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MORE ON SET-THEORETIC CHARACTERISTICS OF SUMMABILITY
OF SEQUENCES BY REGULAR (TOEPLITZ) MATRICES

Peter VOJTAS

Abstract: We consider set-theoretic characterisiies which reflect some
properties of summation of sequences by regular matrices (row-submatrices of

the diagonal matrix respectively) acting on {02 arc 160, and we give some re-
lations between them. We improve the lower bound for the minimal size of a
family of regular matrices such that every bounded sequence of real numbers
is summed by one of them. )
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§ 1. Introduction, notation and results

1.1. Introduction. Recently V.I. Malychin and M.M.Chol&cevnikova disco-
vered that some problems related to the summation methods (for sequences) are
set-theoretically sensitive (see [5]). In [6] we introduced cardinal charac-
teristics involved in these problems and gave some estimates using well-known

“eo - the value of

cardinal characteristics of P (¢ ) and the Baire space
which depends on the model (additional axiom) of set theory you consider.

In the present paper we improve one result of [63, namely, we improve
the lower bound for the minimal size of a family of regular matrices such
that every bounded sequence is summed by cne of them. Moreover we introduce a
few cardinal characteristics which reflect properties of summation of sequen-
ces by an arbitrary class S ot regular matrices acting on a subspace X of 1%
We discuss the extremal cases when & is the whole class of regular matrices
or ¥ is the class of row-submatrices of the diagonal regular matrix, and
X=1% or X=“2.

1.Z2. Notation and what is already known. We use the standard set-theore-
tic notation (see e.g. [31).

As a rule, < denotes ihe set of all natural numbers, Ky denotes the set

Lo

" of all mappings from x to y, 1¥° is the set of all bounded sequences of real
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numbers, [2e1” ={xge:ixl=2A}, A% means "there are infinitely many n's"
and VYA means "for all bul finitely many 08", xg¥y denotes x-y is finite
and for f,0 e “@w, f<#qg denotes (YR {fni<gln)), molf)={iiniinewl,
[fn), fine ) ={ie w:fn)£& 1< £{n+1)%.

et A={a{n,kiinew, kece ¥ be a matriv of real numbers. For be ®R put
(A,pY(ny= ={aln,k),blk):0&k<+ec}. If Lim{A,b)(n) exists, it is called the

M= G
A-1imit of b. Denote R(A}={be 1% ‘A,;{f“ﬂ h{n) exists}. We say thalt A is regu-
lar (or also Toeplitz, see [11) if the following three conditions are satis-
fied:
(a) IAmVYF ={|e(n,k)|:0e k< }<m,
(b) ¥k lim aln.k)=0,
o~ o

(c) ={a(n,k):0&k<+®}=c(n)—> 1 a5 n—> + @ .

Derote by M the set of all regular matrices. Recall ihat if lim b(k)=x then
0D

A%}iﬁm n(k)=x for all A & M . Denote Mon( ® e )={f € “eo:n<m implies f(n} <
< f(m)¥; for feMon(®eo) let I(f) denote the matrix {a(n,k):n e w k ¢ w} such
that a(n,k)=1 iff k=f(n) and aln,k)=0 iff k=f(n). Let & = {1({):f ¢

¢ Mon{*e0)} . Notice that P e M. For e M and X&1® put

R(OL,X)= {YeX:(BAeLIYSRANT
Cov( S ,X)=ain {|Q|: & & F and UR(A, X=X},

and Non( &, X)=min {}Y{:Ye X and Y ¢ R(Y,X}y. Note that 3(Cov(J),Non{J)
resp.) of 161 is equal to R(M,I®) (Cov(M,1%),Non(M,1% ) resp.).
Let .
p=min {|R|: R e%w and (Ve ®w )} 3geRAM(m> 1))} =
=min {|B}: B is an unbounded family in (P, <* )}

d=min {|@|: D% and (Vfe®w Y (2geD)V¥M(gln)>£(n))} =
=min {|D |: & is a dominating family in (¥ e ,<* )}
and
s=min {|¥|: Pelwl® and (¥Xelwl® (IS (IXnS|=[X-5]= 8 )=
=min {|9|: & is a splitting family on <ot
{see LvD}). It was praved in [6] that p£Cov(M,1%") and g£Non({M,1% )2 b.g
and in L5] the consistency of "ZFC+Cov(M,1% )< 2% " was prov ed.

1.3. Results. We say that a family Q el wl® is an attractive family

for X€1% if for every ce X there is an Re & such that lim {c(n):ne R}

°® i5 ghaotic if for every Re [c0l®

does exist. We say that a family €& Xgl
there is a ¢ e € such that 1im {c(n):ne R% does not exist (see [71 ). Notice

that s=min {{€ |: €< 2 is a chaotic family}. Define
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c=min {6 | @ is an attractive family for *2}
sg=nin {[€]:€c 1% is a cnantic family}

re=min L1 ]: @ 1s an attractive family for 1¥1.

These numbers were studied in 17) in their own naiwre as cardinal characieris-
tics of ¥ = fev -w and s=5, was proved.

We prove

Theotem 1. s=ton(JP , € 2),
sg =Non(d 197},

r=Cov{&d ,* 2),

Ly =0ov(E) ,199).

As a corollary of the mentioned result s=sg from [7] we obtain Non(@,1%)=
=Non(2 ,*'2). The following problem arose naturally:

Problem. Is Mon{M,1%%)=Mon(M,*2) provable in ZFC ?

By a detailed inspection of proofs of 16) and 15] we easily find out that
the fallowing holds: Mon(M, “2)£b.s and b £Cov(M,*2). Ve prove the second
inequality in

Theorem 2. min(r,d)< Cov{M, #2).
The situation between the considered cardinal charscteristics can be describ-
ed now by the following diagrams, where —s means that £ 1s provable in ZFC.

min(r,d) s Cov(M, *2) —— r=Cov(D,*2)

N

Cov(M,1%) —— r o =Cov( & ,1%)

578 =Non(D ,1%° )=Non( D, ©2) s Non( M ,1%°) ——sNon(M, ®2)——> b.s

Easily b« min(z,d) and that the improvement of Thecrem 2 is substantial is
shown by

Theorem 3. Con{ZFC + "b<min(r,d)").

§2. Proofs of inequalities

2_1. Proof of Theorem 1. Take feMon(®w ) and xe “9 . Observe that
(I(E)Y 0 (nM=x(f(n)), therefore I(f)—ﬁ%}gwx(n) exists iff lim{x(n):ne rng(f)}

exists and moreover Mon{ “e) are exactly increasing enumerations of infinite

subsets of <« . Keeping this in mind we easily get
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Non( D, Xo=min {|Y|:ve¥ and Y & R{F X)) -

=min {|¥|:¥YeX and (¥AeD)(Avey) A - lim y(n) does not exist} =
Lo GO

=min {|Y{:Ye X and (¥ feMon{ @ )(FyeY) lim{y(n)ine rngl )} does not ex-
ist} =min {|Y|:Ye X and (¥ 7 e [l Y ITye ) lim {yir):ine I} does not ex-
ist? =min §|Y|:Y& X and Y is 2 chactic family} . Espscially,

Non(3D , #2)=s and Non(,1%° =5, . Cov{D ,X)=min {|A[: A 2@ and UR(Q,X)=
=X} =min {] Qi QA c D and (VeoeX)(TAed)(A ~%l_£r20c:(fn} exists} =

=min {{F |: Fe Mon(®ew ) and (VeeX)(FfeF)(Limfcin)ingrnglf)} exists} =
=min {|Q@i: Aelwl®and (YceX)(FAs@)(linfcln)ine A} exists} =

=min {| @ |: @ is an attractive family for X} . Especially,

Cov(2 ,*2)=r and Cov(D,1%)=1¢ .

2.2. Proof of Theorem 2. Assume a¢ < min(r,d) is a cardinal number and
A ={a, :x<3elis a system of regular matrices. We show that UR(QA,%2) %=
%97 i.e. there is a z € ®2 such that for every o <se the A - Llim z(n)

. - 0D
does not exist.

For every mairix A, there is & row-submatrix B_ and a function

ol
1, & Mon{*w ) such that for every z 2 and ne .
(%) L1,(m,1, (m+1))s2750) implies (8, .z)(n)< 1/4
and

Gex) L1 (m),1, (me1) ez (1) implies (B .2)(n)>3/8

As R(A_ Y& R(B_ ), to prove the theorem it suffices to find z € “2 such that
for every o < s¢ there are infinitely many n's such that (s ) holds and the-
re are infinitely many n’s such that (ssx) holds.

Befine 9«,(“):1« (nz) for o <« 32 . The family {0, 1< 2e§ is not a do-
minating family. Take fe Mon{*es ) such that for every oc < 22 the set
Fo = An:f(n)>g (M} is infinite. For an nef, as g, (M=l (nz) then
ULLTL),f(i+1)) i< nJcontains n2~many elements of rng(l@c }. Therefore the
set

My = tn: HLER), £l A rng(l HEWE

i1s infinite for every et < s¢ . The system iM:ec <se} is not an attractive
family for 2. Take an X e [ w]1% which emphasizes this, namely for every
< e, M -X{=IM_ X[z, holds. Define

z(1)=0 if i 1f(n),f(n+1)) and neX
and

z(i)=1 if 1e [f(n),f(n+1)) and n&X.
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Then oy () and (e aned properties of [ el < we fimoo

7z [ {Pfjd R Ay ; .

§ 3. Proof of the consistency

3.1, Some facts sbout the Cohen exiensions.  Yesume w2 18 3 cardinal nom-
‘ber and N2 M is the model of ZFC obtained from M by o7ding  se-moany Dohen re-
r A -

ais. Then thers are Cetoand Be i where Cree —s ™0 angd B0 —%en (lee 7,

B{ee ¥ are called Cohen reals) such that M is the minimal mods] containing M
and L ( B respectively). Ve denoie the fact 1=M[CI=MIB). Marzover for every
IleP{xe)nt there is a model MECHJ MIBITY . the lsast cne containing the
restrictions Cl1:] — 2 and BI1: 1 —> e cespecially MICI81=H:, ALl models
MIC]I) have the same cardinal numbers as M has,

For every o < g2 -1, Clec ){Ble i respactively) i1s a Cohen real wver

MICII] i.e.

(i) Cle ) is in every comeager subsetl of “2aM coded in M[CIT]
and

(i1) Bl ) is in every comeager subset of “wnaN coded in MIB|T)

(see Theorem VIIT.2.1 of [4]). Observe that necessarily Clec b& MIC|IT ,
Blec ) d MIB|T].

Moreover the Cohen extension possesses the [ollowing propecty (see Lemma
VIT1.2.2 of 141):

{iiiy If XeM is such that there 1s an SeM with Xe§ then thare is an
I &l ' nM such that XeMIC|1].

For our proof we need the following observation: for every I&T(sze)inM,
fe“wnMC|I] and Re Ledd® A MICIT]

(iv) the set {ge “%wn Nig<® £} is a meager subset of “eo> M N coded
in MIC| 13
and

(v) the set f{ge “2:Rc* g_l({}} or R ¢* g"l{l)} is a meager subset of
“2 N coded in MIC|T].

3.2. Proof of Theorem 3. Assume M is arbiirarcy, e 2 @, and N=M[CI as

in Section 3.1. Then in N holds "b=w, < wzémm(};,g)“.

1
{a) N|=b= @y, indeead Blcolz {Blec )t c(.éd)ﬁ is unbounded in N. Suppose
not, and f& N is an upper bound for Btcui. Then [ g e and by (111} there
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15 an [eleel®n M such that £eMIC|I] . Take - e ¢, -1, then Bl )¢{ge

eMig<®el by (i1 and {iv).
(b H!:g,zcoz. Assume not and 2 = {f tec< o} 15 a dominating fami-

<
Iy inH. Asd ¢ ) (o= e ) by (ii1) there is an Le [ sed LN M such that

De MDY . Take @ ff e se-I. Then there is an o < ) with B(R)<¥ I

but this coniradicts {11} and (iv),

(¢} Nerz . Similarly, assume not and QL= {A_ :ec< ¢} is an at-
tractive family for “2 in t. Then 4 = @ e, 80 by (1i1) there is an

[#3)

gLzl lr‘\ M such that 0.€ MIC|I] . Take e =e-1, then there is anec< oy
such that either A €% (C(3))7H(0) or A,€*(C(3)"11) but this contradicts
{i) and (v).
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