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The strength of the comparison test
versus gaps between convergent and divergent series

P. Vojtas

Abstract. We consider series of nonnegative real numbers
ordered under eventual dominance (Comgarlson) We prove that
the minimal size of a comparison family of convergent series
equals to the minimal size of a base of the ideal of Lebesgue
measure zero sets. We mention a connection with another compa-
rison test which uses the ordering ac_gcording to the speed of
convergence of remainders. We prove that there is an (w *)m
-gap between convergeni and divergent series.

AMS Subject <classification: O03ED5, 40AO0S5.

l.Introduction. In this paper we consider set-theoretic

characteristics connected with the convergence or divergence of
series consisting of nonnegative=r831 numbers. In K. T. Smith’s
textbook (8], p. 94 ) we can read: "The comparison test is
probably the most valuable convergence test there is - but
plainly the value depends on having a large stock of series to
use in comparison". We show that ito decide the convergence of

all convergent series we need this stock as large as the minimal

base of the ideal of Lebesgue measure zerc sets. This number,
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depending on the additional axioms of set theory, can be different

but in general it ranks among ithe greatest cardinal characteristics

of the real line. We mention the connection with another compa-
rison test which uses the ordering according to the speed of
convergence of remainders we considered in [9]. On the other

side, we found (personally) interesting that independently of the

axioms of set theory there are (w
and divergenti series,.

Thi %er is_in final form and will not be submitted for
puo 1ca ion elsewhere.

l,u)f’)~gaps between convergent
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2. The strength of comparison tests. COur notation is standard
set-theoretic one, see e.g. [61. Let (P,<) be a partial orde-
ring; B8 % P is said to be unbounded if (Y¥p & P){(db e B)
(b<4p), D& P is said to be dominating if (¥ pe PY(Jde D)

(p < d) . We define (the notation is moiivated by the unified

one in [2]):
b(P,<) = min {|B| : B is unbounded in (P, <),
d(P, <) = min {|D| : 0 1is dominating in (P, <)} .

Further xy is the set of all functions from x to vy ,w
is the set of natural numbers, c; = {a € <0, +62) : lim faln) :
newl =0 ', K = {a ec; : S {an) : newt <« +eo} and
Z=33 e c; :S4aln) : ngewl = +o00} . We define a partial

ordering as follows: for a, b e;i:; put a <*b if

in : a(n) = b(n))} 1is finite; x <%y denotes that x -y is

finite. For L = §X9 Real : the Lebesgue measure a¢(X) = 07,,

the additivity of measure Add(IL) 1is defined as min {|g&7]
el & Jt ¢l b . We say that £ &l is a base of [,

if (YXxel YIEedH)IXg E) and ML) = nin §1&| : Leall

is a base of [L } . T. Bartoszynski proved in {1] that

Add(L) = 2% if and only if b(X, <*) = 2% . We prove the

following theorem: ‘

Theorem 1. d(¥%, <*) = &)

Proof. Case d( %X, «*) <« A'(IL,) . The following lemma appears as

Lemma 7 in fl"] , but the idea appeared essentially already in fl]

Lemma 1. (T. Bartoszynski, D. H. Fremlin). Let Y= {5 € w xcu
(Vices )] $3: (i, NDes |« + 2. Then there are

functiaons fkwf>Vf ke L (], and Ev—>Re : L — Y such that

Ve © E implies fg*RE

Corollary. Assume é‘ ¢ I, 1is a base of il. . Then there is a

system %RE cEef Ve ¥ such that (vife“w W(JEef )_(ff;;*RE).

We note that putting f:(n) = max i+ 1 : (n, i) € RE§. We

obtain a dominating family in (%o, <*) of size |€ | which
proves d <« A*(IL) , originaly proved in [7] (d = _q("”w, <*) -
- sese [2]).

To continue the proof of our ineguality, we need the follow-
ing notation: @ is the set of rational numbers, for ge %L
put  <g(n), g(n+1)) = §ie w @ g(n) & i < gn+1)§,
<g(n), gln+1))qg - ff : £ is a mapping of <g(n), g(n+1)) into a$,




P. Vojtas: The strength of the comparison test

1 - NRCIE g(n+1))y

g NEw ’

¥y = iR & rﬁ{jn} « <9, ol L) vy el (] the
eolm, oeg (i e RY ) = Gos DY,

if moreover a e ™ *0 , then

£ (n) = min dicw Z2ia(y) i g3 <rmfe1/2" Yy

ag(n) =a M <Jg(n), gln + 1)) , i.e. g & :{g :

For R @3’9 put ap(i) = max fr(i) « (n, N e Ry S $h(3)
g(n) « 3 < gln + 1} < l/2n} ; clearly ape™® M “u

The technical part of the proof of (ii) ~» (i) in Lemmea
of fl] can be reformulated as follows:

Lemma 2. Assume f & “,, ace KX ™\ ““Q and R E 5"9 are such
that £ <¥g and g, <R . Then a z;*aR

The proof is straightforward. To prove the inequality we apply
Coerollary to the space X . Assunme £ <, is a dominating
family in “o, <Y and & <[, is a base of {J, such that

€] =d and | £ = NLY . Tnen for every g e  there

is a system ng : Ee fﬂ'c;-S"g such that (VY f e xg)(‘gfé—é)
(f g'*Rg) . Now, applying Lemma 2, we see that the system

fa(RE) cge ¢ &% Eed& ¥ is a dominating family in (%, <*)
of size d. N(IL) = (L) . For, take any be K . Then
there is an ag'K mwt} such that b <¥a . Take g C—C° such
that f_ <¥ g . Then S }"g and let E & & be such that
s c* RE . Finally b <*a <*a(RY)

Case AF({L) « d(K, <*®) . Fix a dominating family (} & X
in (%, <*) and an enumeration {In . newt of all inter-
vals of real numbers with rational endpoints. Put
E, = Q UL, : m>n & alm) >/\*(Im)} . We show that
§Ea : a ey is a base of [}, . Take X & & , then there
is a y& 2 such that Xgﬂy = QU{Im cm>n&y(m) = 1%
and Z{y(n).#(ln) cNEew} <+oo. Take a e (L such that
a(n) > y(n). w(I_) holds for all but finitely many n . Then
X< U, < Eah

There is an interesting feature of our theorem. We can
compare the strength of two different comparison tests. Far
a, b @ X we define a <, b if %wm(Z{a(i) L n €1 <ot/
/S Ib(i) : n<£i<+e0f) s 0 . We proved in [9] that

619
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d( X, < ) =d . As d = N(IL)Y we immediately obtain
Observation. d(X, < ) = d(X, <*)
freely rephrased: the comparison test using the ordering <4

is stronger than the one using ‘4% i .
Hotice that d@) ,<% = 72 and h@f ,<") = 2 , where

(DY, < =nin {18l : B & WJaecP)(¥beb)a <Fb)f
and d(DL, <) =nin3i0] : D€ D8 (Vae & H(Ad e D)(d <¥a)}
The corresponding results for < = are Q(o@i,<_o) = b and

a4, <) = d (see [9]).

3. Gaps between K and & . In addition to the terminology

introduced in §2, we need the following one. Let (P,<) be

a partial ordering, A = fad : uLZwl} < P and B = flb‘i 1ol < wl}g‘

C P be such that (VY « <P 4“’1)(30{ < ap <« bf” «b,) . The
pair (A, B) is said to be an (w,, wf‘)ngap if there is no
c &P with ay <c <b, for every o« <, . The gap (A, B)
in (C;, <¥) is a gap between K and & if A< K and B & P
Theporem 2. There is an (col, wf)ngap between X and .2 under <
Proof. We follow the original proof of F. Hsusdorf (€41). For
a, b c—,c; put K(a, b) = minfn . (W k 2n)(alk) < b(k))} . For
A& c; and b ¢ c; such that (Ya e A)(a <¥b) we say that
b is close to A (denote A yb) if (Vkew J(fa e A

K(a, b) = k} is finite). By transfinite induction we construct
A=fayidew }c K and B = {b, : xcwl} c 9 such that
for every dz.ﬁ < wy

(1) a, <*ay ¥ by, <* b,
and (2) {af. :F.{UL} 4 by holds. Then (A, B) is a gap between J/4

and & . To proceed by induction, we have to verify two
properties:
1. let A={a :né€wic® and B = b newic9

be such that (4m <n<ew J(ag <* a, z* b, <* b
Then there is an ac K and b e such that for every
Nnew we have a, <¥a o 4ﬂ“bn . For this put ng = 0 and
= min 4 n >Ny (¥m > n)(ak(m) > ak”l(m)
& a (m) = b, (m)
& by (m) < b (m) )
5§38 (1) i mei c+o0}<l/2
2 Z§bk—l(i) cR €1 < mlj>1/k)} .

n
ik

¥
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Define a(i) = a (i) and b(i) = b (i) for ie In, n )
2. tet A ={a :newle ¥ and b ¢ 2 be such that

{(¥m<n <.g;)(am 4ﬁ'an «<* h) . Then there is an x & & such
that (Yme w )(am ¥ x 2¥b) and (Vkee Y@n K(an, x) £ Kk}
is finite). Similarly put n_ = 0 and n = min {n : (y m> n)

(ak(m) <1ak+l(@) < blm) & 2 3b(i) - ak(i) PNy <1< n}>2/ky.
Define x(i) =(a, (1) + b(i)}/2 for i €(n,_,, n) and XDP =
(a (n) + a  ,(n))/2
Analogously, by induction we can prove the following

Observation. Every linear ordering of size ey is embeddable

. s +
(order preserving) into c,

Corollary. If v
(qu,cuf)—gaps in c; (where different gaps means that the

[

< 2 | then there are 2 l—many different

ideal points in the completion of the partially ordered set
(c , <*) corresponding to these gaps are different). o

Proof. We modify a technigue from EBJd) Take D&% 2 1
a dense subset of size Cul . Every x & 2 1
to a Dedekind cut in D . Embedd 0 into cg . Only 2% -many
images of these cuts aretsilled by some element of ¢’ . The

0
rest are gaps in c; , 2 l—many of them are (cul,leﬁmgaps‘
Observe that ® 1is an ideal in (C;,.4*) and 2 is

a filter. Moreover X is such an ideal that the complement

- D corresponds

-K = 9 is a filter. This led us to a natural guestion:

Consider B = f(cu)lfin , J an ultrafilter on B and
i = 3% =B - 3 the dual prime ideal. Are there (cul,cuf)—gaps
between i and 3 ? The answer is straightforward.

Note that, unlike for % and &
occur in case the additivity b(i,«*) is countable and the
character %{j) in {3(@;) (= d(3,<*)) is un_countable.
Observation. For every uniform ultrafilter 3 on w there is
an (tui,cu§)—gap between 3% and j .

Proof. Take {A  : o{ecul}c; (] and {By:Lew }c < [w]™
an arbitrary (e, kﬁ?—gap in K(Lu)lfln i.e.

the following holds: (V¥ o «f «Coyl(h, «:*Ar & BL*PTEIA(',F\ Bp|<

<A & 1(3[: € Loy o< w ><A4\ cros oAl < w*0>

Take f :w . —3ew a one-to-one and onto such that f(BO) c 3

Then {f(AA) i = &k} € 3% and {f(B&) : K E qu} < j fHom

an  Cwy, a{?—gap between 3% and 3

, here this gaps can
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