SIMULTANEOUS STRATEGIES AND BOOLEAN GAMES OF UNCOUNTABLE LENGTH

P. Vojtás

Estratto

«PROCEEDINGS OF THE 10th WINTER SCHOOL»

Supplemento ai Rendiconti del Circolo Matematico di Palermo

Serie II - numero 2 - 1982

Via Archirafi, 34 - 90123 Palermo (Italia)

Peter Vojtáš

The paper is devoted to the study of the existence of a λ -closed dense subsets of a Boolean algebra under certain game-theoretical properties. T.Jech in [3] introduced the following game. Let B be a complete Boolean algebra and λ an ordinal number. The transfinite game $\mathcal{G}(B,\lambda)$ is played between two players White and Black. Let White and Black define a decreasing sequence

$$w_0 \geqslant b_1 \geqslant w_2 \geqslant b_3 \geqslant \dots \geqslant w_{\beta+2n} \geqslant b_{\beta+2n+1} \geqslant \dots$$
 (1)

of nonzero elements of B of the length $\leq \alpha$ by taking turns defining its entries. (White chooses $v_{\beta+2n}$, for β limit $\langle \alpha', n \in \omega \rangle$; Black chooses $b_{\beta+2n+1}$) The play is won by Black if the sequence (1) has nonzero intersection and length α , and by White if the intersection is \mathbb{O} . A winning strategy for Black in the game $\mathcal{G}(B,\alpha')$ is a function $\mathcal{G}: \bigcup \{\beta : \beta < \alpha'\} \longrightarrow B$ with the property that Black wins every play (1) in which he follows \mathcal{G} .

Theorem 1 (T.Jech [3]). Assume B is a complete Boolean algebra and λ an uncountable cardinal number. Then (a) \rightarrow (c) \rightarrow (d), where

- (a) Algebra B has a λ -closed dense subset.
- (c) Black has a winning strategy in the game g(B,T) for each $T < \lambda$.
- (d) Algebra B is $(\mathcal{T}, \infty, 2)$ distributive for each $\mathcal{T} < \partial$.

Basically, our research was motivated by the question whether (c)—>(a), i.e. whether the existence of winning strategy for Black implies that B has a A-closed dense subset. The following definition concerns the structure of the set of all strategies and is powerfull also for limit cardinal numbers.

<u>Definition 2.</u> We say that Black has a simultaneous winning strategy of the length ∂ in the algebra B if there is one strategy $G: \bigcup \{ {}^{d}B: d < \partial \} \longrightarrow B$ such that G is winning for Black in each game g(B, d) for $d < \partial$.

Lemma 3. (a) \rightarrow (b) \rightarrow (c), where

(a) and (c) are as in the Theorem 1, and

(b) Black has simultaneous strategy for B of the length β . PROOF. Is obvious.

In what follows we describe a type of algebras for which implication $(b) \rightarrow (a)$ holds, namely the ones which has a tree-base. We give some conditions under which a boolean algebra has a tree-base. As a consequence we get an characterization of the algebra CoI (λ, \mathcal{K}) . At the end of this paper we give some historical comments.

§1. Notations, definitions, constructions. Let B be a complete Boolean algebra, ≤ is the canonical ordering of the algebra B, $\beta, \kappa, \mathcal{C}$ are cardinal and $\mathcal{L}, \beta, \gamma$ ordinal numbers, Lim denotes the class of limit ordinal numbers. $B^+ = B - \{O\}$, $B^{\dagger}u$ is a partial algebra, hsat(B) denotes the hereditarily saturatedness. By P and Q we denote a maximal partition of B, system $\mathfrak{C} = \{P_{d} : d < A\}$ is called a matrix, P_{d} 's are columns of Θ , $x \in P_{d}$ is an element of the matrix @ , P << Q denotes that P refines Q, P << @ if P refines each P, . W is said to be monotone provided &< \$\beta\$ implies \$P_3 << P_\$\lambda. Remark, that if @ is monotone, then $(U@, \le)$ forms a tree and $P_{\mathcal{K}}$ is the A-th level of this tree. Let $\Omega = \{Q_A : A < A\}$. Then Ω refines P if each $Q_{\mathcal{A}}$ refines $P_{\mathcal{A}}$. For $x \in B^+$, $x \land \land P = \{y \land x : y \in P_{\mathcal{A}}\} \land B^+$. The algebra B is said to be $(\lambda, \infty, \mathcal{K})$ -distributive provided for any matrix $\Theta = \{P_{\alpha} : \lambda < \lambda\}$ there is a maximal partition P of B such that $(\forall x \in P)(\forall A < A)(|x \land P_A| < A)$. Algebra B is called (A, ∞, R) -nowhere distributive if for each $x \in B^{\dagger}$ the algebra $B^{\dagger}x$ is not $(\lambda, \infty, \kappa)$ -distributive. Recall that B is $(\lambda, \infty, \kappa)$ -nowhere distributive iff there is a matrix $\mathbb{G} = \{P_{d} : A < \lambda\}$ such that for each $x \in B^+$ there is some $d < \partial$ with $|x \wedge \wedge P_d| \ge \mathcal{R}$. In this case we say that H is a matrix witnessing to (\nearrow, \sim, κ) -nowhere distributivity and if B is $(\mathcal{T}, \infty, 2)$ -distributive for all $\mathcal{T} \triangleleft \lambda$ (e.g. if B has simultaneous winning strategy for Black of length \hat{A}) then $\hat{m{\Theta}}$ will be assumed to be monotone. We say that $D \subseteq B^+$ is a \mathcal{A} -closed dense subset of algebra B (we say sometimes base instead of dense subset) if $(\forall x \in B^+)(\exists y \in D)(y \le x)$ and for every decreasing sequence $\{a_{\lambda}: \lambda < \tau\} \subseteq D$ of the length $\tau < \lambda$ there is an $y \in D$ such that $y \le a_d$ for each d < T. d(B) denotes the density of B. A matrix $\Theta_{=} \{P_{d} : d < \lambda\}$ is said to be a tree-base of the algebra B of the length λ if $U^{\textcircled{B}}$ is a base (i.e. elements of $^{\textcircled{B}}$ form a base) and (H) is monotone (i.e. (UE,≤) is a tree). For unexplained notation we refer to [2].

§2. Tree-base, game-tree and simultaneous strategy. The idea to construct a ∂ -closed dense subset of a Boolean algebra from a

tree appeared independently in [1] and [4]. We develope the technics of [4] to obtain more general results.

Theorem 4. Assume B is a complete Boolean algebra which has a tree-base of the length λ and B has simultaneous winning strategy for Black of length λ . Then B has a λ -closed dense subset. PROOF. The idea of the proof is following. We introduce a natural notion of a game tree according to strategy δ for Black in which every branch is a play of game β in which Black follows δ and the elements of the tree split on even levels (turns of the White) and odd levels are determined by even ones and δ . Then by transfinite induction we construct an game-tree according to δ which refines the base δ and this is the desired δ -closed base.

- Let $\mathcal{H} = \{P_{d} : d < \lambda^{\gamma}\}$ be a tree-base of B and \mathcal{G} is a simultaneous winning strategy. A tree (T, \leq) is called a game-tree of length λ according to the strategy \mathcal{G} if
 - (i) $T \subseteq B^+$, \leq is the canonical ordering of B, T has length \Im
- (ii) $(\forall d \in \lambda \cap \text{Lim})(\forall n \in \omega) T_{d+2n+1}$ is a maximal partition of B (where T_B denotes the β -th level of the tree T)
- (iii) $(\forall x \in T_{\alpha+2n+1})(x = G(pr(x)))$ (where pr(x) is the sequence of predecessors of x in the tree T).

Note that any branch of T is a play of game g in which Black follows G, so it is of the length A. So if T is a base of algebra B it is a A-closed base. To this end we have to construct a game-tree T which refines the tree base G i.e.

- (iv) $(\forall \lambda \in \lambda \cap \text{Lim})(\forall n \in \omega)(T_{\lambda+2n+1} \ll P_{\lambda+n})$ Assume that $T_{\langle \lambda+2n}$ is constructed already. For $T_{\lambda+2n}$ take the maximal system such that
- (v) T_{d+2n} refines T_{d+2n} (vi) $\{6(pr(x),x):x\in T_{d+2n}\}$ is a maximal partition of B which refines P_{d+2n} .

This is possible because T_{d+2n} is a game tree of the length d+2n according to the simultaneous strategy G of the length $\lambda>d+2n$, algebra B is complete and $(d,\infty,2)$ distributive.

q.e.d.

Now we consider the question, when does there exists a tree-base for a Boolean algebra. We need the following technical lemma. Lemma 5. Assume λ is an uncountable cardinal number, B is a complete Boolean algebra which has a simultaneous winning strategy for Black of length λ and $\lambda = \{P_{cl} : d < \lambda\}$ is a monotone matrix wittnessing to $(\lambda, \infty, \kappa)$ -nowhere distributivity of B. Then for each $x \in B^+$ the following holds

(i) $|\{(y,d): y \in P_d \ell \times \wedge y \neq 0\}| \ge \kappa^{\frac{1}{2}}$ (i.e. x intersects many elements of the matrix (0)) and (ii) heat(B) > $\kappa^{\frac{1}{2}}$

PROOF. The main idea again is to construct something like a game tree of type (${}^{A}\kappa$, \subseteq), but its relation to the matrix A is a little bit more complicated as in the Theorem 4 .

Assume w.l.o.g. that x=1. In fact for (i) we have to prove that $|\bigcup \mathcal{D}| \ge \kappa^{\underline{\partial}}$. The existence of simultaneous strategy of length λ implies $(\mathcal{T}, \infty, 2)$ -distributivity for $\mathcal{T} < \lambda$ and B is $(\lambda, \infty, \kappa)$ -nowhere distributive – we have that λ is regular. By transfinite induction we construct F and T such that

- (i) T⊆U® is a Boolean tree (i.e. (i) of Theorem 4 holds)
- (ii) $F: \bigcup \{ {}^{d}\kappa : d < \beta \} \rightarrow T$ is an tree isomorphism
- (iii) for each $f \in {}^{\lambda}K$ the sequence $F(f \cap 0) = w_0$, $G(w_0) = b_1$, $w_2 = b_1 \wedge F(f \cap 1)$, $b_3 = G(w_2), \dots, w_{k+2n} = \bigwedge \{b_3 : \beta < \alpha + 2n\} \wedge F(f \cap k + 2n)$, $b_{\alpha+2n+1} = G(w_{\alpha+2n}), \dots$ is a play in which Black follows G the simultaneous strategy of the length A.

As $T \subseteq \bigcup \mathcal{B}$ and \mathcal{B} is monotone and \mathcal{A} is regular we have immediately (i). For $d \in \mathcal{A}$ T_d is a disjoint system, so heat(B)> $\kappa^{\mathcal{A}}$. If $\kappa^{\mathcal{A}} > \mathcal{A}$ then $\kappa^{\mathcal{A}}$ is a singular cardinal number and so heat(B)> $\kappa^{\mathcal{A}}$. If $\kappa^{\mathcal{A}} = \mathcal{A}$ then using \mathcal{C} we can construct a strictly decreasing tower $\{t_d: d \in \mathcal{A}\}$ and then $\{t_d - t_{d+1}: d \in \mathcal{A}\}$ is the desired disjoint system of power $\kappa^{\mathcal{A}} = \mathcal{A}$.

q.e.d.

Theorem 6. Let B be a $(\lambda, \infty, \kappa)$ -nowhere distributive complete Boolean algebra with density $d(B) = \kappa^{2}$ for which the Black has simultaneous winning strategy of the length λ . Then B has a tree base of length λ .

PROOF. Let $D \subseteq B^+$ be a base of size $K^{\frac{1}{2}}$. As each element of D intersects $K^{\frac{1}{2}}$ elements of $\Omega_{\cdot} = \{Q_{\underline{A}} : A < \lambda\}_{-}$ a monotone matrix witnessing to $(\lambda, \infty, K)_{-}$ -nowhere distributivity - there is a one to one mapping $f: D \to U\Omega$ such that $x \wedge f(x) \neq 0$. Split each $y \in rng(f)$ into two elements $y \wedge f^{-1}(y)$ and $y - f^{-1}(y)$. We obtain a matrix Ω_{\cdot} which refines D, i.e. $U\Omega_{\cdot}$ is a base. Using $(\widetilde{L}, \infty, 2)$ distributivity for each $\widetilde{L} < \lambda$ we obtain a monotone matrix $\widetilde{L} = 0$.

q.e.d.

Corollary 7. Let B be a $(\mathcal{A}, \infty, \mathcal{K})$ -nowhere distributive complete Boolean algebra with density $d(B) = \mathcal{K}^{\frac{2}{3}}$ which has a simultaneous winning strategy for Black of length \mathcal{A} . Then

$$B \cong Col(\lambda, \kappa^{\delta}) = Col(\lambda, \kappa)$$
.

PROOF. From Lemma 5 we have $hsat(B) = (\mathcal{K}^{\mathcal{L}})^+$ so in the construction of the Theorem 4 we can add the condition

$$(\forall x \in T_{d+2n+1})(|\{y \in T_{d+2n+2} : y \le x\}| \ge \kappa^{3})$$
.

The base we obtain is isomorphic to the base of the algebra $Col(\lambda, \kappa^{\delta})$.

q.e.d.

We have seen that the existence of a tree base is important. Observe that if B has a tree base of the length \mathcal{A} and $\mathcal{R} < \text{hsat}(B)$ then B is $(\mathcal{A}, \infty, \mathcal{K})$ -nowhere distributive. About inverse implication we know only what Theorem 6 says.

The case $A=\omega_1$ was studied in [4]. This paper is a generalization of the results of [4] for $A=\omega_1$. For nonlimit cardinal numbers M.Foreman in [1] proved that if $K=A^+$, $A^0=A$, B is $(A,\infty,2)$ -distributive, $d(B)=A^+$ and Black wins $\mathcal{G}(B,\mathcal{F})$ then B has a \mathcal{F}^+ -closed dense subset. Our technics works without cardinal assumptions and also for limit cardinals, but needs stronger strategical assumption.

The notion of the simultaneous strategy gives a view into the structure of all strategies. The problem, whether $(c) \rightarrow (a)$, ((a), (b), (c)) are as in Theorem 1 and Lemma 2) can be splitted into two: whether $(c) \rightarrow (b)$ and $(b) \rightarrow (a)$.

REFERENCES

- [1] FOREMAN M. "Games played on Boolean algebras", Manuscript.
- [2] JECH T. "Set theory", Academic Press, New York, 1978.
- [3] JECH T. "A game theoretic property of Boolean algebras", in Logic Colloquium 1977 (A.McIntyre et al.eds.) 135-144, North Holland Publishing Company, Amsterdam, 1978.
- [4] VOJTÁŠ P. "A transfinite Boolean game and a generalization of Kripke's embedding theorem", to appear in the Proceedings of the 5-th Prague Topological Symposium 1981, Heldermann Verlag.

MATHEMATICAL INSTITUTE OF THE SLOVAK ACADEMY OF SCIENCES KARPATSKÅ 5, 040 01 KOŠICE CZECHOSLOVAKIA