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ABSTRACT. We consider the question, under what conditions a given family 4 in a
Boolean algebra % has a disjoint refinement. Of course, 4 cannot have a disjoint
refinement if 4 is a dense subset of an atomless B, or if B is complete and 4
generates an ultrafilter on 9. We show in the first two sections that these two
counterexamples can be the only possible ones. The third section is concerned with
the question, how many sets must necessarily be added to a given filter in order to
obtain an ultrafilter base.

0. Iniroduction. Let us recall the famous Disjoint Refinement Lemma due to
Bernstein, Kuratowski, Sierpifiski and others: “Assume x to be an infinite cardinal
and let A = {a,: a <k} be a family of sets, each of power «. Then there is a family
D = {d,: a <} such that for every « < 8 <« we have |d,| = k,d, C a,,d, N d,
= J”. The family D is called a disjoint refinement of the family 4.

This lemma, first conceived as a mere technical tool, has turned out to be the
birth cry of the following general disjoint refinement problem: “What are the
conditions under which a given family has a disjoint refinement?’ The power set of
a given set, a factor algebra of a set modulo some ideal, a partially ordered set and
most generally, the Boolean algebra, for all these structures the question is
meaningful. The problem has an extensive literature (e.g. [B], [BF], [BHM], [BV],
[C], [CH], [vDy], [H], [Hi], [K], [Ku,], [Kr], [P], [Si], [T]; the results concerning the
problem have plenty of applications—in Boolean algebras, in the theory of filters
and ultrafilters, in the theory of ultrapowers, in the descriptive set-theory and
topology.

The aim of the present paper is to study the refinement problem in Boolean
algebras. The notion of the disjoint refinement is the natural one.,

0.1. DeriviTION. Let % be a Boolean algebra, x an infinite cardinal and
A4 = {a,: a <k} a family of nonzero elements of %. The family A has a disjoint
refinement in % if there is a family D = {d,: @ < x} such that for each a < <«
we have 0 % d, < q,andd, A\ dy = 0.

The paper is organized as follows: §1 is devoted to the refinement property for
an arbitrary family 4. To make the paper self-contained, three facts from [BV,] are
quoted with proofs here. We shall state in terms of cardinal characteristics for
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Boolean algebras which properties of 9 imply that A has a disjoint refinement.
The main results of this section are stated in Theorems 1.5 and 1.12. Besides, some
technical tools are built up here. _

The disjoint refinement property for centered families is studied in §2. Perhaps
the typical special cases will best illustrate the spirit of this section: Let % =
P (w)/fin, & its completion. In other words, % is the algebra of all clopen subsets
of BN — N, B is the algebra of all regular open subsets of AN — N. 1t is well
known that |B| = 2¢, |8 | = 2%, and every maximal disjoint set in % as well as in
@ is of cardinality < 2°. Thus no family of cardinality > 2¢ in % can have a
disjoint refinement; on the other hand, each family of cardinality < 2° in % or in
% has one. Trivially, % — {0} is a family of cardinality 2° having no disjoint
refinement both in B and in 9. According to [BV,)], each ultrafilter in % has a
disjoint refinement, consequently each centered family in %% has a disjoint refine-
ment. It turns out that things are different for . Obviously no ultrafilter base in
% has a disjoint refinement, because % is complete. Thus if we ask the question,
whether each centered family of cardinality 29 in % has a disjoint refinement, we
must know that such a family cannot generate an ultrafilter. It turns out that this
necessary condition need not be satisfied, which happens, e.g., if 2 = w,. We shall
show that the statement “Each centered family in @ of cardinality 2 has a disjoint
refinement” is both consistent with and independent of the usual axioms of set
theory.

Fodor’s conjecture [BHIM] states that every family consisting of «, stationary
sets in w,; has a disjoint refinement by stationary sets. We shall show the following:
If there is no w;-scale in “w, Fodor’s conjecture is true for “centered collections”.
On the other hand, under (CH), the negation of Fodor’s conjecture holds if and
only if there is a family Y of e, sets such that all closed unbounded subsets of w,
together with the family ¥ generate an ultrafilter on w,.

These results indicate that there is a close connection between the disjoint
refinement property and extensions of filters. In §3, we shall study the problem,
how many sets must be added to a given filter in order to obtain an ultrafilter. The
main result states that for each infinite x and for each regular A, w, < A < 2, there
is a filter F and a family X = {x,: « € A} such that F U X generates a uniform
ultrafilter U on k. Moreover, A is the least cardinality of a family Y such that
F U Y generates U.

ACKNOWLEDGEMENT. We would like to thank Richard Laver for his valuable
information on recent results and stimulating discussions.

0.2. Notation. We shall use the standard set-theoretical notation to be found, e.g,,
in [J] or [CN}. Small Greek letters k, A always denote cardinal numbers. %P (k) is the
power set of x, [k]' = {M € P(x): |M| =17}, similarly, [«]<* = {M € P(k):
| M| < A}. The weak power of cardinals, %, as usual, equals S{x*: a is a cardinal,
a < A}. The Fréchet ideal on «, denoted by i, equals {«]<*.

Let % be a Boolean algebra. Operations on % are denoted \/ (join), A (meet),
— (complement), 6 or 0y is the zero element of B. B+ = B — (0) is the set of all
nonzero elements of %B. For u € B ™, % I u is the Boolean algebra consisting of
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all v € u with relativized operations. & t(%5 ) denotes the Stone space of an algebra
% . If X is a topological space, then RO(X) denotes the (complete) Boolean algebra
of all regular open subsets of X, G(X) = St(RO(X)) is the absolute of X (i.e. the
Gleason space of X = the projective resolution of X). If B is a Boolean algebra,
Comp($h ) is its completion. A subset C C B is said to be dense in B, orto be a
base of @, if for each v € B ™ there is some x € C with x < u. A family (set,
collection) D C D™ is said to be disjoint if d A\ & =0 for any two distinct
members d, d' from D. The density of % is defined by d(%$) = min{|C|: Cis a
dense subset of % }, the saturatedness of %, sat(%h) = min{x: for each disjoint
P C %%, |P] < x}. Hereditary analogues of these cardinal invariants are defined
by hd(B) = min{d(B I u): 1 = 0} and hsat(B ) = min{sat{(B | w): u 7+ 0}.

Let A > w, k > 2 be cardinals. Consider the family C(A, «) = { f: f is a mapping,
dom(f) € [AI}, mg(f) C ) with the order f > g iff f C g. The (unique) complete
Boolean algebra containing C(A, ) as a dense subset is denoted by Col(A, ). If
we B, P, QCB, we shall denote u AANP={uANv:i o€ P&uANv+#0);
similarly,

PANO={uAviuEPvE Q&uAv+0}.

1. Refinement properties. Here we state the basic theorems on refinement
properties of Boolean algebras. ‘

1.1. DEFINITION. Let 9 be a Boolean algebra, let A C B ™. The set 4 is called
k-decomposable if there exists a disjoint collection P C B ™ such that |P| = |a A
A Pl = kforeacha € A.

The following proposition is folklore:

1.2. ProPOSITION. Let b be a Boolean algebra, A = {a,: a €k} C BT. If A is
k-decomposable, then A has a disjoint refinement.

Proor. Let P be some disjoint collection with |a, A\ A P| = « for each a € «.
By a straightforward recursion argument one can assign to each £ € k a member
x; € P such that x; A x, =0 and a; A x; 7 0 whenever £ <7 <«. The family
D = {a; )\ x;: £ & «} is the desired disjoint refinement of 4. [

L3. DermviTiON. Let % be a Boolean algebra, x a cardinal. The algebra % has a
disjoint refinement property for systems of cardinality at most « (% has Rp(«)) if
each A = {a,;: § € «k} C B has a disjoint refinement.

1.4. REMARKS. (a) Clearly an algebra % has Rp(x) iff Comp(% ) has.

(b) If %3 has Rp(«), then hsat(H) > «™*.

(¢) If hsat(%h) > x, then there is no essential difference between the indexed
families of cardinality « in % and sets of cardinality x in % from the refinement
property point of view.

(d) If %% has Rp(2), then % is atomless.

The following theorem has appeared in [BV,] and generalizes a results of [BHM].

1.5. TueoreMm. Let B be a Boolean algebra, « an infinite cardinal and let
hsat{B) > k™*. Then b has a disjoint refinement property for systems of cardinality
gt most K.
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PROOF. Assume given A = {a;: £ € v} C B7. Let Q be the set of all disjoint sets
Pin B+ satisfying |P| > «™ and either la;, AN P| > xora; NN\ P= @ for each
§ < k. Ordered by inclusion, © clearly satisfies the assumptions of the maximality
principle. Let R be a maximal element in .

Claim. For each § <«, |a; A\ A\ R| > «. Suppose the contrary. Then a; A A R
= for some £ <« Choose a disjoint family QO in B [ a,, |Q]=r". Let
Z={n€x |la, NANQ| <k}, let Q"= Q — (u € Q: a A\ u0 for somen €
Z). Then |Q|=«*, R U Q' €EQ R U @' 2 R, acontradiction.

Having proved the claim, notice that R clearly contains a set which k-decompo-
ses A, hence 1.2 applies. [

REMARKS. In fact, we have proved a bit more: If 4 = {a,: « € k} C B™ is such
that sat(%® ) > «* for each @ € «, then A has a disjoint refinement.

The Disjoint Refinement Lemma, quoted in the introduction, can be quickly
deduced from the previous theorem: If « is infinite and regular, then hsat(% (x)/i.)
> k™, thus 1.5 may be applied. If x is singular, then the Disjoint Refinement
Lemma is easy to prove by making use of its validity for all regular cardinals
smaller than «.

Using 1.5, one may obtain the following strengthening of 1.2.

1.6. LeMMA. Let B be a complete Boolean algebra, hsat(B) » k¥, 4 = {a,:

a € Kk} CB*. Then A has a disjoint refinement if and only if A is cf(k)-decomposa-
ble.

PrROOF. Denote 7 = cf(x). If © > 7, choose an arbitrary increasing sequence {k,:
¢ € 7} of cardinals converging to «.

Suppose 4 to be r-decomposable. By 1.2, only the case 7 <« has to be
considered. Let P = {p,: £ € 7} be a disjoint set satisfying |a, A A P| =1 for
each a € x. Then each family C, = {a, A\ p;: « <& & a, /\ p; 7 0} has a dis-
joint refinement D, by 1.5. Clearly U {D,: £ € 7} contains a disjoint refinement of
A. The completeness of B was not needed in this half of the proof.

Let {d,: « € «} be a disjoint refinement of A. Since hsat(®) > «™, there is a
pairwise disjoint set {d,.: § € 7} in B | d, for each a € k. The algebra B is
complete, hence the set P = {\/{d,: a € «}: £ € 7} is well defined and demon-
strates that 4 1s r-decomposable. [

1.7, LeMMA. Let B be a Boolean algebra, « infinite and hd(B) < k. Then B has
not Rp(x).

ProoF. Suppose the contrary. Let % have Rp(k). Choose x € B such that
d(B I x) <k let CC(D | x)be dense in B } x and |C| < x. Suppose D is a
disjoint refinement of C. Choose d € D. Since % is atomless by 1.4(d), and since
C is dense in % | x there is some ¢ € C with ¢ i d. Clearly there isnod' € D
disjoint with 4 and satisfying d’ <¢. [

Up to now we have dealt with an arbitrary Boolean algebra and we were
interested in the problem whether an arbitrary 4 = {a,: « € ¥k} C %B™ has a
disjoint refinement. Theorem 1.5 says that hsat($) > «* is a sufficient condition.
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Clearly hsat{%) > x is necessary (for otherwise there are not enough disjoint
elements in 9 ). But Lemma 1.7 shows how to find an example that the last
condition need not be sufficient. Thus, if we want to know something about the
disjoint refinement property for systems 4 = {a,: @ € k} which are as large as
possible, i.e. k* = hsat(%h), we have to add some restrictions either on B or on 4.
The first direction will be studied in the rest of this section and it will culminate in
Theorem 1.12,

1.8. DermvrmioN. Let %9 be a Boolean algebra, ¢ € %, A an infinite cardinal.
The set C is A-closed if for each y <A and for each decreasing chain ¢, » ¢,
Z 22 (a <y)of elements of C there is some b € C with b < ¢, for
each a <.

REMARK. If C C B* is A-closed for a sinigular cardinal A, then C is A *-closed.

1.9. DermviTion. Let 3 be a Boolean algebra, A, k cardinals. A collection
O C P(B7) is called a matrix on B if each member of © is a maximal disjoint
subset of B,

The Boolean algebra B is called to be (A, -, «)-distributive if for every matrix
© = {P,: a €A} there is some maximal disjoint system Q@ C %" such that for
each x € Q and for each a € A, |[x A A P,| < k. (The dot “-”in (A, -, k) indicates
we are not interested in the size of P,’s. For the three-parameters distributivity see
[VH])

The Boolean algebra % is called (), -, x)-nowhere distributive if for every
x € B, B | xisnot(}, -, k)-distributive.

A standard branching argument gives an immediate consequence of the defini-
tions:

L10. LemMa. If a Boolean algebra % has a A-closed dense subset, then B is
(7, -, D-distributive for each v < A. []

L.1L. LemMa. Let B bhe a (N, -, K)-nowhere distributive Boolean algebra. Then
there is a matrix ® = {P,: a € A} such that for each x € B~ there is some o € A
with |x N\ N\ P,| > «.

Any matrix with this property will be called a matrix witnessing to the (4, -, x)-
nowhere distributivity of % .

Proor. Consider the set C consisting of all x € $B* for which there is some
matrix O(x) = {P,(x): @ €A} in B | x such that for each y < x there is some
a EAwith |y A A P(x)| > k.

The set C is dense in % : If not, assume z € B ¥ contains no member of C. Thus
for cach matrix {P,: « €A} in B [ ztheset {(y EB [ z: Va EN (¥ A A P
< «)} is dense in % | z, hence there is a maximal disjoint set Q in B } z with the
property {(y € 0, a €A — |y A A P,| <«k), which contradicts the (A, -, «)-
nowhere distributivity of % .

Let § be a maximal disjoint subset of C. Since C is dense in %, S is maximal
disjoint in B, too. For x € S let @(x) be as indicated above, and define P, ={u
€ B: u € P,(x) for some x € S}. The matrix ® = {P,: @ € A} has the required
properties. [
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The forthcoming Theorem 1.12 is the main theorem of this section. It shows that
the presence of a A-closed dense set and (A, -, k)-nowhere distributivity of 9 are
the possible restrictive conditions on % which guarantee the existence of the
disjoint refinement in all cases, for which the only obvious obstruction, i.e. a too
small base, does not take place. At the same time we shall demonstrate for A
regular that the well-known example of a (A, -, x)-nowhere distributive algebra with
a A-closed base, namely the algebra (ol(A, x), is typical and plays the key role in
the problem of refinement. The theorem generalizes a result from [BV,], which is
mentioned here as a corollary.

In the sequel we assume A > w, k > 2.

1.12. THEOREM. Let B be a (\, -, k)-nowhere distributive Boolean algebra having a
A-closed dense subset. Then the following conditions are equivalent:

(a) B has Rp(x?),

(b) hd(%) > «.

Moreover, if B is compleie, then both (a) and (b) are equivalent to:

(c) for each x & B, B I x is not isomorphic to Col(A, k);

(d) for each x € B, B | x is not isomorphic to Col(A, k).

1.13. CoroLLaRY [BV,]. Let B be an (w, -, k)-nowhere distributive Boolean
algebra. Then B has Rp(x) if and only if hd(B) > «.

Before giving a proof, we shall exhibit some propositions of technical nature
leading to a characterization of algebras Col(}, ).

1.14. LeMMA. Let B be a (N, -, k)-nowhere distributive Boolean algebra containing
a A-closed dense subset C. Then:

(i) hsat(B) > r?;

(i) A is a regular cardinal.

Let F = {P,: a €A} be an arbitrary matrix on . Then there is a mairix
9 = {Q,: @ €N} such that:

(iit)  witnesses to the (\, -, x)-nowhere distributivity of % ;

(ivy U2 C C;

(V) for each o < B <A, Qg refines Q, and Qp refines Pp;

(vi) for each « € A and for eachy & Q,,

Hx € Quppi x <y} 2 oY
(vil) for eachy € Sh*;

\{xe UQ:x/\yaéO}l;m?f.

ProOF. (i) follows from (vi) and from the fact that the lemma may be relativized
toeach B t x, x € B,

The cardinal A is infinite, for % is (A, -, K)-nowhere distributive. If it were
singular, then C would be A *-closed (see the Remark following 1.8), hence by 1.10,
%3 would be (A, -, 2)-distributive—a contradiction.

The matrix & will be constructed by transfinite induction.
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Let ® = {§ : « € A} be a matrix witnessing to (A, -, x)-nowhere distributivity of
B. Let Qy € C be a maximal disjoint family refining P, A A S,

Let o« < A and suppose O (8 < «) have been defined. By 1.10, B is (a, -, 2)-
distributive, hence there is a maximal disjoint collection U_such that U, refines P,
and @y for all B <. Let ¥V, = U, A A S,. For x & ¥ take a maximal family
R, C C such that R, is disjoint and its cardinality is at least p, where p is some
suitable cardinal.

As yet we know that p > « (hsat(8) > « by 1.11); we shall show later that the
choice p > «? is possible. Let O, = U {R,;: x € V,}.

Having constructed the matrix © = {Q,: « € A}, it is easy to verify that (ii1), (iv)
and (v) hold for 2, moreover, for each a & A and for eachy € Q.

{x:x € Q0 &x <y} 2p>r (1)

Let 8§ < A be a cardinal, let y € U 2. Then y € Qg for some B <A. By the
validity of (1) for each & < A, by (iv) and by the fact that C is A-closed, we obtain

Hxix € Qpus&x <y} 2 pd > b (2)

Thus sat(%B | ) > «. We shall show that sat(B [ y) > («M)*.

If k* = «? for some & < A, then sat($ | y) > (%) by ). If & > «? for each
8 < A, then x? is a limit cardinal and A = cf(x?) < «}. Two cases are possible:
Either A < «?, but then sat(B ] y) > («*)* since the saturatedness cannot be a
singular cardinal by a well-known theorem of Erdds and Tarski [ET], or A = «2.
Let y = ¢, choose by induction a chain ¢z > ¢4,y > ... > ¢, > ... for each
a € A, a 2 B, such that ¢, € Q,. By (1), the inequalities are sharp, hence D = {c,
— Copr: B<a <A} CB* is a digjoint subset of (B ' ¥)™, which implies that
sat(B 1 y) = AT,

Thus x> x? could have been chosen in the construction of 2, which proves (vi).

It remains to prove (vii). Let y € B 7. The desired family {x: x € U 2 & x A
y 7 0} can be found using a standard branching argument. For § = 0, set «; = 0,
pick x, € Q, so that x, A y # 0, and pick ¢y € C with ¢y < x5 A y. For § <A, £
limit, assume that f: £ — k. Since C is A-closed, there is some ¢ € C such that
¢ < ¢y for all n < & By (iii), there is some smallest e, < A such that there is a
disjoint set {b: ¢« <k} C Q, with b, A\ ¢ 5 0 for all v <. Clearly a; > a,,, for all
1 < § Let x; = by. Choose ¢; & C with¢; < ¢ A x,. Now suppose £ = n + Iand f:
n — &. By (iii) there is a smallest « < A such that there is a disjoint set {b: ¢ <}
satisfying b, A ¢, 7= 0 for all « <k, {b: ¢ <k} C Q,. Clearly « > a,. For each
v <k let oy = 6 Xy ) = b and choose ¢ ) < A B Gl € C

Hence for each £ < A and for each f: £ — « we have found an element x, & U 9
such that the following is true: x; A y # 0, x; < xp, forall y < § andif gt £ > x,
g 7/, then x; A x, = 0.

Now (vii) easily follows and the proof is complete. [7]

1.15. THEOREM. Let B be a complete (A, «, k)-nowhere distributive Boolean algebra
containing a A-closed dense subset C. Let d(®) = 2. Then B is isomorphic to

Col(A, k).
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PROOF. Let D be a dense subset of %, [D] = «* Let R = {R_: « €A} be an
arbitrary matrix satisfying 1.14(iii)~(vii). Using 1.14(vii), one can define a mapping
p: D— U R with d A ¢(d) 5 0 for each d € D and @(d) # p(d’) whenever
d7d. For o <A, let P, be a maximal disjoint family containing all elements
®(d) A\ d, g(d) — d for ¢(d) € R, and all x € R, — {¢(d): d € D). Apply 1.14
to the matrix & = {P_: « € A}, let @ be the resulting matrix. Now U @ is a dense
subset of %. By L.14(v), (vi), a verification of the existence of an isomorphism
between U2 and the set {f &€ CQ, «*): dom(f) + &, dom(f) is a successor
ordinal}, which forms a dense subset of Col(}, &), is routine. []

1.16. CoroLLARY. The algebras Col(A, &) and Col(\, «?) are isomorphic whenever
A2 w k22, Ais regular. [

1.17. LeMMA. Let B be a (N, -, k)-nowhere distributive Boolean algebra having a
A-closed dense subset. If hd(%B) > «?, then % has Rp().

Proor. Let 4 C B, [4] =« Let 2 ={Q,: « €A} be a matrix having
properties L 14(ii)—{vil). We may assume that 4 C U 2 (see the proof of 1.15).

Denote P, = A N Q,. If there is some 7 < A such that P, = & for each a < A,
« > 7, we are done (P, | can be used to show that 4 is x*-decomposable). Thus
suppose P, # & for each a < A. Let C be a A-closed dense subset of 5.

We shall find a family of chains {c(x, a): & <A}, x € 4, with the following
properties:

(a) e(x, 0) < x;

(b)e(x,a) € Cforeachx € A4, a & A;

(Qif x € 4,0 < B <A then e(x, &) > ¢(x, B) % 0;

Difxe P,y €4,y #x,thenc(x,a + DA c(y,a + 1) =0.

Obviously the set {c(x,a + 1): x € P,, « €A} will be the desired disjoint
refinement of 4.

‘The construction of the chains goes by transfinite induction. Let 8 < A be an
ordinal and suppose that ¢(x, @) have been defined for each x € 4 and each
a < f.

B limit: Choose c¢(x, 8) € C such that 0 % ¢(x, 8) < ¢(x, a) for each a < 3,
x € A. The A-closedness of C enables us to do this.

B=y+ L IfxEP,a<yletelx,y+ 1)=1c(x,v) Letx € P,. The family
{c(y, v): y € 4} is too small for being dense in B | ¢(x, v), thus there is some
e, y+ DECwithO=#c(x, v+ 1) <clx,y) and (¥, v) — c(x, v + 1) = 0 for
eachy € 4. Let x € P,, a > y. By 1.14(v) there is at most one y(x) & P, such that
x € y(x); let e(x, vy + 1) be an arbitrary element from C satisfying @ # c(x, vy + 1)
<e(x, vy — el(y(x), vy + I} {or 0 5= c(x, v + 1} € ¢(x, 7) if no such y(x) € P, ex-
ists). [

1.18. Proor oF 1.12. Clearly (c) and (d) are equivalent (see 1.16). (a) implies (b)
by 1.7 and (b) implies (a) is precisely the statement of 1.17.

Notice that hd(Col(A, «*)) = &> This fact and 1.7 show that (a) implies (d).

To prove (d) implies (b), notice that if hd(®) = «?*, if B is (A, -, k)-nowhere
distributive having a A-closed dense subset and if % is complete, then % is
isomorphic to Col(A, «*) by 1.15. [
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1.19. ExampLE. The assumption that % has a A-closed dense subset is essential in
1.12. To show this, let ¥ be a cardinal satisfying x“ = k. Then there is an
(@, *, k)-nowhere distributive Boolean algebra 9% with hd(®) > x (= &%), never-
theless Rp(x) does not hold for 3 .

Let F={f €%: a < w}. Fis a dense subset of Col{w,, k), |F| = (1 X w)* =
k* = k. Let %, be the free algebra generated by ™ generators. Then the free
product B = Col(w,, k) X B, is the desired example. The algebra % is (w,, -, K)-
nowhere distributive since Col(w,, «) is; hd($H) > & since hd(h,) = «*. Obviously
¢ has no w,-closed dense subset.

The system F = {({f, 1) f € F} 13 a system of cardinality « having no disjoint
refinement. Suppose the contrary. Let D be a disjoint refinement of £. Without loss
of generality we may assume that the members of D are of the form {f, x> with
J € F, x € B Choose arbitrary {f,, x,> € D; suppose {f,, x,> € D have been
found for « <8 < w, in such amannerthat f, &S 1 & ... & L & .... Let
g=U {f: « <B)U(y,0), where y ¢ U {dom(f,): « < 8} Then (g, 1> € F
and (g, 1) contains no {f,, x,> with a < 8. Hence there is some {f;, x3> € D
with {g, 1> > {f, xg. Obviously fy 2 f, for all @ < 8. We have found a subset
{{Jfa» X407 o < w;} of D such that the f’s form a nested sequence. Anyway, D is
disjoint, hence the set {x,: « <} € D, must be disjoint, too. But this con-
tradicts the well-known fact that hsat(%h,) = w,.

2. Refinement properties of centered systems. In the previous section, we have
discussed some conditions on % which guarantee the existence of a disjoint
refinement. Now we restrict our attention to special families in %, namely, to
families having the finite intersection property.

2.1. DeriNiTION. Let B be a Boolean algebra, 4 € % . The set A is centered, or
equivalently, 4 has the finite intersection property (FIP), if /A A’ % ¢ whenever
A’ C A is finite. A Boolean algebra has a refinement property for centered systems
of power at most « (% has Rfip(x)), if each indexed family {a,: a <&} C B with
FIP has a disjoint refinement.

It turns out that Rfip(x) no more holds for % and Comp(%) simultaneously, as
it was the case of Rp(x). Indeed, if Comp(%h) has Rfip(k), then so has .
Nevertheless, ¥ (w)/fin has Rfip(c) ((BV,]), but Comp(% (w)/fin) need not satisfy
Rfip(c) (2.11). Hence Rfip{x) will be studied mainly for complete Boolean algebras.

Suppose « infinite. When asking whether a complete Boolean algebra % has
Rfip(«), there is only one interesting case, namely hsat(%) = «™*: Rfip(x) does not
hold if hsat(%$) < x* and the case hsat($®) > k™ is covered by 1.5. The extremal
situation occurs if, in addition, d(B) = x (see 1.12, 1.13). In what follows we give
the solution of the following problem from [BV,]: “I$ there a- complete Boolean
algebra @ which has Rfip(x) and hsat(®) = «* and d(B) = «?”

We shall show that the answer is affirmative for k = w or « singular (of arbitrary
cofinality!) in 2.2. The case of regular uncountable x is not decided by the usual
axioms of set theory, and we shall show that some simple set-theoretical assump-
tions (each satisfied by a number of weli-known models of ZFC) decide the validity
of the statement or of its negation (Theorems 2.3, 2.8).
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The rest of this section is devoted to the consistency proof mentioned in the
introduction and to some application of the general results.

2.2, TuroreMm. Let B be a complete Boolean algebra, let « = w or a singular
cardinal. Then % has Rfip(x) if and only if hsat(B) > «*.

Proor. The condition hsat(%®) » x* is obviously necessary.

Let F be a centered system in B, | F| = x. If k = w, it is an easy exercise to show
that F i1s w-decomposable, so let k > w and 7 = ¢f(r) < «. Let us assume that each
finite meet of members of F belongs to F, too.

Claim. F is 7*-decomposable.

For & <t choose F; C F such that |F| <k, F,CF, for £<n <7 and
U {F:f<7})=F -

Transfinite recursion. Let y <7 and suppose that for « < # < y we have found
ordinals §(«) and disjoint systems C,, C,, satisfying the following conditions:

(D) &) < Y B) <tloreacha < B <v;

(D if ¢ <v,x € Fypp then(Cl = [x AANC| =775

(iii) if @ < B < v, then Cy © C, and |Cpy| < 73

(iv)if a <B <, then (C, — C,p) U Cpis a digjoint system.

Define W, = U {C, — U {C,p « <B <v}: a <v}. Then W, is disjoint and
|W,| =17 1f |[x AN\ A W,| =77 for each x € F, we are done: F is 7 *-decomposa-
ble.

If there is some x € F with [x A A W, | <7, then x & Fy, for a <y by (ii),
hence there is some £(y) > sup{&(a): a <y}, &(y) <7, such that x € F.,.

Define C,, = {¢ € C,: ¢ A\ x # 0}. Clearly |C,,| < 7 for & <.

Since [Fy,|" <x < hsat(%), there is a disjoint refinement D of the system
{x Ny:y € Fy,} by 1.5. For d € D, let {d,: « € v} be an arbitrary disjoint
family in % [ d. Let C, = {\/{d;:d € D}: . <77 }. Clearly [y A A C,| = 77 for
eachy € Fy.,

This completes the recursive definitions.

Suppose that the induction has not stopped before 7. We define

C= U{Caw U{C&ﬁ:a<ﬁ<f}:a<¢}.

It is easy to see that |C] = [x A A C| =717 foreach x € F.

Having proved the claim we know that F is 7*-decomposed by C = {¢):
nE€ 77} Forx € F,letu, = {n € 171 x A ¢, 5 0}. The family F is closed under
finite intersections, so U = {u,: x € F} is a uniformly centered collection of
subsets of . Moreover, 7 is regular. Hence U is v-decomposable (see, e.g., {Ch],
[KP] or [CN, 8.36)). If the pairwise disjoint collection {a,: ¢ € 7} of subsets of 7+
witnesses to the r-decomposability of U, then the system {\/{c,:n € a,}: t € 7}
witnesses to the r-decomposability of F. Now the theorem follows by 1.6. [

2.3. THEOREM. Let k be an uncountable cardinal, b a x-complete Boolean algebra
with d(B) < k and suppose % = . Then there is a system consisting of at most «
elements of B+ which generates a nontrivial ultrafilter on % . Consequently, b has
not Rfip(k).
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Before proving the theorem, let us give a definition and an important lemma,
which is due to Kunen, van Mill and Mills.

2.4, DerFINITION. Let 93 be a Boolean algebra, « an infinite cardinal. A tower T
of length « is a family {z,: @ € x} C B satisfying 1, > 1, whenever « < <. A
tower 7 in B is called nowhere dense if for each b € B there is some ¢ € T
with & — ¢, % 0.

2.5. LEmMA [KYMM). Let x be an uncountable regular cardinal, let % be a Boolean
algebra, @3[ < k. Then there is an ultrafilter on B containing no nowhere dense tower
of lengih «.

"PrOOE. If || < &, the lemma holds trivially since there is no nowhere dense
tower of length x in % .

If |%]=«, wellorder ¥ = {b,: « € x} and define B_ to be the smallest
subalgebra of % generated by {by: f <a}. We have B, C B, C ... C B,
C...,forp <wandplimit, B, = U {B,: a <p}.

Claim. Let T be a nowhere dense tower of length x in @ . Then there is some
a < & such that T N %, is a nowhere dense tower in .

Let y < & be given. For b € 97, there is some 1 € T with 0 % b — ¢. Denote by
By the first 8 & « such thatt € By: let y* = sup{ B,: b € B' }. Since « is regular
and [B_| <&, y* <k, too. Pick ay <« arbitrarily, and define a,,, = o*, a =
sup{a,: n € w}. Since k is regular and uncountable, « <. If b € B, then
be %, for some a, < w and there is a 1 € T 1 B, ,, with & — 0. Thus
T N %, is nowhere dense in % .

For a nowhere dense tower T of length « in %, let a(7) <« be such that
T N Byery is nowhere dense in B 1, and let {T) € T be such that #(T) < ¢ for
eacht € TN B,py

The family F = {1 — #T): T is a nowhere dense tower of length « in B} is
centered: Pick n € w, T\, T, . .., T, nowhere dense towers of length « in B. Let
B = Byerys = 1,....n, and suppose B' C B> C ... C B". The tower T, N
%' is nowhere dense in ®', thus thereis /' € 7, N B', 1 — 1'% 0. But 1 — ¢! €
B C B? and T, N B? is nowhere dense in B2, hence there is some 2 T, N H?
with (1 — ') — #* 3= 0; proceeding further, we shall find 3, /% ..., " such that
| N CAAVE SRV VAL T |}

As ((T;) < t', we obtain

0= N{1—-1ti= l,...,n} < AN —-dT):i=1...,n).
Obviously, if U is an ultrafilter on % and U D F, then U contains no nowhere
dense tower of length k in % . [

PrROOF OF THEOREM 2.3. Let C be a dense subset of B of cardinality at most «.
Denote by @ the smallest subalgebra of Comp(%h ) that contains C as well as all
Jjoins \/ C’, where C’ € [C]<*. Then @ C B, since % is x-complete, and [D| =
|€]% < &% = «; thus by 2.5, there is some ultrafilter U/ on % containing no nowhere
dense tower of length x in . Clearly [U| < || < kand U C B.

We shall show that U generates an ultrafilter on %. Let x, y € B™ be such that
XAy =0xVy=1Let Z C C bea maximal disjoint family refining {x, y}. If
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|Z| <, thenx = \/ {c € Z: ¢ < x} belongs to D as well as y does, thus either x
or y belongs to U. If |Z] = «, say Z = {¢,: @ € «}, then there is some p < k such
that \/{¢,: « < p} & U. In the opposite case each join \/{¢,: p < « < «} belongs
to U, but the family of all such joins is a nowhere dense tower of length « in
%, which contradicts our choice of U. Now either \/{c,: a <u & ¢, < x} or
\V {c e < p&c, < y) belongs to U, hence U generates an ultrafilter on 5.
Finally, assume that, on the contrary, 6 has Rfip(x). Then hsat(% ) = hsat(%D)
= «"; hence for the centered system U described above we have |{v <1
v € U}| = « for each v € U. Let D be a disjoint refinement of U, D C C. Pick
some maximal disjoint family Z C C extending D. Let Z = {z,: a <k} be a
one-one numbering of Z. Define ¢, = \/ {z;: « < f <}, T'= {£,: « <x}. Then
T C o0, Tis a nowhere dense tower of length x, hence 7 @ U. Anyway, the family
T U U is centered and U is an ultrafilter on 0, thus 7 € U-a contradiction. [

2.6. COROLLARY. Assume (CH). Then Col(w, w;) has not Rfip(w,). O

2.7. DEFINITION, Let A be an infinite cardinal. The formula f < g iff |[{a € A:
Aa) > g{a)}| < A defines an order on *A\. A family F ¢ *\ is dominating, if for
every g € *A there is some f € F with f > g. If Fis a dominating family in AN,
|F| = p and the order < on F is of the type y, then F is called a p-scale.

2.8. THEOREM. Let A < k be infinite cardinals. Let B be a (N, -, k)-nowhere
distributive Boolean algebra which is (7, -, 2)-distributive for each v < A. Let A =
{a;: £ <x} C BT be N-decomposable. Then A has a disjoint refinement provided
there is no dominating family of power k in M\.

PrOOF. Let P = {p(«): « € A} B 7 be the disjoint set witnessing to A-decom-
posability of 4. For each « < A, there is a matrix 2(a) = {Q(«, B): B €A} in
% P p(e) satisfying 1.14(ii1), (v). (Notice that the proof of these statements required
the (7, -, 2)-distributivity only, 7 < A. Analogously, A is regular.)

We shall construct a mapping f; € X for £ € « recursively as follows:

Suppose f{ §) has been defined for 8 < a. Let & > a be the first ordinal number
such that a, A p(&) 5% 0. Let ¥ € A be the smallest ordinal with y > f(8) for
B <aand|a; A A Q(&, v)| > k. Define f(a) = v.

The family { f;: £ € «} < *A is not dominating in *A. Thus there is some g € *A
satisfying {a € A: g(a) > fe(a)}| = A for each £ € «. According to the regularity of
A we may assume that g is strictly increasing. Let us define

Q= U{Q(a, g{a)): @ €A}

Claim. For each § € «, [a, A N\ Q| 2 &

Fix £ €k, let X, = {a €A gla) > f(a)}, Ye={a €A a. A p(e)} 0. If
« € X; N Y, then |a; A N Q(a, f(@))] > &, thus |a; A A Q| > «. Thus it suffices
to show that X, N Y, # . Choose an arbitary « € X,. By our construction of f,
Je(e) = f(&@), where @ was defined in the recursive procedure. The function g is
increasing, thus we have g(&) > g(a) > f(a) = fi(d), s0 & € X;. Anyway, & € Y.

Having proved the claim, it remains to apply 1.2 in order to obtain a disjoint
refinement of 4. [
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2.9. COROLLARY. Let B be an (w, -, w))-nowhere distributive Boolean algebra, let
A C B have FIP and |A| < w,. If there is no dominating family of power w, in “w,
then A has a disjoint refinement.

ProoFr. Let U/ be an arbitrary ultrafilter on B, U D 4. Let W be a maximal
disjoint system in %37 such that foreachw &€ W, 1 — w &€ U. Clearly a A A W is
infinite for each @ € 4. If there is some @, € 4 such that |ay A A W] = w, let
P={w&W: ay/\ w70} Since 4 has FIP, {a A A\ P] =w for each a & 4,
hence 2.8 may be applied. If |« A A W| = w, for each @ € 4, then the disjoint
refinement of 4 exists by 1.2, [

2.10. COROLLARY. Assume there is no wi-scale in “w. Then Col{w, w,) has
Rfip(e,). [ |

APPLICATIONS. 1. The algebra Comp(%P (w)/fin) and the property Rfip(2%).

The following negative solution is a direct consequence of Theorem 2.3.

2.11. PROPOSITION. Suppose ¢ = . Then there is an ultrafilter on Comp(% (w)/fin)
generated by at most ¢ elements. Hence under ¢¢ = ¢, the algebra Comp(%P (w)/fin)
has not Rfip(c). ]

A result similar to the proposition above as well as Corollary 2.6 was obtained
independently by R. Laver under the assumption ¢(w,) [L].

The set-theoretical assumption cannot be omitted from 2.11. The forthcoming
corollary of Theorem 2.2 shows the positive answer;

2.12. PROPOSITION. If 2° is a singular cardinal, then the complete Boolean algebra
Comp(P (w)/fin) has REp(2°). Therefore no ultrafilter on Comp(P(w)/fin) is
generated by < 2% elements. [}

It is worth mentioning that in this case of 2“ being singular we obtain an
alternative proof of the fact that & (w)/fin satisfies Rfip(2°) (see [BV,]).

Now we shall describe a model 90 of a set theory in which Comp(% (w)/fin) also
has Rfip(2*) and, moreover, 2% is a regular cardinal.

Let us start with a formulation of combinatorial assumptions, which imply that
Rfip(2*) holds for Comp(P (w)/fin).

2.13. PROPOSITION. Suppose thai 2° = w, and

(1) Comp(¥ (w)/fin) is isomorphic to Col(w,, w,),

(i1) each ultrafilter on P (w)/fin contains a nowhere dense tower in 9 (w)/fin; and

(1ii) there is no wy-scale in “\w,.

Then 2°' > w, and Comp(P (w)/fin) has REip(2°). Therefore there is no uitrafilter
on Comp(P (w)/fin) having < 2° generators.

Proor. The fact 2 > w, follows from (iii). Denote % = Comp(%P (w)/fin), let
A ={a,: a €Ew,} be a centered family of elements of %. Then there is an
ultrafilter {/ on & (w)/fin which is compatible with 4. Let T be a nowhere dense
tower on ¥ (w)/fin, T C U. If the length of T is w,, then 4 is w,-decomposable and
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hence A has a disjoint refinement by 1.2. If the length of T equals to @, then A is
w~decomposable; now by (i) and (iil) there is a disjoint refinement of 4 by
Theorem 2.8. [

2.14. The model. We shall describe the basic situation without discussing possible
generalizations.

Let 9l be a countable transitive model of ZFC + GCH. Let b, %,, 9, be the
complete Boolean algebras in W such that

¢y is the Solovay-Tennenbaum algebra making MA + 2% = w,;

¢, is the well-known algebra for adding «, Cohen reals;

%, is the algebra with the basis { f: dom(f) — w;: dom(f) € [w;]“1} ordered by
the inverse inclusion (observe that ¢B, is isomorphic to the algebra with the base
{f: dom(f) — {0, 1}: dom([f} & [w;]<“1}).

Let B = B, X B, X B, be the free product, and G be generic ultrafilter on % .
Denote by G,, resp. G,, the restriction of G to %y X B, resp. to B,. The algebra
9B, X B, satisfies c.c.c.; the algebra @, has an o;-closed basis, hence by the
Easton-type argument @ (w) ™%l = F()™C] and in IN[G] all cardinals and
cofinalities are preserved.

As shown in [BFM], O[G,] F 2% = w, and there are two increasing families { f,:
a € w}, { g B € w,} in “w without an upper bound.

The same holds in 9N[G]. By [BPS], the existence of a family {f,: « < w;}
C “w without an upper bound implies Col(w,, 2°) = Comp(%P (w)/fin). By [BFM],
if there are two increasing families {f,: @ € w;} and {gg: B € w,} in “w without
an upper bound, then each ultrafilter on ¥ (w)/fin contains a nowhere dense tower,
Moreover, ON[G]F 2 = w, and each dominating family in “w, is of cardinality
4. Thus all the assumptions of Proposition 2.13 hold in 9N[G] and we conclude

M G]F2° = w, & Comp(P(w)/fin) has REp(2°). [

IL. Fodor's conjecture. Fodor’s conjecture states that (w,)/ NS(w,) has Rp(w,),
where NS(w,) denotes the ideal of all nonstationary subsets of @, [BHM]. In what
follows let B = 9P (w;)/i, where i is an arbitrary w,-complete ideal on & (w)
containing i.. The algebra 9 is always (w, -, w,)-nowhere distributive (Ulam [U]);
thus hsat(®) > w,. A. Taylor [T] and Balcar and Vojtas [BV,] proved indepen-
dently that % has not Rp(w,) if and only if there is some ¢ € % (w,) — i such that
B | [a] is isomorphic to Col(w, w,) or, equivalently, B | [a] has a dense subset of
size w,. ([@] denotes the element of % represented by a C w,.)

Let us complete the general theorems 1.5, 1.12, 2.3 and 2.8 by the following ones,
which deal with this particular % .

2.15. PROPOSITION. Suppose (CH ) and let i be a nontrivial w,-complete ideal on w,,
B = P(w,)/i. Then the following statements are equivalent:

(i) Each family A C B, |4| = w,, has a disjoint refinement;

(i) each family A C B with FIP, |A| = w,, has a disjoint refinement;

(iii) there is no family {x,: a < w,} C P(w,)) such that the ideal generated by
iU {x,: a < w}is maximal.
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FPROOF. (i) - (ii) is trivial.

(i) — (iii). It suffices to prove that no ultrafiiter on %% has w, generators. Let
S = {[v,]: @ < w,} be a base of some ultrafilter U on %, where v, € 9 (w,) — i.
Let {[w,]: @ <} be a disjoint refinement of S. Since i is «,-complete we may
assume that w,’s are pairwise disjoint. The algebra %3 is atomless; we may split
each w, into two disjoint parts w,(0), w,(1) not belonging to i. Necessarily, one of
the elements [w) ~ U {w,: & <o }], [U{w(0): a < o}) [U{w (1) a <w)]
belongs to U, which contradicts the assumption that S is a base of U.

—1(1) — —(iii). If (i) does not hold, then there is some a € P(w,) — / such that
% (w,)/ i(a) has a dense subset of size w,, where i(a) = {x € Pw):xNaeil,by
a result of [T] or [BY,], see also [.12. Since we assume 2° = w, {this is the only
place where we need CH), there is an ultrafilter U on @ (w,)/i(a) generated by
{[x,]: @ < w,} according to Theorem 2.3. Then, however, the ideal generated by
PU{w, —al U {w — x,; ¢ < w)is maximal. [

2.16. COROLLARY. Suppose (CH). There exists a family {a,: a < w,} of stationary
subsets of w, having no disjoint refinement by stationary subsets if and only if there is
a family {x,: @ < w} C P(w) such that all closed unbounded subsets of w, together
with {x,: a < w,} generate a uniform ultrafilter on w;. [

2.17. PROPOSITION. f there is no dominating family of power w; in “w, then each
Jamily A, |A] = w, or stationary subsets of @, closed under finite intersections has a
disjoint refinement consisting of stationary sets.

PrOOF. Apply 2.9. [

2.18. REMARKS. Let $8 be ¥ (w,) modulo an w,-complete ideal i, i 2 i.

(a) It is consistent that hsat($h) > w, (for all I’s); hence Rp(w,) holds by 1.5. This
follows, e.g., from the weak Kurepa hypotheses |BK], [BHM].

(b) Assuming the existence of a huge cardinal, Kunen showed the consistency of
the existence of an / such that hsat(%® ) = w, [Ku,].

(c) R. Laver (unpublished result) proved the relative consistency of “there is a
nontrivial w-complete ideal / on «,; such that hsat{ ) = w, & there is no w;-scale
in “w”. This is the case when Rfip(w,) holds by 2.17.

(d) By 2.15, if there is an ideal 7 such that hsat(h) = w, and d(%H) = w, and
2% = w,, then Rp(w,) as well as Rfip(w,) does not hold for % . A consistent example
of such an ideal was exhibited by Woodin [W].

(e) It is an open question whether an analogous situation as in (d) may arise for
i = NS{w,;). The only known model where hsat(?(w,)/NS(«)) = w, holds was
constructed by Van Wesep [VW]. In his model, 2¥ = w,.

3. Extensions of filters. Having shown that there is a close connection between
the disjoint refinement property for centered systems and extension of filters to
ultrafilters, let us now consider the following problem: Given a Boolean algebra %
and a filter & on %5, what is the least cardinality of a subset € ¢ % such that
% U C generates an ultrafilter on 4B ? Our attention will concentrate on 9 =
9 (x)/ i, where « is an infinite cardinal.
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For convenience, topological terminology will frequently be used in this section.

We shall show by the way that there is a discrete set D C BN — N, |[D| = o,
with precisely one complete accumulation point. This answers a question posed by
R. G. Woods [Wo], van Douwen [vD,], Hudek [Hu] and others. It should be
remarked that the same result was obtained independently by K. Kunen [Ku,] and
S. Shelah [S].

3.1. DEFmNITION. Let ¢F be a filter on a Boolean algebra 9. The relative character
of an ultrafilter A 2 & with respect to & is defined by

x(, Fy =inf{}C]: € ¢ D and § U C generates U}
3.2. DerFNITION. Let « be a cardinal. Denote by & the family of all functions ¢
such that dom(e) is a finite subset of x, rng(g) ¢ {0, 1}. For ¢ € &, the canonical

open set in the space 2 determined by @ is the set H(p) = {f € "2: f D ¢}.
Suppose U to be a nonvoid open subset of *2. Let

@) = { U (dom(p): ¢ € 5'): 6" €[§]* and
U {H(¢): ¢ € &'} is a dense subset of U}.

3.3. LeMMA. Let U be a nonempty open subset of the space “2. Then for each
A € QU), H(p) N U 5 & whenever ¢ € & is such that dom(p) N 4 = &.

Moreover, if U, V € *2 are open sets with nonvoid intersection, then for every
AU, Be &V)Ywe have AU BE (U N V).

PrOOF. Let us notice that for each nonvoid open U C 2%, the set @(U) contains
at least one nonvoid member. This follows from the well-known fact that each
family of pairwise disjoint nonempty open subsets of *2 is at most countable.

LetA4 & @(U), B € &(V),

A= U{dom(y): ¢y €8'}), B= U{dom(#):¥€&"}.

Suppose ¢ € 5, dom(g) N A4 = &J. Then for each ¢ € &’ the intersection
dom(y) N dom(g) is empty. Thus an arbitrary f € *2 with f D ¢ U ¢ belongs to
H(g) N H(Y), consequently to H(g) N U.

Moreover, suppose U N V7%= @. Let §” = (y U $: ¢ €8, 9 € 5" and H(Y)
N H(®)# ). Then 4 U B2 U {dom(g): ¢ € &"’}. We have to show that
U {dom(g): ¢ € "} € &(U N V). However, HY U #) = HY)n HHF) C U
M ¥V whenever H({) N H($) # &, and the density of U {H(g): ¢ € '} in
Un V follows from the density of sets U{H({): ¢ €&’} in U and
U {H(#): & € §”) in ¥, respectively. Since 4 U B is countable and contains a
member of € (U N V), it belongs to &(U N V), too.

3.4. LeMMA. Let w, v be infinite cardinals, v regular, let w, < v < p. Let p €
G(*2). Then there exists a discrete set {p;: &€ € v} C G(*2) — {p} with the following
properties;

(i) for each neighborhood U of p there is some a <y such that U D {pg
a<§<r};

(ii) for each a < v, p & cl(p;: § < a),

(iti) if ¢ = p. g € G("2), then there is some o < p such that q & cl(pg: a <€ <),



FILTERS IN BOOLEAN ALGEBRAS 281

ProoF. Identify p with some ultrafilter U, in RO(*2). Let y & #2 be the limit
point of the ultrafilter 9L, in #2.

Consider #2. For every ordinal ¢ < », define ye € "2 by the rule y(a) = 1 —
e)if £ <a<p, ye(e) = y(a) otherwise.

The following facts are almost obvious:

(a) {ye: & <v}isa discrete subspace of #2;

(b) for each neighborhood U of y in #2, there is some a < » such that {/ {ye
o < E<ry;

(c) for each a < », there is a neighborhood U of y in #2 such that U 0 { e
(<a} =

Define &, = {U &€ Q,: thereissome 4 € @(U)suchthat4 N » C £).

Claim. If O, is a canonical neighborhood system of Yy in*2, then 0, U 9, is a
centered system of regular open sets.

Each member of O; U &, is regular open. If U,, U, ..., U, € %, then U,
N...NY, €% by Lemma 3.3 and by the definition of %,.

Let Hip) € G, UEF,. Denote gy=q| (v~ ¢+ 1), 9, = — @, Then
H(g,) is a neighborhood of y, hence H(p,) N U is a nonvoid regular open set. Fix
an 4 € (V) such that 4 n » C & Then (4 U dom(g,)) N dom(g,) = &; there-
fore the set H(gpy) N H(p ) N U is nonvoid by Lemma 3.3. Since H{gy) N H(p))
= H(g), the claim is proved.

Now we return to the space G(*2).

Let QU be an arbitrary ultrafilter in RO(*2) such that U, » O U %, and let p,
be the point in G(*2) corresponding to QLg. Then the set {p,: § € v} is a discrete
subspace of G(*2) by (a); furthermore, (ii) follows from (c) and from the definition
of %,.

Ing € U, then U € F; for all £ € » such that there is an 4 € @(U) with
AN v CE& Since » is regular and uncountable, there is some a < » such that
U € ; for all £ > a. But according to the definition of the topology in the Stone
space, this means precisely (i).

If ¢+ p, q € G(*2), then there are disjoint regular open sets U, F in *2
corresponding to disjoint neighborhoods of p and ¢. According to the definition of
;. V cannot belong to A, whenever U € %, which proves (ii). [

3.5. THEOREM. Let p be an infinite cardinal, let X be a topological space containing
a copy of G(*2) as a subspace. Then for each regular v, w, S ¥ < U, there is a discrete
set D C X with |D|= v and a point ¢ € X such that q is the unique complete
accumulation point of D, and q & cl(Dy) for any Dy C D with | Dg| < ».

Proor. Apply Lemma 34. []

3.6. THEOREM. Let , A be infinite cardinals, X regular and A < 2. Then there is a
uniform filter 5 and an uitrafilter U > F on P(x) with x(U, F) = X\ if and only if
A> w.

Proor. By Stone duality, there is a one-to-one correspondence between closed

sets In U(x) (points in U(«x)) and uniform filters (uniform ultrafilters, resp.) on
P (k). Hence it suffices to find a closed set K ¢ U(x) and a point p € K with

x(p, K) = A
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First we shall show that A > w is necessary. Let p € K < U(x) be such that
x(p. K) = w. Let {V,: n €w} be the neighborhood base of p in K. Let p, €
N (V:i<a},p, #p. Theset { p,: n € w} is C*-embedded in U(x) (see, e.g., [CN,
16.15(b)]), yet it converges to p—a contradiction.

Let A be uncountable. According to Efimov’s theorem, G(*2) can be embedded
into U(x). Since A < 2 and A is regular, 3.4 may be applied: let p and {p.: £ € A}
be as stated in 3.4. Let K = cl(p;: £ €A). Then x(p, K) < A by 3.4(i1), (ii1), since
{K - cl(p;: § <a) a <A} is a neighborhood system of cardinality A of p in K
whose intersection is { p}. On the other hand, 3.4(i) and the regularity of A imply
that x(p. K) = A. [

Notice that an analogous theorem holds for any Boolean algebra %, whose
Stone space contains a copy of G(*2) for some uncountable u. An interesting
consequence of this fact can be found in [vD,].

3.7. COROLLARY. (a) For each infinite cardinal k, there is a discrete set D C Ul(k)
of cardinality w, having a unique complete accumulation point.

(b) For each infinite cardinal «, there exist a uniform filter & and a family C c [«
such that |C| = w, and § U C generates a uniform ultrafilter on @ (x). [
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