COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 29,1 (1988)

MORE ON SET-THEORETIC CHARACTERISTICS OF SUMMABILITY OF SEQUENCES BY REGULAR (TOEPLITZ) MATRICES

Peter VOJTÁŠ

Abstract: We consider set-theoretic characteristics which reflect some properties of summation of sequences by regular matrices (row-submatrices of the diagonal matrix respectively) acting on ω_2 and 1^ω , and we give some relations between them. We improve the lower bound for the minimal size of a family of regular matrices such that every bounded sequence of real numbers is summed by one of them.

Key words: Cardinal characteristics, matrix summation.

Classification: 40C05, 03E05

§ 1. Introduction, notation and results

1.1. Introduction. Recently V.I. Malychin and M.N.Cholščevnikova discovered that some problems related to the summation methods (for sequences) are set-theoretically sensitive (see [5]). In [6] we introduced cardinal characteristics involved in these problems and gave some estimates using well-known cardinal characteristics of $\mathcal{P}(\omega)$ and the Baire space ω_{ω} the value of which depends on the model (additional axiom) of set theory you consider.

In the present paper we improve one result of [6], namely, we improve the lower bound for the minimal size of a family of regular matrices such that every bounded sequence is summed by one of them. Moreover we introduce a few cardinal characteristics which reflect properties of summation of sequences by an arbitrary class $\mathcal S$ of regular matrices acting on a subspace X of $\mathbb S^\infty$. We discuss the extremal cases when $\mathcal S$ is the whole class of regular matrices or $\mathcal S$ is the class of row-submatrices of the diagonal regular matrix, and $\mathbb S^\infty$ or $\mathbb S^\infty$.

1.2. Notation and what is already known. We use the standard set-theoretic notation (see e.g. [3]).

As a rule, ω denotes the set of all natural numbers, \dot{x} denotes the set of all mappings from x to y, l^{∞} is the set of all bounded sequences of real

numbers, $[\infty]^{3} = \{x \le \infty : |x| = \lambda\}$, $\exists \hat{n}$ means "there are infinitely many \hat{n} 's" and $\forall \hat{n}$ means "for all but finitely many \hat{n} 's", $x \le *y$ denotes x - y is finite and for $f, g \in \omega_{\omega}$, f < *g denotes $(\forall \hat{n})(f(n) < g(n))$, $rng(f) = \{f(n) : n \in \omega\}$, $\{f(n), f(n+1)\} = \{i \in \omega : f(n) \le i < f(n+1)\}$.

Let $A=\{a(n,k):n\in\omega\ ,\ k\in\omega\ \}$ be a matrix of real numbers. For $b\in^{\omega}R$ put $(A,b)(n)=\sum\{a(n,k),b(k):0\le k<+\infty\}$. If $\lim_{n\to\infty}(A,b)(n)$ exists, it is called the A-limit of b. Denote $R(A)=\{b\in 1^{\infty}:A-\lim_{n\to\infty}b(n) \text{ exists}\}$. We say that A is regular (or also Toeplitz, see [1]) if the following three conditions are satisfied:

- (a) $\exists m \forall n \Sigma \{|s(n,k)|: 0 \le k < +\infty \} < m,$
- (b) $\forall k \lim_{m \to \infty} a(n.k)=0$,
- (c) $\sum \{a(n,k): 0 \le k < +\infty\} = c(n) \longrightarrow 1 \text{ as } n \longrightarrow +\infty$.

Denote by $\mathcal M$ the set of all regular matrices. Recall that if $\lim_{k\to\infty} b(k)=x$ then $A-\lim_{k\to\infty} b(k)=x$ for all $A\in\mathcal M$. Denote $\text{Mon}(^\omega\omega)=\{f\in^\omega\omega:n< m\text{ implies }f(n)< < f(m)\};$ for $f\in \text{Mon}(^\omega\omega)$ let I(f) denote the matrix $\{a(n,k):n\in\omega,k\in\omega\}$ such that a(n,k)=1 iff k=f(n) and a(n,k)=0 iff $k\neq f(n)$. Let $\mathfrak D=\{I(f):f\in M \text{ Mon}(^\omega\omega)\}$. Notice that $\mathfrak D\subseteq\mathcal M$. For $\mathcal S\subseteq\mathcal M$ and $X\subseteq I^\infty$ put

 $\mathcal{R}(\mathcal{G},X) = \{Y \subseteq X : (\exists A \in \mathcal{G})(Y \subseteq R(A))\} ,$ $\operatorname{Cov}(\mathcal{G},X) = \min \{|a| : a \subseteq \mathcal{G} \text{ and } \bigcup \mathcal{R}(a,X) = X\},$

and Non(\mathcal{G} ,X)=min { $|Y|:Y\subseteq X$ and $Y \notin \mathcal{R}(\mathcal{G},X$ }. Note that J(Cov(J),Non(J) resp.) of [6] is equal to $\mathcal{R}(\mathcal{M},l^{\infty})$ ($Cov(\mathcal{M},l^{\infty}),Non(\mathcal{M},l^{\infty})$ resp.). Let

<u>b</u>=min { $|\mathcal{B}|: \mathcal{B} \subseteq \omega$ and $(\forall f \in \omega)(\exists g \in \mathcal{B})(\exists \tilde{n})(g(n) > f(n))$ } = =min { $|\mathcal{B}|: \mathcal{B}$ is an unbounded family in $(\omega, <*)$ }

<u>d</u>=min { $|\mathfrak{D}|: \mathfrak{D} \subseteq \omega$ and $(\forall f \in \omega)(\exists g \in \mathfrak{D})(\forall \mathring{n})(g(n) > f(n))$ } = =min { $|\mathfrak{D}|: \mathfrak{D}$ is a dominating family in $(\omega, <*)$ }

 \underline{s} =min { $|\mathcal{Y}|: \mathcal{Y} \subseteq [\omega]^{\omega}$ and $(\forall X \in [\omega]^{\omega})(\exists S \in \mathcal{Y})(|X \cap S| = |X - S| = \mathcal{H}_{o})$ =
=min { $|\mathcal{Y}|: \mathcal{Y}$ is a splitting family on ω }

(see [vD]). It was proved in [6] that $\underline{b} \not \in \text{Cov}(\mathcal{M}, l^{\infty})$ and $\underline{s} \not \in \text{Non}(\mathcal{M}, l^{\infty}) \not \in \underline{b} \cdot \underline{s}$ and in [5] the consistency of "ZFC+Cov $(\mathcal{M}, l^{\infty}) \not \in 2^{\omega}$ " was prov ed.

1.3. Results. We say that a family $\mathcal{A} \subseteq [\omega]^{\omega}$ is an attractive family for X \subseteq 1 if for every c \in X there is an R \in \mathcal{A} such that $\lim \{c(n):n\in R\}$ does exist. We say that a family $\mathcal{C} \subseteq X \subseteq 1^{\infty}$ is chaotic if for every $\mathbb{R} \in [\omega]^{\omega}$ there is a c \in \mathcal{C} such that $\lim \{c(n):n\in \mathbb{R}\}$ does not exist (see [7]). Notice that s=min $\{|\mathcal{C}|:\mathcal{C} \subseteq {\omega}\}$ is a chaotic family}. Define

These numbers were studied in [7] in their own nature as cardinal characteristics of $\omega^* = \beta \omega - \omega$ and $\underline{s} = \underline{s}_{\omega}$ was proved.

We prove

Theorem 1. $\underline{s}=Non(\mathfrak{D}, ^{\omega}2),$ $\underline{s}_{6}=Non(\mathfrak{D}, 1^{\infty}),$ $\underline{r}=Cov(\mathfrak{D}, ^{\omega}2),$ $\underline{r}_{c}=Cov(\mathfrak{D}, 1^{\infty}).$

As a corollary of the mentioned result $\underline{s}=\underline{s}_{6}$ from [7] we obtain Non($\mathfrak{D},1^{\infty}$)==Non($\mathfrak{D},^{\omega}$ 2). The following problem arose naturally:

<u>Problem</u>. Is $Non(\mathcal{M}, 1^{\infty}) = Non(\mathcal{M}, {}^{\omega}2)$ provable in ZFC ?

By a detailed inspection of proofs of [6] and [5] we easily find out that the following holds: $\text{Mon}(\mathcal{M}, {}^{\omega}2) \leq \underline{b} \cdot \underline{s}$ and $\underline{b} \leq \text{Cov}(\mathcal{M}, {}^{\omega}2)$. We prove the second inequality in

Theorem 2. $\min(r,d) \leq \text{Cov}(\mathcal{M}, \omega_2)$.

The situation between the considered cardinal characteristics can be described now by the following diagrams, where \longrightarrow means that \angle is provable in ZFC.

$$\min(\underline{r},\underline{d}) \longrightarrow \operatorname{Cov}(\mathcal{M}, \overset{\omega}{\sim} 2) \longrightarrow \underline{r} = \operatorname{Cov}(\mathcal{D}, \overset{\omega}{\sim} 2)$$

$$\operatorname{Cov}(\mathcal{M}, 1^{\infty}) \longrightarrow \underline{r}_{6} = \operatorname{Cov}(\mathcal{D}, 1^{\infty})$$

 $\underline{\mathbf{s}} = \underline{\mathbf{s}} = \mathrm{Non}(\mathfrak{D}, 1^{\infty}) = \mathrm{Non}(\mathfrak{D}, {}^{\omega_2}) \longrightarrow \mathrm{Non}(\mathcal{M}, 1^{\infty}) \longrightarrow \mathrm{Non}(\mathcal{M}, {}^{\omega_2}) \longrightarrow \underline{\mathbf{b}} \cdot \underline{\mathbf{s}}$

Easily $\underline{b} \neq \min(\underline{r},\underline{d})$ and that the improvement of Theorem 2 is substantial is shown by

Theorem 3. Con(ZFC + "b < min(r,d)").

§2. Proofs of inequalities

2.1. Proof of Theorem 1. Take $f \in \text{Mon}(\omega \omega)$ and $x \in \omega^2$. Observe that (I(f).x)(n)=x(f(n)), therefore $I(f)-\lim_{n\to\infty}x(n)$ exists iff $\lim\{x(n):n\in rng(f)\}$ exists and moreover $\text{Mon}(\omega \omega)$ are exactly increasing enumerations of infinite subsets of ω . Keeping this in mind we easily get

 $\begin{aligned} &\operatorname{Non}(\mathfrak{D},\mathsf{X})=\min \; \{|\mathsf{Y}|: \mathsf{Y}\subseteq \mathsf{X} \; \text{ and } \; \mathsf{Y} \notin \mathcal{R}(\mathfrak{D},\mathsf{X})\} =\\ &=\min \; \{|\mathsf{Y}|: \mathsf{Y}\subseteq \mathsf{X} \; \text{ and } \; (\mathsf{Y} \land e\, \mathfrak{D}\,)(\exists \mathsf{Y} \in \mathsf{Y}) \; A - \lim_{n\to\infty} \mathsf{y}(n) \; \text{ does not exist}\} =\\ &=\min \; \{|\mathsf{Y}|: \mathsf{Y}\subseteq \mathsf{X} \; \text{ and } \; (\mathsf{Y} f \in \operatorname{Mon}(^\omega\omega))(\exists \mathsf{Y} \in \mathsf{Y}) \; \lim \{\mathsf{y}(n): n \in \operatorname{Trg}(f)\} \; \text{ does not exist}\} =\\ &=\min \; \{|\mathsf{Y}|: \mathsf{Y}\subseteq \mathsf{X} \; \text{ and } \; (\mathsf{Y} f \in \mathcal{L}\omega)^\omega)(\exists \mathsf{Y} \in \mathsf{Y}) \; \lim \{\mathsf{y}(n): n \in \mathcal{I}\} \; \text{ does not exist}\} =\\ &=\min \; \{|\mathsf{Y}|: \mathsf{Y}\subseteq \mathsf{X} \; \text{ and } \mathsf{Y} \; \text{ is a chaotic family}\} \; . \; \text{ Especially},\\ &\operatorname{Non}(\mathfrak{D}, ^\omega 2)=\underline{s} \; \text{ and } \operatorname{Non}(\mathfrak{D}, 1^\omega)=\underline{s}_{\mathscr{C}} \; . \; \operatorname{Cov}(\mathfrak{D}, \mathsf{X})=\min \; \{|\mathcal{A}|: \mathcal{A}\subseteq \mathcal{D} \; \text{ and } \; U\mathcal{R}(\mathcal{A}, \mathsf{X})=\\ &=\mathsf{X}\} \; =\min \; \{|\mathcal{A}|: \mathcal{A}\subseteq \mathcal{D} \; \text{ and } \; (\mathsf{Y} c\in \mathsf{X})(\exists \mathsf{A}\in \mathcal{A})(\mathsf{A} - \lim_{n\to\infty} c(n) \; \text{ exists}\} =\\ &=\min \; \{|\mathcal{A}|: \mathcal{A}\subseteq [\omega]^\omega \; \text{ and } \; (\mathsf{Y} c\in \mathsf{X})(\exists \mathsf{A}\subseteq \mathcal{D})(\lim \{c(n): n \in \mathsf{A}\} \; \text{ exists}\} =\\ &=\min \; \{|\mathcal{A}|: \mathcal{A}\subseteq [\omega]^\omega \; \text{ and } \; (\mathsf{Y} c\in \mathsf{X})(\exists \mathsf{A}\subseteq \mathcal{D})(\lim \{c(n): n \in \mathsf{A}\} \; \text{ exists}\} =\\ &=\min \; \{|\mathcal{A}|: \mathcal{A} \; \text{ is an attractive family for } \mathsf{X}\} \; . \; \text{ Especially},\\ &\operatorname{Cov}(\mathfrak{D}, ^\omega 2)=\underline{r} \; \text{ and } \operatorname{Cov}(\mathfrak{D}, 1^\omega)=\underline{r}_{\mathscr{C}} \; .\end{aligned}$

2.2. Proof of Theorem 2. Assume $\infty < \min(\underline{r},\underline{d})$ is a cardinal number and $\mathcal{Q} = \{A_{\infty} : \alpha < \infty \}$ is a system of regular matrices. We show that $U\mathcal{R}(\mathcal{Q}, \omega^2) \neq \omega^2$ i.e. there is a $z \in \omega^2$ such that for every $\infty < \infty$ the $A_{\infty} - \lim_{n \to \infty} z(n)$ does not exist.

For every matrix A_{∞} there is a row-submatrix B_{∞} and a function $l_{\infty} \in \text{Mon}(^{\omega}\omega)$ such that for every $z \in ^{\omega}2$ and $n \in \omega$.

(*) [$l_{\infty}(n), l_{\infty}(n+1)$) $\leq z^{-1}(0)$ implies ($l_{\infty}(z)(n) < 1/4$ and

(**)
$$[l_{\infty}(n), l_{\infty}(m+1)) \le z^{-1}(1)$$
 implies $(B_{\infty}.z)(n) > 3/8$

As $R(A_{\infty}) \subseteq R(B_{\infty})$, to prove the theorem it suffices to find $z \in {}^{\omega}2$ such that for every $\infty < \varkappa$ there are infinitely many n´s such that (\varkappa) holds and there are infinitely many n´s such that (\varkappa)

Define $g_{\infty}(n)=l_{\infty}(n^2)$ for $\infty<\Re$. The family $\{g_{\infty}: \infty<\Re\}$ is not a dominating family. Take $f\in Mon(^{\omega}\omega)$ such that for every $\infty<\Re$ the set $F_{\infty}=\{n:f(n)>g_{\infty}(n)\}$ is infinite. For an $n\in F_{\infty}$ as $g_{\infty}(n)=l_{\infty}(n^2)$ then $U\{f(i),f(i+1)):i< n\}$ contains n^2 -many elements of $rng(l_{\infty})$. Therefore the set

$$\mathsf{M}_{\infty} = \{ \mathsf{n} \colon \big| [\mathsf{f}(\mathsf{n}), \mathsf{f}(\mathsf{n} + \mathsf{l})) \land \mathsf{rng}(\mathsf{l}_{\infty}) \big| \ge 2 \}$$

is infinite for every $\alpha < \mathfrak{se}$. The system $\{M_{\alpha}: \alpha < \mathfrak{se}\}$ is not an attractive family for ω_2 . Take an $X \in [\omega]^\omega$ which emphasizes this, namely for every $\alpha < \mathfrak{se}$, $|M_{\alpha} - X| = |M_{\alpha} \cap X| = \mathfrak{se}$ holds. Define

 $\label{eq:z(i)=0} z(i) \text{=} 0 \text{ if } i \text{ } \epsilon \text{ } \text{I} \text{ } \text{f}(n), \text{f}(n \text{+} 1)) \text{ and } n \text{ } \epsilon \text{ } \text{X} \\ \text{and} \\$

z(i)=1 if $i \in [f(n), f(n+1))$ and $n \notin X$.

Then by (*) and (**) and properties of f and 'we have

§ 3. Proof of the consistency

3.1. Some facts about the Cohen extensions. Assume ∞ is a cardinal number and N \supseteq M is the model of ZFC obtained from M by adding ∞ -many Cohen reals. Then there are C \in N and B \in N where C: ∞ \longrightarrow ∞ 2 and B: ∞ \longrightarrow ∞ (C(∞), B(∞) are called Cohen reals) such that N is the minimal model containing M and C (B respectively). We denote the fact N=M[C]=M[B]. Moreover for every I \in $\mathcal{P}(\infty)$ \cap M there is a model M[C|I] =M[B|I] , the least one containing the restrictions C|I:I \longrightarrow ∞ 2 and B|I:I \longrightarrow ∞ 4 (especially M[C|0]=M). All models M[C|I] have the same cardinal numbers as M has.

For every $\ll < \approx -1$, $C(\ll)(8(\ll)$ respectively) is a Cohen real over M[C|I] i.e.

- (i) $C(\infty)$ is in every comeager subset of $^{\omega}2 \cap N$ coded in M[C|I] and
- (ii) $B(\infty)$ is in every comeager subset of ${}^\omega\omega \wedge N$ coded in M[B|I] (see Theorem VIII.2.1 of [4]). Observe that necessarily $C(\infty) \notin M[C|I]$, $B(\infty) \notin M[B|I]$.

Moreover the Cohen extension possesses the following property (see Lemma VIII.2.2 of [4]):

(iii) If $X \in \mathbb{N}$ is such that there is an $S \in \mathbb{M}$ with $X \subseteq S$ then there is an $I \in [\infty]^{\leq |S|} \cap \mathbb{M}$ such that $X \in \mathbb{M}[C|I]$.

For our proof we need the following observation: for every $I \in \mathcal{P}(\mathscr{A}) \cap M$, $f \in {}^{\omega}\omega \cap M[C|I]$ and $R \in [\omega]^{\omega} \cap M[C|I]$

- (iv) the set $\{g \in {}^\omega \cap N : g < {}^*f \}$ is a meager subset of ${}^\omega \cap N$ coded in M[C|I] and
- (v) the set $\{g \in {}^{\omega}2: R \subseteq {}^* g^{-1}(0) \text{ or } R \subseteq {}^* g^{-1}(1)\}$ is a meager subset of ${}^{\omega}2 \cap N$ coded in M[C|I].
- 3.2. Proof of Theorem 3. Assume M is arbitrary, $\infty \ge \omega_2$ and N=M[C] as in Section 3.1. Then in N holds " $\underline{b} = \omega_1 < \omega_2 \le \min(\underline{r},\underline{d})$ ".
- (a) $N = b = \omega_1$, indeed $B | \omega_1 = \{B(\infty) : \infty < \omega_1\}$ is unbounded in N. Suppose not, and $f \in N$ is an upper bound for $B | \omega_1$. Then $f \subseteq \omega_{\times} \omega$ and by (iii) there

- is an $I \in [\mathcal{H}]^{\omega} \cap M$ such that $f \in M[C|I]$. Take $\gamma \in \omega_{l}^{-I}$, then $B(\gamma) \notin \{g \in \mathbb{N}: g < f\}$ by (ii) and (iv).
- (b) $\mathbb{N}[=\underline{d} \geq \omega_2$. Assume not and $\mathfrak{D} = \{f_\infty : \alpha < \omega_1\}$ is a dominating family in \mathbb{N} . As $\mathfrak{D} \subseteq \omega_1 \times (\omega \times \omega)$ by (iii) there is an $\mathbb{I} \in \mathbb{I} = \mathbb{$
- (c) N \models $\underline{r} \ge \omega_2$. Similarly, assume not and $\alpha = \{A_{\infty} : \alpha < \omega_1\}$ is an attractive family for ω_2 in N. Then $\alpha \subseteq \omega_1 \times \omega$, so by (iii) there is an I \subseteq [∞] \cap M such that $\alpha \in M[C|I]$. Take $\beta \in \infty$ -I, then there is an $\alpha < \omega_1$ such that either $A_{\infty} \subseteq *(C(\beta))^{-1}(0)$ or $A_{\infty} \subseteq *(C(\beta))^{-1}(1)$ but this contradicts (i) and (v).

References

- [1] R.S. COOKE: Infinite Matrices and Sequence Spaces, MacMillan Co. London 1950.
- [2] E.K. van DOUWEN: The integers and topology, in: Handbook of Set—theoretic Topology (ed. by J. Vaughan and K. Kunen), North—Holland, Amsterdam, 1984, 111—167.
- [3] T. JECH: Set Theory, Academic Press, New York, 1978.
- [4] K. KUNEN: Set Theory An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1980.
- [5] V.I. MALYCHIN, N.N. CHOLŠČEVNIKOVA: Independence of two set-theoretic statements in the theory of summation, Mat. Zametki 28,6 (1980), 869–882.
- [6] P. VOJTÁŠ: Set-theoretic characteristics of summability of sequences and convergence of series, Comment. Math. Univ. Carolinae 28 (1987), 173–183,
- [7] P. VOJTÁŠ: Cardinalities of noncentered systems of subsets of which reflect some qualities of ultrafilters, p-points and rapid filters. To appear.

Mathematical Institute, Slovak Academy of Sciences, Jesenná 5, O4154 Košice, Czechoslovakia

(Oblatum 16.11. 1987)