
INTLIB
ETL Framework for RDF Data and its Application to Legislation Documents

(SW Project Proposal)

Supervisor: Tomáš Knap (tomas.knap@mff.cuni.cz)
Team members: 5 students
Language: Java
OS: Windows 7 / Windows Server 2008 / Linux

Goal of the Project
The goal of the project is to build an ETL (Extract-Transform-Load) tool for RDF data. Such tool will

support creation of data processing units (DPUs) - extractors, transformers, and loaders - and

definition of data processing pipelines consisting of the desired DPUs. The application will have

graphical user interface for administration of the ETL process, such as creation of data processing

pipelines, monitoring and debugging pipelines’ execution.

Such tool will be applied to the domain of legislation documents to extract important aspects of the

legislation documents, convert them to RDF data format, transform them accordingly and load them

to RDF database. DPUs needed for such demonstration will be implemented. Such use case will be

presented during the defense as the main use case of the project.

The tool will use experience obtained while developing SW project ODCleanStore (CLEAN)

successfully defended in December 2012.

Impact
The ETL tool developed should become part of the LOD2 stack, a stack of tools creating as part of the

European project LOD2 (http://lod2.eu).

Important Functional Requirements

 User may define multiple data processing pipelines with components for fetching and
manipulation of RDF data. User may edit/delete such pipelines.

 User may list his pipelines and pipelines being shared with him.

 User may run/debug the pipelines.

 User may schedule the pipeline to run at certain periods of time or when another pipeline
finishes.

 User may browse the RDF data produced by the pipeline, the RDF data being in database.

 User is notified via email whether his scheduled pipeline was executed or whether there was
an error in the pipeline, in which case the error is described in detail. A possibility to be
notified via other means, such as data feeds, should be also examined.

 User may view the result of the pipeline execution, view errors.

 User may share the pipeline with others.

 User may define permissions for the pipeline, which users may use/edit the pipeline.

 The system will support the following DPUs:
o Extractors: Fetching data from SPARQL endpoint, RDF file/directory of files (at least

RDF/XML, TTL and TRIG serializations), extracting XML files according to XSLT,
extracting data from CSV files (if enough time).

o Loaders: Loading data to RDF file (at least RDF/XML, TTL, TRIG serializations), Loading
data to RDF database (SPARQL endpoint). Loader may support the data with
metadata (when created, by who, which DPUs were executed on the way).

o Transformers: Transformer being able to execute SPARQL queries, Linker (Silk).
o DPUs needed by the legislation documents use case (e.g., extractors from text based

on GATE, deduplication of obligations and rights, etc.).

 User may create new DPUs, copy the existing DPUs.

 User may share the DPU with others (already preconfigured or not configured at all).

 User may import/export DPUs.

 Administrator may import/export configuration of the whole system.

 Administrator may manage the whole DPU tree.

 Administrator may specify certain well-known SPARQL endpoints, e.g. , staging database the
pipelines are running on top, knowledge base containing ontologies being used by DPUs and
quarantine – database which may be used to store data which needs further manual
cleansing

 The system will validate the processed RDF data (at least syntactically).

 The system will use ontologies in the knowledge base to suggest the ontology terms when
configuring DPUs (must be supported by the particular DPU).

 The system will support management of namespace prefixes

 Administrator can create new users and delete existing ones, change passwords; the system
will provide standard forgotten password functionality.

 The system will log users’ activities in detail, logging can be configured (the target of the logs:
database, file; the granularity of the logs). Timestamps will be associated with the log
records.

 The system will provide statistics – which pipelines ran for how long, under which user
account, what was the size of the result, resulting state - error/OK, average run time for each
pipeline, number of pipelines per user account, total runtime per user account – all of this
computed from a comprehensive log.

Important use cases are depicted in Figure 12.

Graphical user interface

The application will involve graphical administration user interface enabling to:

 List and define new DPUs - extractors, transformers, loaders.

o Figure 8 depicts list of DPUs and detail for each DPU.

o Figure 9 shows creation of new DPU.

 List the data processing pipelines available (Figure 6).

 Define new data processing pipeline (which utilizes certain extractors, transformers, loaders).

o Figure 1 depicts the basic information about pipeline and specification of

permissions.

o Figure 2 depicts the tree of DPUs available to be used by the data processing

pipelines.

o Figure 3 depicts the canvas on which the pipeline may be defined by drag&dropping

DPUs from the tree of DPUs (Figure 2).

o Figure 4 depicts how the pipeline may be debugged while it is created.

o All Figures 1 – 4 are reachable easily from one screen using hide-able panels.

 Monitor results of the processing pipelines (Figure 5).

 Browse the data (view on the RDF triples in the resulting data, SPARQL querying interface to

query the resulting data). External tools may be used for realizing the RDF views or providing

SPARQL query interface.

 Management of scheduled rules (Figure 11).

 Management of users and roles (Figure 10) , management of locked pipelines, pruning

records in the monitor, define new SPARQL endpoints, settings of email notifications.

 Depict statistics about the executed pipelines, running times of pipelines etc.

 Main menu should be as depicted in Figure 7 (minor modifications may be needed)

Non-functional Requirements
 Documentation must be in English. The interface for creation of new DPUs must be well

described – the document must be simple, intuitive, easy to read for DPU providers.

 The system must support processing of big RDF dumps (GBs).

 OSGi framework is used for loading custom DPUs.

 Project is maven based and will be hosted on GitHub.

 Representative web page about the tool must be created and maintained during the project
duration.

 Usability and intuitiveness of user interface is crucial.

 Repeatable unit and integration tests and also testing data (GBs) + pipelines (10s) will be
prepared by the team.

 The team is managed by using some ticketing system with the possibility to track number of
hours done.

 Language: Java

 Supported OS: Windows 7 / Windows Server 2008 / Linux

 Coding style - All classes, non-private methods and attributes must have meaningful English
description

 Iterative development

Expected Utilization of the Team
(Including analysis, documentation, and testing of the introduced parts):

 Application's core business logic, communication of GUI components with the core logic,

communication of scheduler with the core logic, storage configuration, permissions, OSGi

framework for custom DPUs, architecture of custom DPUs (2.0 persons)

 Graphical User Interface (1.7 persons)

 Particular DPUs needed, applying ETL tool to legislation documents (1 person)

 Internal team management – organizing meetings, notes from the meetings, planning

milestones, checking tasks done (0.3 person)

Expected Work Plan:
We will deliver the project iteratively; every iteration involves unit, component, and integration

testing and documentation draft, so that the results are usable immediately. The work plan is as

follows, assuming deadline and the final version of the project in Month 9:

 general analysis, specification, architecture; specification of the components, selection of the

features for the first iteration (Months 1- 2)

 Iteration 1 – a possibility to define a pipeline, use one or two DPUs, execute the pipeline; no

permissions, no debugging, no monitoring of pipeline executions, no DPUs management

(Month 3)

 Further month iteration (Month 4 – 7): Iterations 2-5 + continuous testing and

documentation

 Final testing, bug solving, minor improvements, documentation – user, programmer,

configuration guide, installer (Months 8 - 9)

Figures

Figure 1. Pipeline Description & Permissions

Figure 2. Tree of DPUs – Extractors, Transformers, Loaders

Figure 3. Pipeline Canvas

Figure 4. Pipeline Debugging

Figure 5. Pipeline Execution Monitoring

Figure 6. List of Pipelines

Figure 7. Main Menu

Figure 8. List of DPUs and DPU’s Detail

Figure 9. Creating new DPU

Figure 10. User Management

Figure 11. Scheduling

Figure 12. Use Cases

