by

Bohuslav Balcar and Peter Vojtás

Introduction. The present paper contains some observations and problems concerning disjoint systems refining a given system, One of the first classical results in this area is the following theorem of Sierpinski: If X is an infinite cardinal and $u=\left\{u_{\alpha} ; \alpha \in \mathcal{X}\right\}$ is a system of sets of cardinality X then there is a disjoint refining system $\left\{v_{\alpha} ; \alpha \in X\right\}$ for u, this means $\left|v_{\alpha}\right|=X, v_{\alpha} \subseteq u_{\alpha}$ and $\alpha \neq \beta$ implies $v_{\alpha} \cap v_{\beta}=0$. The problem of disjoint refinements is developed in [5],[2],[1],[7],[8],[9] and [11]. In section 1 we define the disjoint refining property $R f(\underline{b}, X)$ of a Boolean algebra \underline{b} with parameter X, and $R f i p(\underline{b}, X)$, the disjoint refining property of \underline{b} with respect to systems satysfying the finite intersection property. We describe a class of algebras where $\operatorname{Rf}(\underline{b}, \mathcal{K})$ is equivalent to the extremal condition on the cardinality of a basis of b (Theorem 1.6). If $X^{X}=X$ then for Boolean algebras with a basis of cardinality at most X we show a connection between Rfip $(\underline{b}, \mathcal{X})$ and the minimal cardinality of a basis of ultrafilters on b (Theorem 1.11). In section 2 the above mentioned properties are applied to problems concerning o-complete ideals on ω_{1}. We can not settle the following problem:

Does there exist a complete Boolean algebra with a basis of cardinality $X>K_{0}$, which has the $R f_{i p}(\mathcal{K})$ property?

O. Preliminaries.

We use the usual system of Set theory with the axiom of choice. Infinite cardinals are denoted by K, λ. If $u: x \rightarrow y$ is a mapping from x to y, then we often write a_{v} instead of $u(v)$ for $v \in Z$. We assume fundamental facts from the theory of Boolean algebras, [13],[3]. The set of all nonzero elements of a Boolean algebra b is denoted b^{+}. By the canonical ordering of \underline{b} we mean the relation $x \leqslant \underline{b}^{y}$ iff $x \wedge \underline{b}^{y}=x$. The fact that algebras $\underline{b}_{1}, \underline{b}_{2}$ are isomorphic is $\bar{\theta} x p r e s s e d$ by $\underline{-}_{1} \cong \underline{b}_{2}$. By a partial Boolean algebra \underline{b}_{x} of \underline{b} for $x \in b^{+}$we understand an algebra with the universe
$b_{x}=\left\{y \in b ; y \leqslant b^{x\}}\right.$ and restricted operations. p is a partition of \underline{b} if $p \subseteq b^{+}$anत्व elements of p are pairwise disjoint. p is a maximal partition if, in addition, $V_{p}=\mathbb{1}_{\underline{b}}$. For $x \in b^{+}$and any partitions $p, q \subseteq b^{+}$we put $p \wedge \wedge x=\left\{x \underset{\wedge}{x} v x \wedge v \neq \mathbb{O}_{b} \& v \in p\right\}$. Analogously $p \wedge \wedge q=\{y ; y \neq 0 \&(\exists v \in p)(\exists z \in q)(y=v \wedge z)\}$. A system $u \subseteq b^{+}$has the finite intersection property (Fip(u)) if for every finite, nonempty, $v \subseteq u$ we have $\Lambda \nabla \neq \mathbb{O}_{b}$. Saying that i is an ideal on b means that i is a proper ideal, i. $\bar{e} . \mathbb{T}_{b} \notin i$, and similarly for filters. For each $x \in b^{+}$, sat(x) is the Ieast cardinal λ such that there is no partition of \underline{b}_{x} of cardinality λ. In contrast to the traditional notion of saturation we define the saturation of a Boolean algebra \underline{b} as sat $(\underline{b})=\min \left\{\operatorname{sat}(x) ; x \in b^{+}\right\}$. $u \subseteq b^{+}$is a basis of b if for every $x \in b^{+}$there is $y \in u$ such that $y \leqslant x$. Assume j is a filter on \underline{b}. Then $u \subseteq j$ is a basis of j if for every $x \in j$ there is $y \in u$ such that $y \leqslant x$. For each Boolean algebra b, Comp(b) denotes the complete Boolean algebra with base b. Note that $\operatorname{Comp}(\underline{b})$ is determined uniquely up to isomorphism and that \underline{b} is a subalgebra of Comp(b). Consider \boldsymbol{X} with the discrete topology and the product P of ω copies of X with the product topology. Then the system of all regular open sets in P forms a complete Boolean algebra, denoted by $\operatorname{Col}(\omega, \boldsymbol{x})$. Put $\mathbb{d}=\{f ; f: n \rightarrow X \& n \in \omega\}$ with the partial ordering $f \leqslant g$ iff $\pm \supseteq g$. Then d is isomorphic to a basis $\operatorname{Col}(\omega, \mathcal{X})$ with respect to \leqslant and the canonical ordering of Col (ω, X). Remember, if two complete Boolean algebras have isomorphic bases then they are isomorphic.

1. Refinements for families.
1.1. DEFINITION. Let X be a cardinal, \underline{b} a Boolean algebra.
(i) A mapping $\mathrm{a}: \mathrm{a} \rightarrow \mathrm{b}^{+}$has a disjoint refining system, (in symbols $R f(\underline{b}, u)$ or briefly $R f(u)$), if there exists a $v: a \rightarrow b^{+}$ such that $v(x) \leqslant u(x)$ and $x \neq y$ implies $v(x) \wedge v(y)=\mathbb{O}$. We often say refining system instead of disjoint refining system.
(ii) b has the disjoint refinement property for systems of cardinality X (in symbols $R(\underline{b}, \mathcal{X})$), if $R f(u)$ holds for all $u: X \rightarrow b^{+}$.
(iii) b has the disjoint refinement property for systems of cardinality \mathcal{X} satisfying Fip (in symbols Rfip $(\underline{b}, \mathcal{X})$), iff for every $u: X \rightarrow b^{+}$such that $\operatorname{Fip}\left(\left\{u_{\alpha} ; \alpha \in \mathcal{X}\right\}\right)$ we have $\operatorname{Rf}(u)$.
1.2. REMARK. (i) $\operatorname{Rf}(\underline{b}, \mathcal{X}) \rightarrow \operatorname{Rfip}(\underline{b}, \mathcal{X})$ and there are algebras such that $R f$ is stronger than Reip.
(ii) $\operatorname{Rf} i p(\underline{b}, K) \rightarrow s a t(\underline{b})>K$.
(iii) Let sat(b) $>\mathbf{X}$. Then $R f(\underline{b}, X)$ iff $R f$ holds for injective mappings. Analogously for Rfip.
(iv) Evidently $R f(\underline{b}, \mathcal{X})$ iff $\operatorname{Rf}(\operatorname{Comp}(\underline{b}), X)$ and $R f i p(C o m p(\underline{b}), X)$ implies Rfip(b, X$)$.

First we shall pay our attention to the existence of refining systems of a given system.
1.3. IEMMA. Assume that \underline{b} is a Boolean algebra and $u: X \rightarrow b^{+}$. Then $(a) \rightarrow(b)$ where
(a) There is a partition p of \underline{b} such that $\alpha \in \mathbb{X}$ implies $\left|u_{\alpha} \wedge \wedge p\right| \geqslant x$.
(b) $\operatorname{Rf}(u)$.

We give a standard construction of a refining system which will be called the refining system generated by the partition p.

Proof. For $\alpha \in X$ let $p_{\alpha}=\left\{x \in p ; x \wedge u_{\alpha} \neq \mathbb{O}\right\}$. Then there exists an injective mapping $m: X \rightarrow p$ such that $w(\alpha) \in p_{\alpha}$. Put $v(\alpha)=u(\alpha) \wedge w(\alpha)$. Then ∇ is a disjoint refining system for u. The next theorem is a generalization of a theorem contained in [1] and [2].
1.4. THEOREM. Assume that \underline{b} is a Boolean algebra and X is an infinite cardinal. If $\operatorname{sat}(\underline{b})>\bar{X}^{+}$then $\mathrm{Rf}(\underline{b}, \mathrm{X})$.

Proof. Let $u: X \rightarrow b^{+}$. By transfinite recursion, we construct a partition p which fulfils (a) of Lemma 1.3.

Step: 0 . Let p_{0} be a partition of $\underline{b}_{0},\left|p_{0}\right|=\mathbf{x}^{+}$. Put $S_{0}=\left\{\alpha \in X ;\left|u_{\alpha} \wedge \wedge p_{o}\right|=X^{+}\right\}$and $\bar{p}_{0}=\left\{x \in p_{0} ;\left(\exists \beta \in X-S_{0}\right)\left(u_{\beta} \wedge x \neq \mathbb{O}\right)\right\}$. Since $\left|\bar{p}_{0}\right| \leqslant K$, we have $\left|u_{\alpha} \wedge \wedge\left(p_{0}-\bar{p}_{0}\right)\right|=X^{+}$for each $\alpha \in S_{0}$; furthermore $0 \in S_{0}$.
step1. $\alpha \in \mathcal{K}, \alpha>0$. If we put
$R_{\alpha}=\bigcup\left\{S_{\beta} ; \beta \in \alpha \& S_{\beta} \subseteq \mathcal{K}\right\}$ and
$q_{\alpha}=\bigcup\left\{p_{\beta}-\bar{p}_{\beta} ; \beta \in \alpha \&\left(\gamma \in S_{\beta} \rightarrow\left|u_{\gamma} \wedge \wedge\left(p_{\beta}-\bar{p}_{\beta}\right)\right|=X^{+}\right)\right\}$
then q_{α} is a partition, $u_{\gamma} \wedge x=0$ for $\gamma \in X-R_{\alpha}, x \in q_{\alpha}$. Moreover, $\alpha \subseteq R_{\alpha}$.

Suppose $K-R_{\alpha} \neq 0$, since otherwise the partition q_{α} fulfils (a) of Lemma 1.3 and the proof is finished. Let p_{α} be a partition of $\underline{b}_{u_{\gamma}}$ where $\gamma=\min \left(\boldsymbol{X}-R_{\alpha}\right),\left|p_{\alpha}\right|=\boldsymbol{X}^{+}$and put $S_{\alpha}=\left\{\beta \in X ;\left|u_{\beta} \wedge \wedge p_{\alpha}\right|=X^{+}\right\}$and
$\bar{p}_{\alpha}=\left\{x \in p_{\alpha} ;\left(\exists \beta \in \mathcal{X}-S_{\alpha}\right)\left(u_{\beta} \wedge x \neq 0\right)\right\}$. Then $\left|\bar{p}_{\alpha}\right| \leqslant \mathcal{X}$ and for $\beta \in S_{\alpha}$ we have $\left.\left|u_{\beta} \wedge \wedge\right| p_{\alpha}-\bar{p}_{\alpha} \mid\right)=\mathcal{K}^{+}$; furthermore $\alpha \in\left(S_{\alpha} \cup R_{\alpha}\right)$. Let $\delta=\sup \left\{\alpha+1 ; K-R_{\alpha} \neq 0\right\}$ and $p=U\left\{p_{\alpha}-\vec{p}_{\alpha} ; \alpha \in \delta\right\}$. Then $\delta \leqslant \mathcal{K}$ and for all $\alpha \in \boldsymbol{X}$ we have $|u(\alpha) \wedge \wedge p|=X^{+}$.

This theorem gives us the best result concerning Rf with respect to saturatedness. Boolean algebras with a basis of cardinalitykdo not have disjoint refinement property for systems of cardinalityr.
1.5. The following definition appears in [1].

DEFINITION. Let \underline{b} be a Boolean algebra and let $u: \mathcal{X} \rightarrow b^{+}$
(i) Nd(u) holds if there exists a $v_{0} \in b^{+}$such that $v_{0} \leqslant u_{0}$ and for each $\alpha>0$ we have $u(\alpha)-v_{0} \neq$ (D.
(ii) We say that b has a nowhere dense set of cardinality X, in symbols $\mathbb{N d}(\underline{b}, \mathcal{K})$ if every $u: X \rightarrow b^{+}$satisfies $N a(u)$.

Observe that $N(\underline{b}, X)$ implies that $a l g e b r a \underline{b}$ is atomless.
IEMMA. A Boolean algebra b has the property $\mathbb{N}(\underline{b}, \mathcal{X})$ iff $\left(\forall x \in b^{+}\right)$ (\underline{b}_{x} has no basis of cardinality $\leqslant X$).

Proof. Let $\{u(\alpha) ; \alpha<\lambda\}$ be a basis of \underline{b}_{x} for some $y \in b^{+}$
and $\lambda \leqslant K$. Suppose $\operatorname{Na}(\underline{b}, \mathcal{K})$. Then for every $\nabla_{0} \in b_{x}^{+}$there is an $\alpha<\lambda, \alpha>0$ such that $u_{\alpha} \leqslant v_{0}$ i.e. $u_{\alpha}-v_{0}=0$ which contradicts to $\operatorname{Na}(\underline{b}, \mathrm{X})$. Let $u: X \rightarrow b^{+}$and $7 \operatorname{Na}(u)$; then for every $v_{0} \leqslant u_{0}$ and $v_{0} \neq 0$ there is an $\alpha \in X$ such that $u_{\alpha}-v_{0}=$ $=0$ i.e. $u_{\alpha} \leqslant v_{0}$. This means that $\left\{u(\alpha) ; \alpha \in X \cap b_{u_{0}}\right.$ is a basis of $\underline{b}_{u_{0}}$.
1.6. DEFINITION. Let \underline{b} be a Boolean algebra and let x, λ be infinite cardinals. We say that \underline{b} satisfies the ($\left.\mathcal{H}_{0}, \lambda, X\right)$ nondistributivity law, or that \underline{b} is $\left(X_{0}, \lambda, X\right)$-nondistributive if there exists a system $\left\{p_{n} ; n \in \omega\right\}$ of maximal partitions of \underline{b} such that $(\forall n \in \omega)\left(\left|p_{n}\right| \leqslant \lambda\right)$ and
$\left(\forall x \in b^{+}\right)(\exists n \in \omega)\left(\left|p_{n} \wedge \wedge x\right| \geqslant K\right) \cdot \underline{b}$ is $\left(\mathcal{K}_{0}, \cdots, X\right)$
nondistributive if there exists λ such that \underline{b} is ($\left.\mathcal{K}_{0}, \lambda, \mathcal{K}\right)$ nondistributive.

If \underline{b} is $\left(K_{0}\right.$, , $\left.X\right)$ nondistributive then obviously $\operatorname{sat}(\underline{b})>X$. Moreover, a system $\left\{p_{n} ; n \in \omega\right\}$, which exemplifies the nondistributivity of \underline{b} can be chosen in such a way that p_{n+1} refines p_{n} and $\left(\forall x \in p_{n}\right)\left(\left|\left\{y ; y \in p_{n+1} \& y \leqslant x\right\}\right| \geqslant X\right)$.

THEOREM. Assume that b is a $\left(X_{0}\right.$, , $\left.X\right)$-nondi stributive complete
Boolean algebra. Then the following conditions are equivalent:
(i) $\quad \mathrm{Na}(\underline{b}, \mathrm{X})$
(ii) $\mathrm{Rf}(\underline{b}, \mathrm{X})$
(iii) $\left(\forall x \in b^{+}\right)\left(\underline{b}_{x}\right.$ is not isomorphic to $\left.\operatorname{Col}(\omega, K)\right)$.

We shall break the proof into several lemmas.
1.7. LEMMA. Under the assumption of Theorem 1.6., Nd $\underline{b}, \mathbb{X}$) implies $\mathrm{Rf}(\underline{b}, \mathrm{~K})$.

Proof. Let $\left\{p_{n} ; n \in \omega\right\}$ be a given $\left(\mathcal{K}_{0}, \lambda, X\right)$-nondistributive system for b, and suppose that p_{n+1} is a refinement of p_{n}. Let $u: X \rightarrow b^{+}$. Put

$$
\begin{aligned}
& q_{0}=\left\{\alpha \in K ;\left|u_{\alpha} \wedge \wedge p_{0}\right| \geqslant K\right\}, \text { and for } n>0 \text { put } \\
& q_{n}=\left\{\alpha \in X ;\left|u_{\alpha} \wedge \wedge p_{n}\right| \geqslant K \&\left|u_{\alpha} \wedge \wedge p_{n-1}\right|<K\right\}
\end{aligned}
$$

The system $\left\{q_{n} ; n \in \omega\right\}$ is pairwise disjoint and $U\left\{q_{n}, n \in \omega\right\}=X$. Let $z_{n}: q_{n} \rightarrow b^{+}$be a refining system for $u \mid q_{n}$ generated by p_{n}, see Lemma 1.3. Since p_{n+1} is a refinement of p_{n} we have (1) $\left(z_{n}(\alpha) \wedge z_{m}(\gamma) \neq \mathbb{D} \& z_{n}(\beta) \wedge z_{m}(\gamma) \neq \mathbb{O}\right) \rightarrow \alpha=\beta$ for $n<m$ and $\alpha, \beta \in q_{n}, \quad \gamma \in q_{m}$.

Let $z=U\left\{z_{n} ; n \in \omega\right\}$. For $\alpha \in X$ we use $N(\underline{b}, K)$ on the system \bar{z}, where $\bar{z}(0)=z(\alpha), \bar{z}(\alpha)=z(0)$ and $\bar{z}(\beta)=z(\beta)$ for $\beta \neq 0, \alpha$. We obtain a $v(\alpha), 0 \neq v(\alpha) \leqslant z(\alpha)$ such that $\beta \neq \alpha$ implies $z(\beta)-v(\alpha) \neq 0$. We proceed in the construction of a refining system $\left\{v_{\alpha} ; \alpha \in \mathbb{K}\right.$ by recursion.

Step 0. For $\alpha \in q_{0}$ we have $v(\alpha) ; w_{0}=\left\{v(\alpha) ; \alpha \in q_{0}\right\}$ is a pairwise disjoint system. As (1) we have $z(\beta)-V w_{0} \neq \mathbb{O}$ for $n>0, \beta \in q_{n}$. For $n>0, \alpha \in q_{n}$ put $z_{n}^{(1)}(\alpha)=z(\alpha)-V w_{0}$ Clearly $z_{n}^{(1)}$ refines z_{n} 。

Step $j+1$. We have
(i) a disjoint system $\left\{v(\alpha) ; \alpha \in U\left\{q_{k} ; k \leqslant j\right\}\right\}$ and
(ii) a system of mappings $\left\{z_{n}^{(j+1)} ; n \geqslant j+1\right\}$ such that for every $\left.\alpha \in \bigcup_{\left\{q_{k}\right.} ; k \leqslant j\right\}, n \geqslant j+1$ and $\beta \in q_{n}, v(\alpha) \leqslant z(\alpha)$ and $z_{n}^{(j+1)}$ refines z_{n} and $z_{n}^{(j+1)}(\beta)$ is disjoint with every $v(\alpha)$.

For every $\alpha \in q_{j+1}$ we use Nd on the element $z_{(j+1}^{(j+1)}(\alpha)$ according to the system $\left.\bigcup_{\{z}{ }_{n}^{(j+1)} ; n \geqslant j+1\right\}$ and obtain $w_{j+1}=\left\{v(\alpha) ; \alpha \in q_{j+1}\right\}$ such that $0 \neq v(\alpha) \leqslant z^{(j+1)}(\alpha)$, $z_{n}^{(j+1)}(\beta)-V w_{j+1} \neq 0$ for $n>j+1$, and $\beta \in q_{n}$. For $n \geqslant j+2$ and $\beta \in q_{n}$ put

$$
z_{\mathrm{D}}^{(j+2)}(\beta)=z_{\mathrm{n}}^{(j+1)}(\beta)-V_{j+1^{*}}
$$

The system $V=\{v(\alpha) ; \alpha \in \mathbb{K}$ thus obtained is a refining one for u.
1.8. The implication (ii) \rightarrow (iii) in Theorem 1.6 is obvious because the Boolean algebra $\operatorname{Col}(\omega, K)$ is atomless and has a basis of cardinality X .

LEMMA (Mic Aloon). Assume b is a complete Boolean algebra. Then the following statements are equivalent.
(i) \underline{b} is isomorphic to $\operatorname{Col}(\omega, X)$;
(ii) b is $\left(X_{0}\right.$, , $\left.X\right)$-nondistributive and has basis of cardinality K.

Proof. (i) \rightarrow (ii) is clear. Let us prove (ii) \rightarrow (i). Let u be a basis of $\underline{b},|u|=X$. Then every partition p of \underline{b} has the cardinality at most K. Hence b is $\left(X_{O}, K, K\right)$-nondistributive. Let $\left\{p_{n} ; n \in \omega\right\}$ be a $\left(\mathcal{X}_{0}, \mathcal{K}, \mathcal{K}\right)$ nondistributive system. Put

$$
\begin{aligned}
& u_{0}=\left\{x \in u ;\left|x \wedge \wedge p_{0}\right|=X \text { and for } n>0\right. \text { put } \\
& u_{n}=\left\{x \in u ;\left|x \wedge \wedge p_{n}\right|=X \&\left|x \wedge \wedge p_{n-1}\right|<X\right\} \text {. }
\end{aligned}
$$

For every n there is an injective mapping $f_{n}: u_{n} \rightarrow p_{n}$ such that $f_{n}(x) \wedge x \neq 0$. Put
$\bar{p}_{n}=\left\{y ;\left(y \in p_{n} \& y \notin W\left(f_{n}\right)\right) \vee\left(\exists x \in u_{n}\right)\left(y \neq \mathcal{O}\left(y=x \wedge f_{n}(x) \vee\right.\right.\right.$ $\left.\left.\left.\vee y=-x \wedge f_{n}(x)\right)\right)\right\}$.
Then $\left.U_{\left\{\bar{p}_{n}\right.} ; n \in \omega\right\}$ is a basis of b. Choose a $v: b^{+} \rightarrow P\left(b^{+}\right)$ such that $|v(x)|=X, \quad V(x)$ is a maximal partition of b_{x}.

Such v certainly exists. We construct $\left\{q_{n} ; n \in \omega\right\}$ by recursion as follows:
(step 0) $\quad q_{0}=\bigcup\left\{v(x) ; x \in \bar{p}_{0}\right\}$.
(step $n+1) \quad q_{n+1}=\bigcup\left\{v(x) ; x \in \bar{p}_{n+1} \wedge \wedge q_{n}\right\}$.
The set $U\left\{q_{n} ; n \in \omega\right\}$ is a basis of \underline{b} and is isomorphic to the basis d of Col (ω, K) (see section 0) with respect to the canonical orderings of algebras.

By proving Lemma 1.8 we have finished the proof of Theorem 1.6 because we have proved $($ i $) \rightarrow($ ii),$($ ii) \rightarrow (iii), (iii) \rightarrow (i).
1.9. The theorem, we just proved says that, roughly speaking, for $\left(K_{0}\right.$, , K)-nondistributive Boolean algebras, $\neg \mathrm{Rf}(\mathrm{K})$ is equivalent to the existence of a basis of cardinality K. The $\left(\mathcal{K}_{0}\right.$, . \mathcal{K})-nondistributivity is essential. There are examples of Boolean algebras with saturation equal to \mathcal{K}^{+}, which do not satisfy $R f(X)$ and which, furthermore, have no local basis of cardinality less then K^{+}.

Now we turn our attention to the property Refip. We offer no definitive results, only some conjectures and propositions. There are examples of complicated algebras with a basis of cardinality X, but not complete, which satisfy Rüip(K). For example if GCH then the factor algebra of $P(K)$ modulo the ideal of sets of cardinality less than K fulfils Rfip (See [5] and [9]).

The main question that we cannot answor goes like this (A) Does there exist a complete Boolean algebra with a basis of cardinality $K>K_{0}$ which satisfies $R f i p(K)$?
1.10. The above problem can be reduced to the algebra $\operatorname{Col}(\omega, K)$.

PROPOSITION. Assume X is an uncountable cardinal. If there is a complete Boolean algebra with a basis of cardinality K with the property Rfip(K) then the Boolean algebra $\operatorname{Col}(\omega, K)$ has the property fifip(X), too.

Proof. Assume b is a complete Boolean algebra with a basis of cardinality X and $R f i p(\underline{b}, X)$. According to a slight generalization of Kripke's embedding theorem we can assume that \underline{b} is a complete subalgebra of $\operatorname{Col}(\omega, \mathcal{K})$. This well known fact can be proved by using the characterization of the algebra $\operatorname{Col}(\omega, \mathcal{K})$ (Lemaa 1.8) and
properties of free products of Boolean algebras. Let $u=\left\{u_{\alpha} ; \alpha \in \mathbb{X}\right.$ be a system of nonzero elements of $\operatorname{Col}(\omega, X)$ with the finite intersection property. Put $u_{\alpha}^{\#}=\bigwedge\left\{x \in b ; x \geqslant u_{\alpha}\right\}$. The system $u^{\#}=\left\{u_{\alpha}^{\#} ; \alpha \in \mathcal{K}\right.$ has the finite intersection property, too. Let $w=\left\{w_{\alpha} ; \alpha \in X\right\}$ be a refining systerifor $u^{\#}$ in the algebra b. If we put $v(\alpha)=W(\alpha) \wedge u(\alpha)$ then $v(\alpha) \neq 0$ and the system $\mathrm{v}=\left\{\mathrm{v}_{\alpha} ; \alpha \in \mathrm{X}\right\}$ refines u .
1.11. The following propositions give some relations between properties of ultrafilters and filters on a Boolean algebra and the property Rfip.

THEOREM. Assume b is a complete Boolean algebra and K is an infinite cardinal. Then $(a) \rightarrow(b) \rightarrow(c)$ where
(a) for any ultrafilter j on b there is a maximal partition p of \underline{b} such that $\left(\forall p_{0} \subseteq p\right)\left(\left|p_{0}\right|<X \rightarrow V p_{0} \notin j\right)$;
(b) $\operatorname{Bfip}(\underline{b}, K)$;
(c) no ultrafilter on b has a basis of cardinality at most K.

Moreover if $X=\sum_{\lambda<\mathcal{X}} X^{\lambda}$ and \underline{b} has a basis of cardinality X then the above conditions are equivalent.

Proof. (a) \rightarrow (b). For any $u: X \rightarrow b^{+}$with the finite intersection property take an ultrafilter j such that $u(\alpha) \in j$ for all $\alpha \in X$. Let p be a maximal partition guaranteed by (a). The system u and the partition p fulfil condition of Lemma 1.3.
(b) \rightarrow (c). Assume, on the contrary, that $u=\left\{u_{\alpha} ; \alpha<\lambda\right\}$, $\lambda \leqslant X$, is a basis of an ultrafilter j and $\nabla=\left\{\nabla_{\alpha} ; \alpha<\lambda\right\}$ is a disjoint refining system for u. Let p be a maximal partition of \underline{b} which contains v, i.e. $v \subseteq p$. From $\operatorname{Rf} i p(\mathcal{K})$ it follows that \underline{b} is atomless, so we can split every element of p into two nonzero elements. Choose a system $\left\{\left(x_{1}, x_{2}\right) ; x \in p\right\}$ such that $x_{1}, x_{2} \neq 0$, $x_{1} \wedge x_{2}=0 \& x_{1} \vee x_{2}=x$ for any $x \in p$. Put $a_{1}=V\left\{x_{1} ; x \in p\right\}$, $a_{2}=V\left\{x_{2} ; x \in p\right\}$. Clearly $a_{1}=-a_{2}$ but no v_{α} lies under a_{1} or a_{2}, which is a contradiction.
$(c) \rightarrow$ (a). In fact we show $7(a) \rightarrow 7(c)$. Let $u=\left\{u_{\alpha} ; \alpha \in \mathbf{X}\right.$ be a basis of b. Let j be an ultrafilter with property $7(a)$. We construct a basis of j of cardinality X. For $x \in j$ take a maximal partition p_{x} of \underline{b}_{x} such that p_{x} contains only elements of the basis u. Then there exists $q_{x} \subseteq p_{x},\left|q_{X}\right|<X$ such that $V q_{x} \in j$. Hence
$w=\left\{V q_{x} ; x \in j\right\}$ is a basis of the ultrafilter j and it has a cardinality at most K.
1.12. The following proposition is motivated by the characterization given by Prikry in [7].

PROPOSIPION. Assume X is a regular cardinal, b is a complete Boolean algebra. Then the following conditions are equivalent.
(i) Rfip(b,X);
(ii) for every filter j on b with a basis of cardinality at most X there is a K-complete filter F such that $\Lambda F=0$ and $j U F$ has the finite intersection property.
Moreover if $\lambda^{\sum}<X^{\lambda}=K$ and if \underline{b} has a basis of cardinality K then (i) is equivalent to
(iij) every ultrafilter j on \underline{b} contains a K-complete filter F such that $\Lambda F=0$.

Proof. (i) \rightarrow (ii). Assume $u=\left\{u_{\alpha} ; \alpha \in \lambda\right\}, \lambda \leqslant X$, is basis of j and let $V=\left\{v_{\alpha} ; \alpha<\lambda\right\}$ be a disjoint refinement of u. As sat $(\underline{b}) \geqslant X^{+}$we can choose for every $\alpha<\lambda$ a partition w_{α} of \underline{b}_{α} such that $w_{\alpha} \subseteq b^{+},\left|w_{\alpha}\right|=K$. Take a maximal partition p of b such that $\bigcup_{\left\{w_{\alpha}\right.} ; \alpha \in \mathcal{X} \subseteq p$. Put $f=\left\{-V p_{0} ; p_{0} \subseteq p \&\left|p_{0}\right|<X \cdot\right.$ The family f generates a K-complete filter F. Clearly $\wedge F=0$ and jU F has Fip.
$(i i) \rightarrow$ (i). Assume $u: K \rightarrow b^{+}$has Fip. Let j be the filter generated by 4 . Let F be a K-complete filter as in (ii). Because $\Lambda F=0$ the dual ideal $J=\{-x ; x \in E\}$ is a basis of b. Let p be a maximal partition of b with elements from J. As J is \bar{X}-complete ideal every u_{α} meets p in X elements. Thus u satisfies the sufficient condition for the existence of a refinement, given in Lemma 1.3.

Let us prove (iii) \rightarrow (ii). Let j be a filter on b. Take an ultrafilter $j_{1} \geq j$. Iet F be a K-complete filter which exists for j_{1} by (iii). Clearly $j \cup F$ has the finite intersection property.
$(i i) \rightarrow$ (iii). (ii) implies Rfip $(\underline{b}, \mathrm{~K})$. Owing to theorem 1.11 there exists a maximal partition p of b such that
$\left(\forall p_{0} \subseteq p\right)\left(\left|p_{0}\right|<K \rightarrow V p_{0} \notin j\right)$. But then $\left\{-V p_{0} ; p_{0} \subseteq p \&\left|p_{0}\right|<X\right\}$ generates a K-complete filter $F \subseteq j$ which obviously satisfies $\Lambda_{F}=0$ 。
2. Conections with a problem of Fodor and a problem of Ulam on families of measures for $K=K_{1}$.
2. 1. In this section we turn our attention to systems of subsets of $K=\omega_{1}$. We shall deal with σ-complete ideals on $P\left(\omega_{1}\right)$ and corresponding factor algebras. Our aim is to show that some hypotheses concerning refining properties are naturally related to a problem of Fodor (see [1]), and furthermore, to a problem of Ulam (see [10]). We shall add one more problem and relate it to refining properties.

Fodor's problem reads as follows: Let i be a σ-complete nontrivial ideal on ω_{1}. Does Sierpinski's theorem, mentioned in the introduction, hold if "of cardinality \mathcal{X}_{1} " is replaced by "not belonging to i" ? In other words, prove or disprove the following statement:
(F) For every σ-complete nontrivial ideal i on ω_{1} and every system $u=\left\{u_{\alpha} ; \alpha \in \omega_{1}\right\} \subseteq P\left(\omega_{\eta}\right)$ - i there is a disjoint refining system $v=\left\{v_{\alpha} ; \alpha \in \omega_{1}\right\} \subseteq P\left(\omega_{1}\right)-i$ for u.

The following will be called Ulam's problem. Prove or disprove the following statement:
(U) There exists a family $\left\{\mu_{\alpha} ; \alpha \in \omega_{1}\right\}$ of σ-additive $0-1$ nontrivial measures on ω_{1} such that every subset is measurable with respect to one of them.

In addition let us formulate our third problem. Prove or disprove the following statement:
(III) There exists a σ-complete nontrivial ideal i on ω_{1} and a set $X \subseteq P\left(\omega_{1}\right)$ of cardinality X_{1} such that i $U X$ generates a maximal ideal.

It is known that $V=L$ implies an affirmative answer to Fodor's problem and the negative solution of both Ulam's and the third problem. This can be found in [15],[6],[4].

Nothing is known concerning the consistency of the negative solution of Fodor's problem and the positive solution of Ulam's and the third problem. Thus we conjecture that ZFC proves (F), $7(U)$ and 7 (III).

We shall show some interdependences between (F), (U) and (III) and relate them to the refining properties.

Let (RF) means: For every σ-complete nontrivial ideal i on ω_{1} the Boolean algebras $P\left(\omega_{1}\right) / i$ and $\operatorname{Col}\left(\omega, \omega_{1}\right)$ are not isomorphic.

Our results can be summarized in the following figure:

Arrows mean implications.
The following problem arises naturally.
(B) Does (F) \rightarrow (U) ?
2.2. We begin with some denotations and facts. Assume i is a o-complete ideal on ω_{1}. For $u \subseteq \omega_{1}$ we put $[u]=\left\{v \subseteq \omega_{1} ;(v-u) \cup(u-v) \in i\right\} \in P\left(\omega_{1}\right) / i$. For $u \in P\left(\omega_{1}\right)-i$ let i_{u} be the ideal generated by $i v\left\{\omega_{1}-u\right\}$. The ideal i_{u} is again σ-complete, and if i is nontrivial, so is i_{u}. The algebra $P\left(\omega_{1}\right) / i_{u}$ is isomorphic to $\left(P\left(\omega_{1}\right) / i\right)$ [u] Furthermore let us define sat(i) $=$ $=\operatorname{sat}\left(P\left(\omega_{1}\right) / i\right)$. Remember that our notion of saturation (see Section 0) is, in fact, hereditary saturation.
2.3. It is easy to see that for a o-complete ideal i and a system $u: \omega_{1} \longrightarrow\left(P\left(\omega_{1}\right)-i\right)$ the existence of a disjoint refinement for system $\left\{\left[u_{\alpha}\right] ; \alpha \in \omega_{1}\right\}$ in the algebra $P\left(\omega_{1}\right) / i$ is equivalent to the existence of a system $v: \omega_{1} \rightarrow\left(P\left(\omega_{1}\right)-i\right)$ such that $\nabla_{\alpha} \subseteq u_{\alpha}$ and $v_{\alpha} \cap v_{\beta}=0$ for $\alpha \neq \beta$.
2.4. THEOREM (Ulam). Assume i is a σ-complete nontrivial ideal on ω_{1}. Then $P\left(\omega_{1}\right) / i$ is a $\left(K_{0},, K_{1}\right)$-nondistributive Boolean algebra.

Proof. For $\alpha \in \omega_{1}$ we define $f_{\alpha}: \omega_{1} \rightarrow \omega_{1}$ as follows: $f_{\alpha}(\beta)=\beta$ if $\beta<\alpha, f_{\alpha}(\beta)=\alpha$ if $\beta \geqslant \alpha$. Let f be a mapping from ω_{1} to ω_{1} wichis "behind" all f_{α} 's , for example $f(\alpha)=\alpha+1$. Let $v_{\alpha}: f(\alpha) \rightarrow \omega_{0}$ be injective for any $\alpha \in \omega_{1}$. Put $\delta_{\alpha}(\beta)=$ $=v_{\beta}\left(f_{\alpha}(\beta)\right)$ for $\alpha, \beta \in \omega_{1}$. Then for $\alpha, \beta \in \omega_{1}$ we have $g_{\alpha}: \omega_{1} \rightarrow \omega_{0}$ and $\alpha \neq \beta$ implies $\left(\exists \gamma_{0} \in \omega_{1}\right)\left(\forall \gamma>\gamma_{0}\right)\left(g_{\alpha}(\gamma) \neq g_{\beta}(\gamma)\right)$. Every g_{α} determines a partition on ω_{1} as follows:
$c_{\alpha}^{n}=\left\{\beta \in \omega_{1}: g_{\alpha}(\beta)=n\right\}$. As i is σ-complete it is
$\left.\omega_{1}-\bigcup_{\left\{c_{\alpha}^{n}\right.}^{n} ; n \in \omega_{0} \& c_{\alpha}^{n} \notin i\right\} \in i$ for any $\alpha \in \omega_{1}$. Moreover we have $(\forall n \in \omega)\left(\forall \alpha, \beta \in \omega_{1}\right)\left(\alpha \neq \beta \rightarrow c_{\alpha}^{n} \cap c_{\beta}^{n} \in i\right)$. For $n \in \omega$ set $p_{n}=\left\{\left[c_{\alpha}^{n}\right] ; \alpha \in \omega_{1}, c_{\alpha}^{n} \notin\right.$ i\}. Each p_{n} is a partition on $P\left(\omega_{1}\right) / i$. We show that for any $a \in P\left(\omega_{1}\right)$-i there exist $n \in \omega$ such that $\left|[a] \wedge \wedge p_{n}\right|=\zeta_{1}$. Assume not. For $n \in \omega$ let $\alpha_{n} \in \omega_{1}$ satisfy $\left(\forall \alpha>\alpha_{n}\right)\left(a \cap c_{\alpha}^{n} \in i\right)$. Put $\alpha_{\omega}=\sup \left\{\alpha_{n} ; n \in \omega\right\}$ and choose $\alpha>\alpha_{\omega}$. Then mapping g_{α} induce a partition $\left\{\mathrm{c}_{\mathrm{a}}^{\mathrm{n}} ; \mathrm{n} \in \omega\right\}$ on a $\notin \mathrm{i}$, Where $c_{a}^{n}=\left\{\beta \in a ; g_{\alpha}(\beta)=n\right\}$. By the σ-completeness of i, there exists n such that $c_{a}^{n} \notin i$. Hence $c_{a}^{n}=c_{\alpha}^{n} \cap a \notin i$ contradicts the definition of α_{n}. Now for $n \in \omega$ take a maximal partition q_{n} of $P\left(\omega_{1}\right) / i$ containing p_{n}. Then $\left\{q_{n} ; n \in \omega\right\}$ exemplifies the (X_{0}, \cdot, K_{1})-nondistributivity of $P\left(\omega_{1}\right) / i$.
2.5. Assume i is nontrivial σ-complete ideal. As a corollary of theorem 2.4. we have that sat(i) $>\omega_{1}$. If $\operatorname{sat}(i)=\omega_{2}$ then there is an $u \notin i$ such that in the algebra $P\left(\omega_{\eta}\right) / i u$ every maximal partition has cardinality at most X_{1}. In this case the algebra $P\left(\omega_{1}\right) / i_{u}$ is complete (see [14] and [13] p.76).

$$
\text { 2.6. THEOREM. } \quad(F) \longleftrightarrow(R F) \text {. }
$$

Proof. $F \rightarrow$ RF. Let i be a nontrivial σ-complete ideal. The algebra $P\left(\omega_{1}\right) / i$ has no base of cardinality K_{1}, hence RF.
$7 F \rightarrow 7 \mathrm{RF}$. Let i be a σ-complete nontrivial ideal such that the algebra $P\left(\omega_{1}\right) / i$ has not the property $\operatorname{Rf}\left(K_{1}\right)$. Thus sat $(i)=\omega_{2}$ 。 By the theorems 2.4 and 1.6 , even without the completeness of $\underline{b}=P\left(\omega_{1}\right) / i$, we have an element $[u] \in b^{+}$such that $\underline{b}[u]$ has a base of cardinality X_{1}. Hence by 2.5 the algebra $P\left(\omega_{1}\right) / i_{u}$ is complete and isomorphio to the algebra $\operatorname{Col}\left(\omega, \omega_{1}\right)$.
2.7. THEDREM. $\mathcal{T} U \rightarrow \mathrm{~F}$.

Proof. $7 F \rightarrow U$. By the theorem 2.6 there is an ideal i such that $P\left(\omega_{1}\right) / i \cong \operatorname{Col}\left(\omega_{,}, \omega_{1}\right)$. For $\alpha \in \omega_{1}$ take $x_{\alpha} \in P\left(\omega_{1}\right)-i \quad$ such that $\left\{\left[x_{\alpha}\right] ; \alpha \in \omega_{1}\right\}$ is a base of $P\left(\omega_{1}\right) /$ i. Let i_{α} be the ideal generated by the set $i \cup\left\{\omega_{1}-x_{\alpha}\right\}$. For every $x \subseteq \omega_{1}$ either $x \in i$ or there exists α such that $\left(x_{\alpha}-x\right) \in i$ and therefore $\left(\omega_{1}-x\right) \in i_{\alpha}$.
2.8. The implications (F) $\rightarrow 7$ (III) and
$\operatorname{Rfip}\left(\operatorname{Col}\left(\omega, \omega_{\eta}\right), \omega_{\eta}\right) \rightarrow 7(I I I)$ follow directly from the results
in section 1. and the method used in the proof of theorem 2.6.

REFERENCES

[1] Baumgartner J.E., Hajnal A., Mate A.: Weak saturation properties of ideals. Infinite and finite sets, Vol.I. ed. by A.Hajnal, NHPC Amsterdam, 137-158
[2] Comfort W.W., Hindman N.: Refining families for ultrafilters. Math. Zeitschrift, 149(2), 1976, 189-200
[3] Comfort W.W., Negrepontis S.: The theory of ultrafilters. Springer Verlag, Berlin, 1974
[4] Devlin K.J.: Aspects of constructibility. Lecture notes in math., Vol 354
[5] Hindman N.B.: On the existence of C-points in $\beta N-N$. Proc.Amer. Math. Soc. 21, 277-280, (1969)
[6] Kunen K.: Some applications of iterated ultrapowers in set theory. Annals Math.Logic 1 (1970), 179-227
[7] Prikry K.: Ultrafilters and almost disjoint sets. General Topology and Appl. 4 (1974), 269-282
[8] Prikry K.: Ultrafilters and almost disjoint sets II. Bull. Amer. Math.Soc. 81 (1975), 209-212
[9] Prikry K.: On refinements of ultrafilters, Manuscript
[10] Prikry K.: Kurepa's hypothesis and a problem of Ulam on Families of measures. Honatshefte fur Mathematik 81, 41-57 (1976), Springer Verlag
[11] Roitman J.: Hereditary properties of topological spaces. Doctoral dissertation. University of California (Berkeley) 1974
[12] Sierpinski W.: Hypothese du continu. 2nd ed. New York 1956
[13] Sikorski R.: Boolean algebras. Springer Verlag, Berlin 1960
[14] Smith E.C., Tarski A.: Higher degrees of distributivity and completeness in Boolean algebras. Trans.Amer. Math. Soc. 84 (1957), 130-257
[15] Solovay R.M.: Real-valued measurable cardinals in Axiomatic set theory, Proc.of Symposia in Pure Math. Vol.XIII Part I 397-428
[16] Szymanski A.: On the existence of \mathcal{K}_{0}-points. Lianuscript
čkD-Polovodiče, 14003 Prague, Czechoslovakia Dept.of Math.,Charles University, Sokolovskáa 83, 18600 Prague

