INTLIB
ETL Framework for RDF Data and its Application to Legislation Documents
(SW Project Proposal)

Supervisor: Tomas Knap (tomas.knap@mff.cuni.cz)
Team members: 5 students

Language: Java

0S: Windows 7 / Windows Server 2008 / Linux

Goal of the Project

The goal of the project is to build an ETL (Extract-Transform-Load) tool for RDF data. Such tool will
support creation of data processing units (DPUs) - extractors, transformers, and loaders - and
definition of data processing pipelines consisting of the desired DPUs. The application will have
graphical user interface for administration of the ETL process, such as creation of data processing
pipelines, monitoring and debugging pipelines’ execution.

Such tool will be applied to the domain of legislation documents to extract important aspects of the
legislation documents, convert them to RDF data format, transform them accordingly and load them
to RDF database. DPUs needed for such demonstration will be implemented. Such use case will be
presented during the defense as the main use case of the project.

The tool will use experience obtained while developing SW project ODCleanStore (CLEAN)
successfully defended in December 2012.

Impact
The ETL tool developed should become part of the LOD2 stack, a stack of tools creating as part of the
European project LOD2 (http://lod2.eu).

Important Functional Requirements

e User may define multiple data processing pipelines with components for fetching and
manipulation of RDF data. User may edit/delete such pipelines.

e User may list his pipelines and pipelines being shared with him.

e User may run/debug the pipelines.

e User may schedule the pipeline to run at certain periods of time or when another pipeline
finishes.

e User may browse the RDF data produced by the pipeline, the RDF data being in database.

e User is notified via email whether his scheduled pipeline was executed or whether there was
an error in the pipeline, in which case the error is described in detail. A possibility to be
notified via other means, such as data feeds, should be also examined.

e User may view the result of the pipeline execution, view errors.

e User may share the pipeline with others.

e User may define permissions for the pipeline, which users may use/edit the pipeline.

e The system will support the following DPUs:

o Extractors: Fetching data from SPARQL endpoint, RDF file/directory of files (at least
RDF/XML, TTL and TRIG serializations), extracting XML files according to XSLT,
extracting data from CSV files (if enough time).

o Loaders: Loading data to RDF file (at least RDF/XML, TTL, TRIG serializations), Loading
data to RDF database (SPARQL endpoint). Loader may support the data with
metadata (when created, by who, which DPUs were executed on the way).

o Transformers: Transformer being able to execute SPARQL queries, Linker (Silk).

o DPUs needed by the legislation documents use case (e.g., extractors from text based
on GATE, deduplication of obligations and rights, etc.).

e User may create new DPUs, copy the existing DPUs.

e User may share the DPU with others (already preconfigured or not configured at all).

e User may import/export DPUs.

e Administrator may import/export configuration of the whole system.

o Administrator may manage the whole DPU tree.

e Administrator may specify certain well-known SPARQL endpoints, e.g. , staging database the
pipelines are running on top, knowledge base containing ontologies being used by DPUs and
guarantine — database which may be used to store data which needs further manual
cleansing

e The system will validate the processed RDF data (at least syntactically).

e The system will use ontologies in the knowledge base to suggest the ontology terms when
configuring DPUs (must be supported by the particular DPU).

e The system will support management of namespace prefixes

e Administrator can create new users and delete existing ones, change passwords; the system
will provide standard forgotten password functionality.

e The system will log users’ activities in detail, logging can be configured (the target of the logs:
database, file; the granularity of the logs). Timestamps will be associated with the log
records.

e The system will provide statistics — which pipelines ran for how long, under which user
account, what was the size of the result, resulting state - error/OK, average run time for each
pipeline, number of pipelines per user account, total runtime per user account — all of this
computed from a comprehensive log.

Important use cases are depicted in Figure 12.

Graphical user interface
The application will involve graphical administration user interface enabling to:

e List and define new DPUs - extractors, transformers, loaders.
o Figure 8 depicts list of DPUs and detail for each DPU.
o Figure 9 shows creation of new DPU.
e List the data processing pipelines available (Figure 6).
o Define new data processing pipeline (which utilizes certain extractors, transformers, loaders).
o Figure 1 depicts the basic information about pipeline and specification of
permissions.
o Figure 2 depicts the tree of DPUs available to be used by the data processing
pipelines.
o Figure 3 depicts the canvas on which the pipeline may be defined by drag&dropping
DPUs from the tree of DPUs (Figure 2).
o Figure 4 depicts how the pipeline may be debugged while it is created.
o All Figures 1 —4 are reachable easily from one screen using hide-able panels.
e Monitor results of the processing pipelines (Figure 5).

Browse the data (view on the RDF triples in the resulting data, SPARQL querying interface to
query the resulting data). External tools may be used for realizing the RDF views or providing
SPARQL query interface.

Management of scheduled rules (Figure 11).

Management of users and roles (Figure 10) , management of locked pipelines, pruning
records in the monitor, define new SPARQL endpoints, settings of email notifications.
Depict statistics about the executed pipelines, running times of pipelines etc.

Main menu should be as depicted in Figure 7 (minor modifications may be needed)

Non-functional Requirements

Documentation must be in English. The interface for creation of new DPUs must be well
described — the document must be simple, intuitive, easy to read for DPU providers.

The system must support processing of big RDF dumps (GBs).

0SGi framework is used for loading custom DPUs.

Project is maven based and will be hosted on GitHub.

Representative web page about the tool must be created and maintained during the project
duration.

Usability and intuitiveness of user interface is crucial.

Repeatable unit and integration tests and also testing data (GBs) + pipelines (10s) will be
prepared by the team.

The team is managed by using some ticketing system with the possibility to track number of
hours done.

Language: Java

Supported OS: Windows 7 / Windows Server 2008 / Linux

Coding style - All classes, non-private methods and attributes must have meaningful English
description

Iterative development

Expected Utilization of the Team
(Including analysis, documentation, and testing of the introduced parts):

Application's core business logic, communication of GUI components with the core logic,
communication of scheduler with the core logic, storage configuration, permissions, OSGi
framework for custom DPUs, architecture of custom DPUs (2.0 persons)

Graphical User Interface (1.7 persons)

Particular DPUs needed, applying ETL tool to legislation documents (1 person)

Internal team management — organizing meetings, notes from the meetings, planning
milestones, checking tasks done (0.3 person)

Expected Work Plan:

We will deliver the project iteratively; every iteration involves unit, component, and integration

testing and documentation draft, so that the results are usable immediately. The work plan is as

follows, assuming deadline and the final version of the project in Month 9:

general analysis, specification, architecture; specification of the components, selection of the
features for the first iteration (Months 1- 2)

Iteration 1 — a possibility to define a pipeline, use one or two DPUs, execute the pipeline; no
permissions, no debugging, no monitoring of pipeline executions, no DPUs management
(Month 3)

Further month iteration (Month 4 — 7): Iterations 2-5 + continuous testing and
documentation

Final testing, bug solving, minor improvements, documentation — user, programmer,
configuration guide, installer (Months 8 - 9)

Figures

Name I ted I
Description Pipeline for extracting and cleansing . g
procurement notices from TED This panel can be hlqden tD the top of the
screen Name remains visible., Useful
when user needs more space for editing
pipeline
Permissions | User Read (Copy,Run) Developer Actions
Everyone O 0
Line with "Everyone" permission
settings is always present as a martin [~} 0 delete
first line in the table.
(type for new perm)

Figure 1.

Pipeline Description & Permissions

Filter | type to fiter tree [¥]

This panel {DPU hierarchy) can be hidden to
the left of the screen. Useful when user
needs more space for editing pipeline

Certain elements of the hierarchy, such as
whether it is Extractor, Trasnfromer or Loader
may be expressed differently then just by
subfolders. Regarding other folders:

+ two categories (generic, configured) +
tags, DPUs hidden to the user wil not be
shown

- more categories as folders, DPU may be
in more categeries, no tags, DPUs hidden
to the user will not be shown

[=] Extractors

I Transformers

[) Extractor from RDF filke
W/ Extractor from XML file
@ My Extractor from XML file
[) Extractor from CSV file
[) Extractor from SPARQL endpoint
[) BEs extractor from SPARQL endpaint
D Extractor from TXT act expression
D Extractor from CSV file with act metadata

> SILK Linker

[) Object Replacer

[) Predicate Replacer

[> SILK BEs Deduplicator

[) Deduplicator of defined law terms
-] Loaders

[) Loader to RDF file

[) Loader to XML file

[) Loader to SPARCL endpaint

D Criminality reports

D Legislation documents

Figure 2. Tree of DPUs — Extractors, Transformers, Loaders

Pipeline Editing

_[Stnndara{De*’-bP \

DPU 2

transform box

DPU1

Extractor box

DPU 4

transform box

DPU 1 is "selected".
Otherwise the button
"Detail" would be hidden

Knowladge Base
RDF data

I Revert to last commit] | Save & Commit] | Save]

Go to the previous version Mew version of this pipeline

Figure 3. Pipeline Canvas
Debug / Test Pipeline

Time Type |Source Short Message
2013.02.13 @ SPARQL Extractor Can't Connect to SPARQL endpoint show details
2013.03.04 \/

Extractor from XML file Finished OK show details

Log with errer
messages coming from

the different DPUs
| Graph I+] -

SPARGL Query: Browse staging database view

this is just a example of
SELECT * what it could look like:
WHERE { simple SPARQL query
?subject Ypredicate Tobject. interface
}
subject predicate object

Figure 4.

Pipeline Debugging

Fiters

Figure 5. Pipeline Execution Monitoring
Workspace home
Fiter | type in...
Pipeines
ID | Name | Auther Actions
1 | ted tomasknap | detail copy | run debug | delete | schedule
2 |isvzus | tomasknap | detal copy | run debug | delete | schedule
3 | lex martin
Figure 6. List of Pipelines

Messages overview for: Pipeline: Ext Start: 01.09.2012
B] 1 Rurring Jv [Coctemers] User: petr End: 01.09.2012
Date Name |User? | Progress | Debug | Ol er;f:d ne ns Report Time Typ | Source Short message
20120212 [Ext [Petr | [Stop 2012.02.13 @ RdfSource | Can't connect to the show
20120213| A |Petr | ® 2 errors
20121212 |Ext Petr v v debug data

—
Skide window

Debug -> Like run, but the intermediate results
(the content of the graphs filed during the pipeline
execution is stored and can be observed later by
the user) Debug flag in the monitor screen

I Pipelines

DPUs

Execution (Monitor)

Browse Data Scheduler

Settings ~ Administrator Help [| Logout I

Figure 7. Main Menu

| Pipelnes = DPUs = Execution (Monitor) Browse Data Scheduler Settings Administrator ~ Help " Logout I
Create DPUI] Import DPU | Export All |

O ony My DPU Fiter: [type to fiter treejv] = DPU's Detals
A
El Extractors Ii" Mame | SILK Linker Type: | Transformers | Author | kukharm I

Extractor from RDF file
Extractor from XML file Description:
B My Extractor from XML file Some description of SILK Linker functionality

Extractor from CSV file

Extractor from SPARQL endpoint
BEs extractor from SPARQL endpoint Tags: |ted eu business | Add I
Extractor from TXT act expression
Extractor from CSV file with act metada
[=] Transformers

=twere Statistics teaching
technology travel

\vAvAvAvVAV IRV

D SILK Linker Label : Link type: :

[) Object Replacer

D Predicate Replacer Source: C: Target restriction: :
[> SILK BEs Deduplicator

[) Deduplicator of defined law terms Linkage:

[=] Loaders

[) Loader to RDF file
D Loader to XML fie
[> Loader to SPARAL endpoint

[) Criminality reports Filter threshold: : Linlk: :
D Legislation documents
[copy oPU | Delete DPU | Export bPu]

1]
. . ’ H
Figure 8. List of DPUs and DPU’s Detail
Step 1 Step 2
DPU Creation Default DPU configuration: Linker
Name I F Secret Default value
Description Label [u] L F
Link type H RRRRRE F
Visibility ® Private O Public Source = Iﬂ*“ F
Select jor fie I— |—] Target restriction [m] L F
Tags ted eu business add Linkage [u]
software statistics teaching ...,
travel
Filter threshold
Type @ Extractor O Transformer O Loader ter firesho = L F
Link a L F
G |
Deccrpton o
By pressing the button "Next" will be |
cteate a new dialog with parametres
corresponding to the DPU, that was
defined by jar file

Figure 9. Creating new DPU

List all users - Administrator

Filter: Iﬁnd... '

ID |UserName |Role(s) Public_pipelines Total_pipelines Actions

1 j Admini 3 7 DELETE | BLOCK ACCESS | CHANGE SETTING ﬁl
2 |petrs User 2 2 DELETE | BLOCK ACCESS | CHANGE SETTING

3 | mariak User 3 4 DELETE | BLOCK ACCESS | CHANGE SETTING

4 | voitj User 1 3 DELETE | BLOCK ACCESS | CHANGE SETTING

5 | bohuslavm User 0 1 DELETE | BLOCK ACCESS | CHANGE SETTING

6 | tomask Administrator; User 0 0 DELETE | BLOCK ACCESS | CHANGE SETTING

Change username, password, role(s)..

Create new user

Figure 10. User Management

List of scheduling rules

C 1 I8 R [k
Enabled

Pipelne Rule User Last Run Time | Next Run Time | | pigghled| Commands
Extract data from TED Run on 1.9.2013 at 6:00 and then repeat every day Tomdd |[6.9.2013 6:.06 |7.9.2013 6:00 |Enabled [Disable | Edit | Delete | View Monitor

View Monitor
Legal pipeline 1 Run on 3.9.2013 at 0:00 and then repeat every week Martin 3920131:56 |10.9.2013 0:00 | Enabled | Disable | Edit | Delete | View Moritor | = Link to

Pipeline's.
Legal data cleaner Run after "Legal pipeline 1" finishes Jirka 392013 2:22 | N/A Enabled | Disable | Edit | Delete | View Moritor | execution

iew with

Bussiness entities fitering Run on 25.8.2013 at 12:00 and then repeat every 6 hours | Bohuslav | 4.9.2013 18:15 | N/A Disabled | Disable | Edit | Delete | View Mornitor ;‘:::::w !
Extract data from TED | Run on 158 2013 at 22:00 and then repeat every 3 days | Petr 592013 22:16 | 892013 22:00 | Enabled | Enable | Edit | Delete | View Monitor :;I:Fr:z‘:nd

user(if

supported)

Add new scheduling rule
!

— 1

Link to
Schedule
pipeline

Figure 11. Scheduling

ue Use Case Model

Define permissions

Export All DPUs for the pipeline

Define pipeline

,
Export DPU S
e
e
s

Exportiimport
Environment

Manage Users and
\ e
g
/

Dy

Administrator

Listall pipelines
Specify predefined
SPARQL endpoints.

telease Pipeline in
Develop mode

Listaccessible
ipelines

Prune Monifor {old

Edit arbitrary pipeline
rds)

ministrator
Editaccessible
pipeline

Delete any pipeline

Delete accessible
pipeline

Run the accessible

User
pipeline

=, Debug any pipeline
©etands

Schedule the

Run any pipaline
laccessible pipeline,

extends -

Schedule any
pipeline

List accessible

.~ -\pipelines with error,

<
rertends

Monitor accessible
pipeline’s execution

Share the accessible
pipeline

reate new DPU by’
customizing
existing DPU

sexdends

/tl

7
wextends
S i

View accessible
Browse accessible
data in the staging
database

(i
i
i

i

! «extends
¢

Share any pipeline

wextands
with anybody i

Monitor all

{ pipelines

i

staging database

Administrator

Figure 12. Use Cases

