
Virtualization for PikeOS RTOS

HyPike

Authors: Bc.Jan Dubský, Bc.V́ıt Kabele, Lukáš Hruška,

Tomáš Drozd́ık, Ivona Oboňová

Supervisor: Mgr. Vojtěch Horký, PhD.

Consultant: Ing. Rudolf Marek, SYSGO s.r.o.

Faculty of Mathematics and Physics
Charles University in Prague

2020

Contents

1 Introduction 2
1.1 Virtualization basics . 2
1.2 Example use case . 3
1.3 Related work . 3

2 Context 5
2.1 Virtualization roles . 5

2.1.1 Hypervisor . 5
2.1.2 VMM . 5
2.1.3 Guest OS . 6

2.2 PikeOS . 6
2.2.1 Architecture . 7

3 Project goals 9
3.1 Language and developer tools . 9
3.2 Platform requirements . 9
3.3 Dummy kernel . 10
3.4 Functional requirements . 11

3.4.1 Guest memory management 11
3.4.2 Devices and interrupts . 11
3.4.3 Peripherals . 12
3.4.4 Running the dummy-kernel 12
3.4.5 Running the PikeOS2 . 12

3.5 Assignment extensions . 12
3.6 Non-functional requirements . 13

3.6.1 Vendor portability . 13
3.6.2 Documentation . 13
3.6.3 Licenses . 13
3.6.4 Certifiability . 13
3.6.5 Quality assurance . 13

3.7 Submission . 14
3.7.1 Optional goal . 14

4 Project execution 15
4.1 Management . 15
4.2 Approximate timeline . 15

Bibliography 17

1

1. Introduction
Virtualization is a method that allows significantly higher utilization of com-
putational resources of modern computer systems. Often, when allocating a
single physical machine to a single logical task (i.e. web server), the hardware
computational potential is wasted.

The power of modern CPUs is far above the requirements of most applications.
The straightforward solution to run multiple services on a single computer is often
impossible because of the demand of strict separation of these. Moreover, different
services might require different environment. Some non-trivial effort has been
made to solve these problems at the level of operating systems. This includes
technologies like cgroups and namespaces in Linux kernel. These are used in
various containerization solutions (e.g. Docker, Podman, LXC. . .). This kind of
separation is enough for many applications, but sometimes the requirements are
even stronger. Some services might require different version of the kernel, or even
a different operating system.

The goal is to run multiple operating systems on a single machine. Various
solutions were proposed and used across the industry, such as the full software
emulation or binary translation, but they were either unimaginably complicated or
suffered by performance issues. With this in mind, the common CPU architectures
(x86, Itanium, ARM. . .) were equipped with the appropriate support. The result
is called “Hardware-Assisted Virtualization” (HAV).

1.1 Virtualization basics
The whole concept of virtualization is based on the idea of sharing a single physical
machine between more than one virtual machine (VM). In this context, a virtual
machine runs a full-featured operating system, so-called guest operating system.
Operating systems do however expect full control over the machine. Obviously,
if we managed to somehow run more than one such system on a single machine
these systems will end in an inconsistent state very quickly. Thus, we need a
piece of software to manage the resources and divide them between the running
machines. We call this software a hypervisor.

To share the machine’s resources hypervisor can perform a pure software
emulation of these resources that is transparent to the guest operating system.
However, this approach has a significant overhead. To achieve little to no overhead
we need to assign the hardware directly to the guest operating system. Once a
guest operating system attains this hardware it has no reason to give up on it
and thus give control back to the hypervisor. Therefore, the hypervisor needs
the support of the hardware (hardware-assisted virtualization). Hardware should
trigger an interrupt to the hypervisor if a guest tries to do a potentially disruptive
operation. Furthermore, hardware should give control back to the hypervisor on a
periodic basis to enable preemptive switching between multiple guests. For the
guest operating system to use a machine directly it needs to be compatible with
the architecture of the machine. Our hypervisor is for the Intel manufactured,
x86 64 architecture CPUs [1].

Hardware support refers to several technologies designed for the architecture

2

which are meant to aid the hypervisor. This architecture technology extensions
are called VT-x, AMD-V for Intel, and AMD respectively. Here are some key
concepts:

CPU Privilege levels Even though the architecture originally supports 4 privi-
lege levels only 2 were actively used by an operating system. Moreover, x86
architecture CPU contains privileged registers and privileged instructions.
Each guest OS expects those features to work. Therefore, a hypervisor needs
an additional level to work completely transparent to all guests.

Memory Another key concept of the x86 architecture is the paging mechanism
for the memory which the hardware supports directly. This support, however,
used to be a single mapping of the pages from virtual address space to the
corresponding frames in the physical memory. With multiple guests using
the same memory, the hypervisor needs to add another level of indirection.

IO The Input/Output operations in the CPUs are of two types. One involves the
dedicated I/O ports, the other uses memory mapped devices. The memory
mapped devices can be gracefully handled by the memory virtualization
layer. An attempt to work with the IO port from the guest will raise a CPU
exception in the hypervisor and the operation will be emulated.

Interrupt handling It is not viable to let the guest OS handle all exceptions
that are raised when it is in the control of the CPU. On the other hand,
even the guest OS needs access to some interrupts (e.g. the timer tick).
To solve this issue, the interrupt controller is also virtualized in the guest
environment and the hypervisor decides which interrupts will be forwarded
to the guest. Additionally, the hypervisor is able to send a custom interrupt
to the guest machine.

1.2 Example use case
The virtualization is already widely commercially used. It is the core technol-
ogy that allowed the rapid growth of cloud environments across all the industry
branches. Without a strict separation provided by the hardware-assisted virtual-
ization, it would not be possible to deploy any data sensitive application to the
cloud. However, now even some online financial services are running in the cloud.

The cloud business is one of the most visible uses of virtualization, it is however
not the only use case. There is a chance that a well done HAV solution could find
its place in the automotive and aviation industry. One of the possible applications
is to use a single hardware machine to run multiple infotainment systems and
thus reduce the total cost of the final product.

1.3 Related work
Our project aims to deliver the virtualization support for recent Intel x86 64
CPUs to the real-time operating system PikeOS [2]. To put it in the perspective
our project is to PikeOS what KVM [3] is to Linux or what HyperV [4] is to

3

Windows. It is not a pure native hypervisor and neither a pure hosted hypervisor.
Just like KVM, it would be a kernel module that would turn the host operating
system into a hypervisor. Obviously, our project would be on a much smaller
scale than the KVM or the HyperV (see the Chapter 3 for better description).

The PikeOS already has the ability to use paravirtualization and there is a
master thesis in which Tobias Stumpf proposed design of hardware virtualization
on 32-bit Intel CPUs [5].

4

2. Context
In this chapter, we describe the basics of virtualization support with a focus on
x86-64, as provided in today’s CPUs.

2.1 Virtualization roles
In the context of virtualization, we distinguish three roles. A Hypervisor, a Virtual
Machine Manager (VMM), and a Guest.

2.1.1 Hypervisor
Hypervisors are of two types. Standalone (Type 1) and hosted (Type 2). Stan-
dalone hypervisors are relatively thin layers of software running on bare metal
whose only purpose is to manage the virtual machines. Hosted hypervisors, on
the other hand, takes advantage of already existing operating system and it’s
infrastructure to manage the hardware resources. An example of a standalone
hypervisor is VMWare vSphere [6]. An example of a hosted hypervisor can be a
Linux kernel with enabled KVM extensions [3]. In this document, we only speak
of the hosted hypervisors, because this is the context of our work.

Hypervisor is a software that directly manages the resources of the Virtual
Machines. It performs entries to the virtual machine (called the VM Entries) and
handles the transitions back to the host operating system (called the VM Exits).
However, it does not care about the execution of the software inside the VM or of
the actual VM Exit handling.

Since hypervisor directly influences the execution of the code on the CPU
core, it needs to be executed with the highest permission level on the CPU. This
implies that in our case of hosted hypervisors, this support has to be enabled in
the kernel. Hypervisor is thus implemented as a kernel module (driver, extension,
etc.).

2.1.2 VMM
To manage the execution of an actual VM, we need a program that interacts with
the hypervisor. In the Linux world, a reference implementation of such a program
is called QEMU [7]. QEMU Initially started as a machine emulator, but it has
been later incorporated into the development of the HW assisted virtualization
in the Linux project. A program like QEMU is called Virtual Machine Manager
(VMM) and another example is the Oracle VirtualBox [8]. From the perspective
of the underlying operating system the VMM is executed as a standard process
and it manages the running virtual machines using the API provided by kernel
hypervisor API.

The resources of the Virtual Machine are the resources of the VMM process in
the host kernel, its logical CPUs are threads from the host kernel point of view and
the VM memory is a subset of the VMM process memory. An example of booting
the kernel.elf file in the virtual machine using the QEMU is in Listing 2.1. To
perform execution like this, one does not even have to have superuser privileges.

5

qemu -system - x86_64 -accel kvm -m 1G -kernel kernel .elf

Listing 2.1: Running a VM using QEMU

2.1.3 Guest OS
The guest machine’s operating system, on the other hand, does not require any
modification in order to run within the virtualized environment. As stated in the
Intel manual [1], there is not even a way how the operating system can directly
tell, whether it is virtualized or not, although some side channel attacks exist to
determine this.

It is however the responsibility of the VMM and the hypervisor, to provide
convenient virtualization of IO devices and other behavior. It is also possible to
emulate or even skip some parts of guest VM execution, such as the full-featured
boot loader as described in Section 2.1.3.

Guest boot

After the start of a computer, there are essential tasks to be done. This includes
the initialization of the memory chips or detecting the VGA configuration. These
tasks however differ between various platforms and so separate programs exist
to handle them. Such programs are called bootloaders. To prevent the need of
having a separate one for each different operating system, the Multiboot standard
exists.

This standard defines a state of the machine at the moment when control is
passed to the operating system. There are currently two versions of the standard,
Multiboot1 and Multiboot2. The operating system does not care how the
machine reached the desired state. For virtualized machines, it is thus possible to
create the machine in this state and pass the control directly to the OS. In our
project, we only consider the multiboot compliant kernels. PikeOS is multiboot
compliant.

2.2 PikeOS
The PikeOS system is a real-time micro-kernel based operating system certified
for critical applications. It is developed by the Germany based company SysGO
GmbH.. The customers of SYSGO are not end-users of the PikeOS system. They
do instead build their apps on top of the operating system, using system API
while relying on its certified safety. Applications of the PikeOS system can be
found in the automotive or aviation industry.

From the application developer perspective, PikeOS can provide different
interfaces. In PikeOS terminology, this interface is called personality. At the
moment, there are available at least two personalities – native and POSIX.

Details are covered in the official documents. Here we will focus mainly on
how the PikeOS is built and deployed as this is crucial to our project.

Since the PikeOS is more a platform than a final product, it is designed with
a great extensibility in mind. A customer is able to write custom applications,
device drivers or kernel extensions and just plug these into the purchased kernel.

6

Integration Project

Application project Driver project Kernel fusion project

Kernel Kernel driver

Figure 2.1: PikeOS build schema

Only the resulting binaries and a comprehensive documentation are shipped as
a product while the kernel itself remains closed source. The PikeOS is delivered
along with an Eclipse-based Integrated Development Environment (IDE) called
Codeo. The Codeo IDE is built to suit the needs of SYSGO customers and it
is the way how a final product is configured and build. It distinguishes between
projects for applications, drivers, etc.and special projects called Kernel Fusion
and Integration project.

• An integration project links together application/driver projects and a kernel
and produces the final executable.

• The kernel can be either a kernel itself, or the result of a kernel fusion
project.

• The kernel fusion project creates a new kernel binary by linking together
kernel drivers and kernel binary.

The build schema is illustrated in Figure 2.1.

2.2.1 Architecture
PikeOS architecture is somewhat different from mainstream operating systems. It
is a micro-kernel designed to run on embedded devices and without any runtime
configuration. This means that instead of a single, monolithic, all encompassing
binary running in a kernel space, only a minimal part runs with the supervisor
privileges and the rest runs in userspace. Micro-kernels have several advantages in
the field of security and system integrity. However, in some scenarios, performance
is worse due to frequent context switching.

7

Figure 2.2: PikeOS architecture. Source: Wikipedia.org

The configuration also uses the Codeo IDE and then it is compiled directly
into the executable. This implies, that once built, the PikeOS instance is always
the same, including running applications. The other difference is the real-time
approach to process scheduling, which uses a hierarchy of time frames to guarantee
the CPU time for critical applications. The architecture is shown in Figure 2.2.
Its modular design that allows easy porting on new embedded devices.

The Architecture Support Package (ASP) is common for all instances running
on the same target architecture (i.e. x86). The Platform Support Package (PSP)
contains the code that is required for a specific embedded board, including installed
hardware devices. Finally, the PikeOS System Software (PSSW) is responsible for
the operating system services.

8

https://commons.wikimedia.org/wiki/File:Architecture_of_PikeOS_from_SYSGO.png

3. Project goals
This chapter describes the product of our work. It also presents functional and
non-functional requirements for our project.

The goal of our project is to deliver the hypervisor module for the AMD64
(x86 64) platform, specifically for the Intel manufactured processors as a kernel
driver to the PikeOS kernel. The PikeOS already has a similar module for Aarch64
ARMv8 architecture. It is desirable for our driver, to stick with the current API of
the ARM hypervisor. In an ideal scenario, it would be possible to use an existing
VMM on both Intel and ARM boards. The requirements on the target platform
are described in Section 3.2.

Due to the tremendous complexity of the complete hypervisor solution arising
from the unexpected pitfalls of the Intel architecture, the assignment was split to
several levels of which only the first is guaranteed to be the result of this project.
We do not aim at covering the whole API, but instead just to the fundamental
parts that will allow the hypervisor to boot a simple kernel.

In order to debug the guest execution, we also develop a simple custom kernel
with a little or no dependency on different devices than the CPU itself, as they
have to be virtualized separately. We call this kernel dummy kernel and in the
context of our project, it is considered as a part of the quality assurance goal.
The more in-depth description of the dummy kernel is provided in Section 3.3.

3.1 Language and developer tools
Our project will be written in C and Assembly language because these are the
languages used in the PikeOS kernel development.

Assembler code is required for actions without a direct equivalent in the higher
languages (e.g. using the I/O ports or the CPUID instruction). Moreover, the
higher-level language even cannot be used in some specific circumstances (e.g.
when there is no stack available).

All the development is done using the GNU GCC (9.*) and Binutils (objcopy,
as, strip. . .). These tools are also used by the SYSGO in PikeOS project.

3.2 Platform requirements
Because of the virtualization support in modern CPUs is still evolving, we decided
to provide only support for the processors manufactured in the last 7 years or so.

We demand the following CPU capabilities, while it is possible that more of
them will be added during the development.

x86 64 architecture (formerly AMD64) The successor of x86 architecture.
Add another operating mode to the CPU. Registers and memory addresses
are extended to 64bits.

VT-x, since 2006 Intel virtualization extensions. The core of all virtualization
features in today’s Intel processors.

9

Extended Page Tables, since 2008 This mechanism is similar to the standard
page tables. It is used to map guest physical addresses to different real
physical addresses.

Unrestricted Guest, since 2010 Allows starting the guest CPU in real mode
in the same way as real CPU does. This requires working EPT implemen-
tation. Without this capability, the guest was forced to boot with paging
tables and that often means patching the guest kernel.

3.3 Dummy kernel
The dummy kernel is a crucial part of our project. It is a simple operating system
for x86 64, that we write from scratch for the following reasons.

First, we manage how to develop and debug the system level software. The
operating system cannot be executed as a standard process for obvious reasons
and one cannot simply attach a debugger to it. To address this issue, we use
the QEMU and its ability to act as a server for GDB debugger. This is only
partially helpful, because adding breakpoints and other debugging features are
only available in emulation mode. Once the QEMU is executed as a VMM (thus
the guest runs fully virtualized), these features are unavailable. This might not
be such a problem for our basic kernel, however, QEMU cannot emulate the
virtualization features of the CPU and thus we rely on the CPU functionality.

It is worth mentioning, that since we need to test the hypervisor inside the
already virtualized environment, we require the CPU to support the nested
virtualization. Strictly speaking, this is rather a requirement on our testing
machines than to a deployment machines. It is simpler to test the kernel in a
QEMU, than installing it on a real hardware.

Second, we obtain a simple sandbox to test our ideas of hypervisor design.
Debugging CPU faults and exceptions is much simpler when one knows all the
code running on the machine. Also, the complexity of our simplified kernel cannot
be compared with the complexity of the real operating system, which PikeOS is.
We do not even have access to all the PikeOS source code.

And third, we get a simple enough code to use as a testing guest OS. The
real operating systems depend on the environment of the complete computer
including many different devices. The dummy kernel on the other hand has only
minimal dependency and thus can be executed in a minimalistic environment of
our hypervisor.

The following is a summary of the features for the dummy kernel.

Multiboot It must be compliant with the Multiboot specification. This allows
booting the kernel with a variety of open source bootloaders (GRUB etc.).

64bit mode It must employ a simple boot sequence and then jump into the
64bit mode and never leave it.

Interrupt handling It must provide support for interrupt handling, including
the possibility to register a custom callback to the most common interrupt
vectors.

10

Paging It must use the 4-level paging. The minimum requirement is to use the 4
KiB pages, but it would be better to combine all available sizes.

Userspace It is required to allow the executing of a code with user privileges
(i.e. in ring 3) and making syscalls (i.e. calling back to ring 0).

Timer We require the working timer and thus the possibility to run multiple
userspace processes with preemptive switching.

SMP We don’t require the support for Symmetric Multiprocessing, but it might
be useful in later stages, when debugging the SMP enabled hypervisor. This
includes parsing the ACPI MADT table and working with the Local and
I/O APIC controller.

3.4 Functional requirements
The hypervisor will be implemented as a kernel driver (KDEV). This section
describes the basic function of the kernel driver that will be delivered.

3.4.1 Guest memory management
It should be possible to manage the guest machine’s “physical” memory layout and
to have some kind of “memory-copy” function with destination address translated
using the EPT rather than standard page tables. This includes mapping memory
to the guest as well as copying memory areas to the specified addresses in the
guest memory.

Here we will focus on manipulation with Extended Page Tables (EPT). The
EPT table must be ready before the first initialization of the guest logical CPU
since the pointer to EPT is part of the VM configuration structure. Without
working EPT, our hypervisor would not work.

Copying memory is crucial to place the system binary at the correct address
in the guest machine and thus to boot the guest operating system.

3.4.2 Devices and interrupts
The hypervisor must handle the VM Exits gracefully. The VM Exit is triggered
by the CPU in certain conditions (see the description below). The main focus
here will be to allow registering a custom handler for various types of VM Exits.

The VM Exits are similar to traps or system calls – these transfer execution
from usermode application to the kernel when the application tries to perform
a privileged operation. VM Exits transfer execution from the guest OS to the
hypervisor. Hypervisor handles the VM Exit and returns control back to the
guest OS.

The most important events for us are listed below:

External interrupt If an external interrupt arrives to the CPU when it is in
the control of a guest OS, the VM Exit is triggered. It is however the
responsibility of the hypervisor to decide whether the interrupt should be
passed to the guest or host and then forward it to the correct recipient.

11

EPT Violation When the guest tries to access a memory that is not mapped or
is specifically marked in the EPT structure, the VM Exit is triggered. This
is useful for emulating memory mapped devices.

Restricted instructions Some instructions are forbidden for the guest and their
execution also performs the VM Exit. The list of forbidden instructions can
be modified for each guest in the VM control structure.

I/O operation When the guest OS performs an I/O operation, the hypervisor
is notified and may emulate the desired behaviour.

With a powerful tool like this, it is possible for the hypervisor to emulate the
rest of a computer.

3.4.3 Peripherals
Using the VM Exit handling capabilities, see Section 3.4.2, we achieve the em-
ulation of peripherals that are required by our dummy kernel. In this step, we
take advantage of the backward compatibility of the x86 architecture, and we will
emulate only the legacy ones where possible, even if a more recent implementation
is available today.

We will emulate the following peripherals: Intel 8254 timer, Intel 8259 Pro-
grammable interrupt controller, Local APIC, and an output serial port. In the
case of the Local APIC, we try to take advantage of the native CPU virtualization
capabilities. These are crucial for every kernel possibly running in the virtual
machine.

3.4.4 Running the dummy-kernel
The dummy kernel should be able to run inside the virtualized environment.

3.4.5 Running the PikeOS2

The final goal of our project is to run PikeOS inside the virtualized environment.
Since the PikeOS is a real operating system, this might introduce additional
complexity to the hypervisor as the dummy kernel has lower requirements on the
machine’s hardware.

3.5 Assignment extensions
This section contains a brief description of optional features that will be delivered
only when everything else from functional requirements will be done before the
expected deadline.

Symmetric Multi Processing Enable booting of multiple virtual CPUs.

Basic ACPI/MP tables support This is required for further support of the
real operating systems.

12

P4Bus The P4Bus is a proprietary PikeOS technology, that allows mapping a
device from inside the guest to a device on the host. This is extremely
helpful in networking scenarios.

3.6 Non-functional requirements
This section describes the requirements to our project, that are not of the functional
nature, but rather specifies “how” the work will be done.

3.6.1 Vendor portability
Our project aims to implement the hypervisor module for Intel manufactured
CPUs. Nonetheless, the module should be designed so that extending it to the
AMD manufactured CPUs would require only a minor or none changes to our
code. This should not be extremely complicated as those processors are of the
same architecture, but it is necessary to keep this goal in mind.

3.6.2 Documentation
The documentation will be part of the submitted project. We try to comment all
crucial parts of the code and thus the documentation will be mostly generated by
the Doxygen tool. The overall usage guide for PikeOS developers will be provided
as a separate document.

3.6.3 Licenses
Our project will be later incorporated into the existing SYSGO infrastructure.
The GPL or similarly-licenses software cannot be used because of the closed nature
of the PikeOS source code. We also had to formally become SYSGO employees,
because of the code ownership issues.

3.6.4 Certifiability
In order to allow future certification of our code, we have to follow the official
SYSGO coding rules, that are derived from the formal certification requirements.
This includes the coding style, but also a set of various best or forbidden coding
practices.

3.6.5 Quality assurance
As we aim to deliver high quality and reliable code, we must provide meaningful
quality assurance (QA).

We selected to use the following QA methods:

Dummy kernel We will make the dummy-kernel to do forbidden things and
watch whether the hypervisor behaves correctly. This is a simplification of
a method that is called fuzzy testing.

13

Tests Parts of the code can be tested as units. They are however not fully
separated and their execution makes sense only in the context of the running
kernel.

Paranoid mode When compiled in the paranoid mode, many functions contain
various assertions in the preamble, ensuring that the CPU is in the desired
state. This mechanism is also part of the PikeOS itself.

3.7 Submission
The project will be submitted in the form of source codes of the dummy kernel
and of the kernel driver for PikeOS. This driver is a single compilation unit and its
product is linked together with a PikeOS kernel in a way described in Section 2.2.
Despite being a standalone driver, it communicates with the rest of the operating
system. This requires the proprietary headers and thus the compilation is possible
only on the computer with installed PikeOS CDK toolchain.

For the purpose of the submission of our work, we will provide source codes and
the compiled result of our work. Furthermore, in cooperation with the SYSGO
we can assist the opponent with compiling and running our project. We will
demonstrate the software in our presentation.

3.7.1 Optional goal
As mentioned in Chapter 3, the PikeOS already has a virtualization framework for
the ARM architecture. Although the implementation of the architecture-specific
part will be different, some code will be shared between both ARM and Intel
parts. It is viable to integrate the Intel part into the existing framework and reuse
as much of the existing functionality as possible.

If we decide to do the integration, it would have some drawbacks on the
submission. The submitted sources would no longer be a complete compilation
unit and the submission would be likely a combination of a patch file (i.e. something
like what the git diff command produces) and the source codes.

14

4. Project execution
We first approached the SYSGO company around the middle of the winter semester
of the academic year 2019/20. They offered us this project and since it seemed
quite overwhelming we had to thoroughly think through whether we want to
accept this challenge. We were not able to decide easily though. Fortunately, the
SYSGO offered us several lectures taught by our consultant Ing. Marek, to get
familiar with x86 architecture.

Furthermore, we approached several people at the faculty, and we discussed the
viability of this project for the NPRG023 subject. When we decided to accept the
project assignment, we have continued with our meetings at SYSGO on a weekly
basis. The information about an existing master thesis [5] gave us a great boost
in confidence. However, we were warned that the x86 is a much more tedious
architecture to work with, which is a reason why this is a suitable project for
multiple programmers.

We started developing our own bare-bone x86 kernel sometime before the
official project initiation to get to know the architecture. This kernel will be used
as a test guest kernel for the hypervisor. That gives us great flexibility in how we
are going to test the hypervisor.

We have also signed a contract of service with SYSGO which allows us to
get access to otherwise proprietary software, source codes, and specifications
related to our work. This way we are able to compose the requirements for this
project (Chapter 3) based on what SYSGO wants.

4.1 Management
The student team itself has 5 programmers. Ing. Rudolf Marek is our consultant
from the SYSGO company. He has also dedicated time from the company to
lecture us and consult our work. The weekly meetings at the company have been
moved to the online space due to the recent social-distancing rules.

We use the faculty GitLab, mailing list and a Slack to coordinate our work.
GitLab itself offers us plenty of features to tackle issues, code reviews, etc. We were
given licences to PikeOS and its development IDE - Codeo for the development.

4.2 Approximate timeline
The project is planned for nine months. Table 4.1 contains an approximate
timeline with 3 weeks granularity.

15

Weeks Topic
0–2 Introduction to the topic. Meetings with our consultant, Ing.

Marek
3–5 Start work on dummy kernel. First steps in 16bit assembler

and linking together with a 64bit C code.
6–8 Interrupt controllers and interrupt handling. Paging support

and dynamic page allocation.
9–11 Kernel memory allocator. Initramfs support and userland code

running.
12–14 Syscalls and multi processor support. Getting familiar with

PikeOS structure. Setting our computers to work with Codeo
toolchain.

15–17 Getting familiar with the CPU virtualization support. Running
a simple virtual machine inside the dummy-kernel.

18–20 First EPT implementation. Running dummy kernel in dummy
kernel.

21–23 Porting existing virtualization code from dummy kernel to the
PikeOS kernel driver.

24–26 Emulating the devices.
27–29 Running dummy kernel virtually in PikeOS
30–32 Finalizing
33–35 Debugging and documentation.

Table 4.1: Approximate timeline

16

Bibliography
[1] Intel. Intel R⃝ 64 and ia-32 architectures software developer’s manual. 2019.

[2] SysGO GmbH.. Pikeos certified hypervisor. https://www.sysgo.com/
products/pikeos-hypervisor, 2020. [Online; accessed 18-May-2020].

[3] KVM. Main page — kvm,. https://www.linux-kvm.org/index.php?title=
Main_Page&oldid=173792, 2016. [Online; accessed 18-May-2020].

[4] Microsoft. Hyper-v on windows 10. https://docs.microsoft.com/en-us/
virtualization/hyper-v-on-windows/, 2016. [Online; accessed 18-May-
2020].

[5] Tobias Stumpf. Hardware Virtualization Capabilities for PikeOS, jun 2010.

[6] VMWare. Vmware vsphere. https://www.vmware.com/products/
vsphere-hypervisor.html. [Online; accessed 18-May-2020].

[7] QEMU. Qemu. https://www.qemu.org. [Online; accessed 18-May-2020].

[8] Oracle corporation. Virtualbox. https://www.virtualbox.org. [Online;
accessed 18-May-2020].

17

https://www.sysgo.com/products/pikeos-hypervisor
https://www.sysgo.com/products/pikeos-hypervisor
https://www.linux-kvm.org/index.php?title=Main_Page&oldid=173792
https://www.linux-kvm.org/index.php?title=Main_Page&oldid=173792
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/
https://www.vmware.com/products/vsphere-hypervisor.html
https://www.vmware.com/products/vsphere-hypervisor.html
https://www.qemu.org
https://www.virtualbox.org

	Introduction
	Virtualization basics
	Example use case
	Related work

	Context
	Virtualization roles
	Hypervisor
	VMM
	Guest OS

	PikeOS
	Architecture

	Project goals
	Language and developer tools
	Platform requirements
	Dummy kernel
	Functional requirements
	Guest memory management
	Devices and interrupts
	Peripherals
	Running the dummy-kernel
	Running the PikeOS2

	Assignment extensions
	Non-functional requirements
	Vendor portability
	Documentation
	Licenses
	Certifiability
	Quality assurance

	Submission
	Optional goal

	Project execution
	Management
	Approximate timeline

	Bibliography

