 19
3.3 General architecture of Redux store and React components within frontend 22
3.4 Sequence diagram of API interactions between backend, Discovery and ETL 24

33

List of Tables

5.1 Implementation plan for a duration of nine months 32

34

Glossary
Assistant Refers to the Linked Pipes Visualization Assistant, which allows users to cre-

ate, configure and publish visualizations based on input data sets. 34

Data source Refers to any source of data, such as an RDF file, CSV, database, etc. 34

Data descriptor An SPARQL ASK query associated with a visualizer that determines
if an input data graph can be visualized in the corresponding visualizer. 34

Data cube multi-dimensional array of values. 34

Endpoint An endpoint is one end of a communication channel. 34

Linked Open Data Cloud The largest cloud of linked data that is freely available to
everyone. 34

Linked Data a method of publishing structured data so that it can be interlinked. 34

LinkedPipes ETL The service in charge of the ETL process in the LinkedPipes ecosys-
tem. 4, 26, 34

LinkedPipes Discovery The service of the LinkedPipes ecosystem in charge of the
process of discovering pipelines to be executed in a particular dataset.. 3, 26, 34

Pipeline in the current context refers to the process in which the application takes any
data source, applies a series of transformations to it and then hands over the output
to a visualizer component, which then produces a visual representation of the data.
3, 34

pipeline discovery The process taking input descriptors for all visualizers and attempt
to combine the respective transformation registered to achieve a specific data format.
34

Semantic web an extension of the World Wide Web through standards by the World
Wide Web Consortium. 34

SOLID to write. 26, 34

SPARQL Protocol and RDF Query Language query language for retrieving and
manipulating data stored in RDF format. 34

35

Acronyms
API Application Programming Interface. 4, 34

DOM Document Object Model. 15, 34

ETL Extract, Transform and Load. 4, 34

IRI Internationalized Resource Identifier. 6, 34

LDVM Linked Data Visualization Model. 3, 34

LDVMi Linked Data Visualization Model implementation. 34

LOD Cloud Linked Open Data Cloud. 23, 34

LOV Linked Open Vocabularies. 3, 34

LPA LinkedPipes Application. 34

RDF Resource Description Framework. 3, 4, 34

SPA Single-page Application. 34

SPARQL SPARQL Protocol and RDF Query Language. 6, 34

SSL Secure Sockets Layer. 16, 34

TLS Transport Layer Security. 16, 34

TTL Turtle (syntax). 6, 34

URI Uniform Resource Identifier. 34

URL Uniform Resource Locator. 34

W3C World Wide Web Consortium. 3, 34

36

	Introduction
	Previous work
	LDVM
	LinkedPipes Discovery
	LinkedPipes ETL
	LinkedPipes Assistant

	Structure

	Requirements
	Functional Requirements
	User authentication
	Create Application
	Configure Application
	Publish and Embed Application
	View Applications
	Visualizers

	Non-functional Requirements
	Error and Exception Handling
	Reliability under large datasets
	Continuous Integration / Continuous Delivery
	Testing and Code Coverage
	Coding Conventions
	Code Quality
	Secure access

	Architecture
	Overview
	Backend
	Logical structure
	Code structure

	Frontend
	Code structure

	Component Integration and Communication
	Discovery
	ETL

	Technologies
	Frontend
	Frontend development stack

	Backend
	Backend development stack

	Database and SOLID storage
	CI/CD
	CI/CD development stack

	Project Execution
	Difficulty estimation
	Sprints
	Project implementation plan

	List of Figures
	List of Tables
	Glossary
	Acronyms

