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Introduction. The present paper contains some observations and
problems concerning disjoint systems refining a given system. One
of the first classical results in this area is the following theorem
of Silerpifiski: If ¥ is an infinite cardinal and u = {u, 3 ae X}
is a system of sets of cardinality X then there is a disjoint

refining systen {vOc ;s « €x} for u, this means lv‘xl = x, v, & u,
and o # B8 implies v_n vs= O« The problem of disjoint refinements

is developed in [5],[2],[1],[7],[8]1,(9] and [11]« In section 1 we
define the disjoint refining property Rf(1,X) of a Boolean algebra
b with parameter X, and Rfip(b,X), the disjoint refining property
of b with respect to systems satysfying the finite intersection
property. We describe a class of algebras where Rf(b,X) is
equivalent to the extremal condition on the cardinality of a basis
of b (Theorem 1.6). If xt - X then for Boolean algebras with a
basis of cardinality at most X we show a connection between
Rfip(p,X) and the minimal cardinality of a basis of ultrafilters
on b (Theorem 1.11). In section 2 the above mentioned properties
are applied to problems concerning g-complete ideals on wqe
We can not settle the following problems

Does there exist a complete Boolean algebra with a basis of
cardipality X > R o ¢ which has the Rfip(X) property?

O. Preliminaries.

Ve use the usual system of Set theory with the axiom of choice.
Infinite cardinals are denoted by X, A « If uix—>y is a
mapping from x to y, then we often write u, instead of u(v) for
v € 2. We assume fundamental facts from the theory of Boolean
algsbras, [13],[3]+ The set of all nonzero elements of a Boolean
algebra b is denoted b*. By the canonical ordering of b we mean the
relation x < o7 iff x A py = Xe The fact that algebras g,] ,_1_)_2 are
isomorphic is ©xpressed by "'_‘Q,} = _132. By a partial Boolean algebra
b, of b for x€ bt we understand an algebra with the universe
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bx = {y € byy < p¥} and restricted operations. p is a partition of
b if p< bt and elements of p are pairwise disjoint. p is a
maximal partition if, in addition, Vp =My For xe bt and
any partitions p,g & bt we put DPAAX = {X A VX AV £ (Db & V€ p}e.
dnalogously par g ={y; v #0¢g (Jvep)(Fzeq)( 3= vAaz)l.

A system u € bt has the finite intersection property (Fip(u)) if
for every finite, nopempty, v & u we have Av # Db" Saying that i
is an ideal on b means that i is a proper ideal, i.8. M, ¢ i, and
similarly for filters. For each x € b¥, sat(x) is the Teast
cardinal A such that there is no partition of b of cardinality A .
In contrast to the traditional notion of saturation we define the
saturation of a Boolean algebra b as sat(d) = min{sat(x); xebvhy.
ug b* is a basis of b if for every x € bt there is ¥ &€ u such
that y < x. 4ssume j is a filter on b. Then u& j is a basis of
J if for every x € j there is y € u such that y < x. For each
Boolean algebra b, Comp(b) denotes the complete Boolean algebra
with base b. Note that Comp(b) is determined uniquely up %o
isomorphism and that b is a subalgebra of Comp(b). Consider X with
the discrete topology and the product P of w copies of X with the
product topologye. Then the system of all regular open sets in P
forms a complete Boolean algebra, denoted by Col(w,X). Put

d = {f; fin —>X & n € w} with the partial ordering f € g iff
f2 g. Then d is isomorphic to a basis Col(wyX) with respect to <
and the carnonical ordering of Col(w,X). Remember, if two complete
Boolean algebras have isomorphic bases then they are isomorphice.

1e Refinements for families.

41+1+ DEFINITION. Let X be a cardinal, b a Boolean algebra.

(i) A mapping usa —> b* has a disjoint refining system,
(in symbols Rf(b,u) or briefly Rf(u)), if there exists a via =—> vt
such that v(x) € u(x) and x # y implies v(x) A ¥(y) =0 . We often
say refining system instead of disjoint refining system.

(ii) b has the disjoint refinement property for systems of
cardinality X (in symbols Rf(1,K)), if Rf(u) holds for all
utk —> b,

(iii) b has the disjoint refinement property for systems of
cardinality K satisfying Fip (in symbols Rfip(b,X)), iff for every
utX —> b* such that Fip({u06 t o € X}) we have Rf(u).
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1+2. REMARK. (i) ERf(b,X) ~> Rfip(l,X) and there are algebras
such that Rf is stronger than Rfip.

(ii) REip(R,X) —> sat(l) > XK.

(iii) Let sat(p) > X« Then RE(b,X) iff Rf holds for injective
mappingse. Analogously for Rfip.

(iv) Evidently Rf(b,X) iff Rf(Coump(b),X) and Rfip(Comp(h),X)
implies Rfip(B,K).

First we shall pay our attenbtion to the existence of refining
systems of a given system.

1+3. LEMMA. Assume that b is a Boolean algebra and uiX —> v*.
Then (a) —> (b) where
(&) There is a partition p of b such that «e X implies
lu, A pl 2 X.
(b) RE(u)e.

We give a standard construction of =z rafining system which will Dbe
called the refining system generated by the partition p.

Proof. For o eX let Py = {X €p; X A u, # ©). Then there
exists an injective mapping w: X =—» p such that wlx) & Dy *
Put v(e) = u(e) A wla). Then v is a disjoint refining system for u.

The next theorem is a generalization of a theorem contained in [1]
and [2].

1e4s THEOREM. Assume that b is a Boolean algebra and X is an
infinite cardipal. If sat(b) > X' then Rf(D,XK).

Proofs Let u: X —> b*. By transfinite recursion, we construct
a partition p which fulfils (a) of Lemma .3
Step.0. Let p, be a partition of Dby , }poi = X*. Put

0
[t}

{e € X slu an pl = X"} and
P, = {xep, (dg e K—SO)(ugAx £ O)). Since lﬁol € X, we have
lu an (0 =B )| = X*

1]

for each o € SO + furthermore O € So.
stepl. weX, o > 0. If we put
R, = U{SB;BG oc&SBQIC} and
= -- H S —— -
G = Ulpg-B i Bex& (ve 8 —>luan (=Bl =X
then O, is a partition, uyAx =0 rfor YEX ~ Roc’ X € 9y *

Moreover, o&Ry e
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Suppose X -~ Ry # Oy since otherwise the partition 9 fulfils
(&) of Lemma 1.3 and the proof is finished. Let Py be a partition
of Eu\’ where vy = min(K—R{x), lpal = X' and put

So‘={8€K; luB/\A pu‘=X+} and
by = {xe Pa$(3[3€K—Sa)(uBAx;£O)}. Then |B | < X

and for B € §  we have iuB/\A !pm - p&{) = X" ; furthermore
cx.G(Smu Roc>' Let & = sup{e + 1 ; X—Ra £ 0} and

p=Utp, -5, s »€ 6. Then 5<X and for all w€ K we
have |ulx)an p} = X' .

This theorem gives us the best result concerning Rf with respect

to saturatedness. Boolean algebras with a basis of cardinalityrdo
not have disjoint refinement property for systems of cardinalityx.

4145+ The following definition appears in [1].

DEFINITION. Let b be a Boolean algebra and let u:XK —> b¥
(i) Nd(u) holds if there exists a v, € bt such that v, S u
and for each « > O we have u(a) - v  # C.
(ii) We say that b has a nowhere dense set of cardipality X,
in symbols Fd(k,X) if every uiXK = bt satisfies Nd(u).

o]

Observe that Nd(b,X) implies that algebra b is atomless.

LEMJA. A Boolean algebra b has the property NA(b,X) iff (Vx e vh)
(_TQX has no basis of cardinality <€ X).

Proof. Let {u{a) 3 o < A} be a basis of P—x for some x € b*
and A € X. Suppose Nd(b,X). Then for every v, € b; there is an
o < Ay, >0 such that . S A i.e. u, = v, =0 which
contradicts to NA(D,X). Let wsX —~>b* and -1 Nd(u) ; then for
every v, < u, and v, £ there is an o € X such that u, = vy =
=0 i.e. u, < v . This means that {u(x) ; x€X} N by, is a
basis of by, »

1.6, DEFINITION. Let b be a Boolean algebra and let X, A
be infinite cardinals. We say that b satisfies the (Ho’)"x)
nondistributivity law, or that b is (HO,A,.K)-nondistributive if
there exists a systen {p, 3 n€w} of maximal partitions of b
such that (Vrn e w)(lpyl <A) and
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(Vx e v")(In e w)ipyanxl 2 X). B is (Roy « X
nondistributive if there exists A such that b is (HO,A,K)
nondistributive.

If b is (RO, « »X) nondistributive then obviocusly sat(b) > X.
Moreover, a sysbtem {pn s n € w}y which exemplifies the
nondistributivity of b can be chosen in such a way that Ppsi
refines p, and (Vz € p)l{y s v e Ppyq & 7 S x| 2 X).

THEOREM. Assume that b is a (Ho, . ;X)-nondi stributive complete
Boolean algebra. Then the following conditions are equivalent:
(1) Na(R,X
(i1)  ERE(R,X)
(iii) (VYzx e b")(_b_X is not isomorphic to Col(w,X))e

We shall break the proof into several lemmas.

o7+ LEMMA. Under the assumption of Theorem 1.6+, Nd(b,X)
implies REf(D,X).

Proof. Let {p, ; n€w} be a given (HO,A,X)—nondistributive
system for b, and suppose that p is a refinement of Py Let
uiX —> bt . Put

g, = {x € X3 IU“AAPOI 2 X}, and for n> 0 put

n+1

ap = {ax €X 5 luanp | 2 X&luanp_ 4l <X

The system {q.? $ D& w}) is pairwise disjoint and U {g,y new} = X.
Let z,49, -~ b’ be a refining system for u{qn generated by Py
see Lemma 1.3%. Since Pryq is a refinement of p, we have

() (@) Azy(y) # O& 2B Az (y) $0) = a =8
for n<m and oy BEQ YE G+

Let z = (J {z, 3 n€ w}. For a€X we use NAd(1,X) on the
system z, where z(0) = z(a), Z(x) = z(0) and Z(B) = z(B)
for B # 0, a. We obtain a v{u), O # v(a) £ z(x) such that
B # o implies z(B) - v{a) # © . Ve proceed in the construction

of a refining system {v, s« € X} by recursione

Step.0s For o € q, we have v{a) 3 Wy = {via)  x &€ a5}
is a pairwise disjoint system. As (1) we have z(B) - \/wo 20
for n> 061)3 c Qe For n> 0, *€q, put zgl () = z2{et) = \/wo

Clearly LM refines Zpe
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Step Jj+1. We have
(i) a disjoint system {v(x) ; « € U{qk s k< J¥y and

(ii) a system of mappings {zgj*'q) t n 2 j+1} such that for
every o € U{qk i k< Yy n2 J+1 and Beqp, v{a) € z(a)

and z(g'm) refines z, and zﬁjﬂ)(s) is disjoint with every v(o).
For every o € q.jM we use Nd on the element z(gﬂ)(rx)
according to the system U{z(gﬂ); n 2> j+1} and obtain

Wiiq = {v(a) ja € qj+,]) such that © # v(x) < Z(gxq)(d)»

2 g—b'])(B) -\ Wieq # O for n> j+1, and € gy For n> j#2
and Be€q, put

(3+2) = Cd+ D -

25 r ) = 2 0PV - Vo e
The system v = {v(x) 3 « €X3 thus obtained is a refining one
for u.

108+ The implication (ii) =» (iii) in Theorem 1.6 is obvious
because the Boolean algebra Col(w,K) is atomless and has a basis
of cardinality X.

LEMMA (Mc Aloon). Assume b is a complete Boolean algebra. Then the
following statements are eguivalent.
(i) b is isomorphic to Col(w,X) ;
(ii) b is (HO, o 3X)-nondistributive and has basis of
cardinality X

Proofe (i) = (ii) is clear. Let us prove (ii) =» (i).
Let u be a basis of b, jul = X+ Then every partition p of b has
the cardinality at most X. Hence b is (HO,K,K)—nondistributive.
Let {p, s n€ w} be a (HO,X,K) nondistributive system. Put

[}

u, = {X€u ; ixm\poi =X} and for n> O pub
u, = {xeu ; |xanp | = xz‘lx"’\pn-—’ll <X .

For every n there is an injective mapping fn:un - Py such that
fn(x) Ax# 0 .+ Put
by = {7i(yep, 3 y¢ WED)Iv(3xeud(y # 02(y=x af (X)) v

VY= =X /\fn(x)))}.
Then U{_Pn ; 0 € w} 1s a basis of b. Choose a vibt > P(b*)
such that |v(x)| = X, v(x) is a maximal partition of Dye
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Such v certainly exists. We construct {q, i ne€ w} by recursion as
follows:
(step 0) 9 = Viv(x) ; x¢ B} o
(step n+1) qp 4 =v(x) ; x e Popa™ qp} -

The set L){qn t n € w}) is a basis of b and is isomorphic to the
basis d of Col{w,X) (see section O) with respect $o the canonical
orderings of algebras.

By proving Lemma 1.8 we have finished the proof of Theorem 1.6
because we have proved (i) —» (ii), (ii) -» (iii), (iii) -» (i).

1s9. The theorem, we Jjust proved says that, roughly speaking,
for (%{o, « yX)~nondistributive Boolean algebras, 1 Rf(X) is
equivalent to the existence of a basis of cardinality X.

The (%{o, « 3X)-nondistributivity is essential. There are examples
of Boolean algebras with saturation equal to xf, which do not
satisty Rf(X) and which, furthermore, have no local basis of
cardinality less then X'.

Now we turn our attention to the property Rfip. We offer no
definitive results, only some conjectures and propositions. There
are examples of complicated algebras with a basis of cardinality X,
but not compleve, which satisfy RIip(X). ror example if GCH then
the factor algebra of P(X) modulo the ideal of setvs of cardinality
less than X fulfils Rfip (See [5] and [9]).

The main question that we cannol{ answer goes like this
(A) Does there exist a complete Boolean algebra with a basis
of cardinality X > R, which satisfies Rfip(X) ?

110« The above problem can be reduced to the algebra
Col{w,X)»

PROPOSITION. 4ssume X is an uncountable cardinale. If there
is a complebe Boolean algebra with a basis of cardinality X with
the property Rfip(X) then the Boolean algebra Col{w,X) has the
property Rfip(X), too.

Proof. Assume b is a complete Boolean algebra with a basis
of cardinality X and Rfip(b,X). According to a slight generalization
of Kripke’s embedding theorem we can assume that b is a complete
subalgebra of Col{w,X). This well known fact can be proved by using
the characterization of the algebra Col(w,X) (Lemma 1.8) and
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properties of free products of Boolean algebras. Let u = {gx;a € X3
be a system of nonzero elements of Col (w,X) with the finite
intersection property. Put uﬁ': /\{x €b § x 2 ua} « The system
11*::(1%?; o € X} has the finite intersection property, too. Let
W= {Wa s « € X} be a refining system for u¥ in the algebra b.

If we pubt v{x) = wla) A u(a) then v(x) # O and the systen

Vo= {Va s @ € X} refines ue

1+11. The following propositions give some relations between
properties of ultrafilters and filters on a Boolean algebra and
the property Rfip.

THEOREM. Assume b is a complete Boolean algebra and X is an infinite
cardinal. Then (a) -> (b) = (c¢) where
(a) for any ultrafilter J on b there is a maximal partition p
of b such that (Ve & p)(Ipl< X = Vo, ¢ 3D
(b) REip(2,X) 3
(¢) no ultrafilter on b has a basis of cardinality at most X.

Moreover if X = ;\%)th and b has a basis of cardinality X then
the above conditions are eguivalent.

Proof. (&) => (b). For any u:X -> b* with the finite
intersection property take an ultrafilter Jj such that u(a) € J for
all o € X« Let p be a maximal partition guaranteed by (a). The
system u and the partition p fulfil condition of Lemma 1.3.

(v) = (0). Assume, on the contrary, that u = {u, 5 o< A}y
A € X, is a basis of an ultrafilter j and v = {va $ < A} is a
disjoint refining system for u. Let p be a maximal partition of b
which coptains v, i.e. v & p. From Rfip(X) it follows that b is
atomless, so we can split every element of p into two nonzero
elements., Choose a systen ((x,‘,xz) 3 X € p) such that x,;,%, £0 ,
x,l/\x2=0 .4 X4V X, =X for any x € p. Put ay = \/{x,x 3 X€ pl,
ay = \/{x‘2 3 X€p). Clearly a4 = =8y but no Yy lies under 84 OI &y
which is a contradiction.

{c) = (a)s In fact we show T1{(a) -» 1(c)s Lot u = {u, 3a € xX
be a basis of b. Let j be an ultrafilter with property 1(a)e We
construct a basis of j of cardinality X. For x € j take a maximal
partition Py of P-x such that Py conbains only elements of the basis
u. Then there exists g & Pys ]qxi < X such that \/qX € J. Hence
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={\Vg, i x € §) is a basis of the ultrafilter j and it has a
cardinality at most X.

1»12. The followlng proposition is motivated by the
characterization given by Prikry in [7].

PROPOSITICON. Assume X is a regular cardinal, b is a complete
Boolean algebra. Then the following conditions are equivalent.

(1) Rfip(2,X)

{(ii) for every filter j on b with a basis of cardinality at
most X there is a X~complete filter F such that /\F =0 and ju ¥
has the finite intersection property.
lloreover if 2».22'0( X)" = X and if b has a basis of cardinality X
then {1) is eguivalent to

(iii) every ultrafilter j on b contains a X-complete filter F
such that AF =0 .

Proofe (i) —» (ii). Assume u = {u, ;ue€ Ay A € X, is basis
of j and let v = {va $ ©« < A} be a disjoint refinement of u. As
sat(p) = X' we can choose for every o < A & partition w, of bv
such that Wy < b"' lwal X. Take a maximal partition p of b such
that Utw, @ € S pe Put £ = (=\/p, § B, b & Ipol < 0+ o
family £ generates a X-complete filter F. Clearly AF = 0 and
J U F has Fip.

(ii) = (i). Assume u:X => b¥ has Fip. Let j be the filter
generated by u. Let F be a X-complete filter as in (ii). Because
Ar =0 the dual ideal J = {-x ; Xx€F} is a basis of b. Let p be
a maximal partition of b with elements from J. 4s J is K-complete
ideal every u, mesebts p in X elements. Thus u satisfies the
sufficient condition for the existence of a refimement, given in
Lemma 1e3.

Let us prove (iil) =» (ii). Let j be a filter on b. Take an
ultrafilter j’i =2 Je Let F be a X-complete filter which exists for
3’1 by (iii). Clearly § U F has the finite intersection property.

(ii) = (iii). (ii) implies Rfip(®,X). Owing to theorem 1.11
there exists a maximal partition p of b such that

(Vp, < p)Cpyl< X = Vo, ¢ 5. But then (~\/p sp.Cp &lpyl<X0
generates a K—complete filter P & J which obviously satisfies

Ar =0
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2. Conections with a problem of Fodor and a problem of Ulanm
on families of measures for X = ¢ 10

2.7. In this section we turn our abttention to systems of
subsets of X = CPY We shall deal with g-complete ideals on P(wq)
and corresponding factor algebras. Qur aim is to show that somse
hypotheses concerning refining properties are naturally related to
a problem of Fodor (see [1]), and furthermore, %o a problem of Ulam
(see [10]). We shall add one more problem and relate it to refining
properties.

Fodor’s problem reads as follows: Let i be a o-complete
nontrivial ideal on Wqe Does Sierpidmski’s theorem, mentioned in the
introduction, hold if *“of cardinality ?{1" is replaced by "not
belonging to i" ? In other words, prove or disprove the following
statement:

(F) For every ag-~complete nontrivial ideal i on w1 and every
system U = (ua 3 0 € mq}!; P(wq) - i there is a disjoint refining
system Vv = {Va ;o 6“’1} QP(w,%) - i for u.

The following will be called Ulam’s problem. Prove or disprove
the following statement:

(U) There exists a family {hy s @ € wy) of g-additive O-1 nontri-
vial measures on w4 such that every subset 1s measurable with
respect to one of them.

In addition let us formulate our third problem. Prove or
disprove the following statement:

(III) There exists a o~complete nontrivial ideal i onw, and a set
XQQE’(mq) of cardinslity ?{1 such that 1 U X generates a maximal
ideal.

It is known that V = L implies an affirmative answer to Fodor’s
problem and the negative solution of both Ulam’s and the third
probleme. This can be found in [15],[6],[#].

Nothing is known concerning the consistency of the negative
solution of Fodor’s problem and the positive solution of Ulam’s
and the third problem. Thus we conjecture that ZFC proves (¥F),

(U) and 1 (III).

We shall show some interdependences between (F),(U) and (III)
and relate them to the refining properties.

Let (RF) means: For every o-complete nontrivial ideal i on w4
the Boolean algebras P(mq)//i and Col (w,w,) are not isomorphic.

Cur results can be summarized in the following figure:
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U

v

F | €<} RF
]
IWIII e Bfip(Col(w,wq),w1)

Arrows mean implications.
The following problem arises naturallye.

(B) Does (F) ~>» 11 (U) 7

2.2+ We begin with some denotations and facts. Assume 1 is a
o-complete ideal on Wqe For ucC w, we put
[u] = (vE 0, 5 (v=0)u (u-v) €1} €P(wy)/i. For u € Plwy)-i let
iu be the idezl generated by i1 vV {wﬁ—u}- The ideal iu is again
o-complete, and if i is nontrivial, so is i . The algebra P(m,l)/iu
is isomorphic to {P(wq}/i)[u]. Furthermore let us define sat{i) =
= sat(P(wq)/i). Remember that our notion of saturation (see
Section 0) is, in fact, hereditary saturation.

2+3+ 1t is easy to see that for a g-complete ideal i and =&
systemw u: w, -—»(P(w1)-i) the existence of a disjoint refinement
for system {[uu] ; o € wq} in the algebra P(wﬁ)/i is equivalent
to the existence of a system vi w,y => (P(wq)-i) such that Wxg; a,
and v, 0 Vg = O for a#8 o

244 THEOREM (Ulam). Assume i is a og-complete nontrivial ideal
on w,s Then P(wq)/i is a (?{o, . s Nq)-nondistributive Boclean
algebrae.

Proof. For o €& w, we define fa P wy —>u, as follows:
fu(B) =B if B < oy fa(B) =« 1f B 2 o » Let £ be a mapping from
w, to w, whichis "behind" all fa's s for example f(u) = a+1s
Let vy $ o) = w, be injective for any o € w,e Put gx(ﬁ) =
= vs(f&(ﬁ)) for o,p € w,y- Then for «,8 € w, we have Gy S0 > 0,
amd’ o dmplies (v, e 0 )Wy > vo)(g,(v) # gg(¥)). Bvery g,

determines a partition on w, as follows:

qﬁ = {B e wy 3 g&(s) = n}. A4s 1 is og-complete it is
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w4 U{cg s nE€uw, & cg ¢ i) € i for any « € w4+ loreover we have
(Vne w)(Voc,Bew,l)(cx £8 —= c&l N cge i)e For new set
py = €log] 3 « € wyy ¢ ¢ i}. Each p_ is a partition on P(w,)/i.

We show that for any a & P(mq)-i there exist ne w such that

ilalan pn] = R 4 Assume not. For n€ v let oy € w, satisfy
(Vo > txn)(a N céz € i). Putb «, = sup{a, ; n€w) and choose

« > o o Then mepping g, induce a partition {cg i n€w on agi,
where cﬁ = {BEa ga(B) = n}e By the o-completeness of i, there
exists n such that cg ¢ i. Hence cg = cg: A a¢4i contradicts the

definition of e Now for n€w tske a maximal partition q, of
P(m,])/i containing p, . Then {q, 3 n € w} exemplifies the
(Ho, . ,H,])-nondistributivity of P(wq)/1.

2+5. Assume 1 is nontrivial o-complete ideal. A4s a corollary
of theorem 2+4. we have that sat{i) > wqe If sat(i) = w, then
there is an u ¢ i such that in the algebra P(u),l)/iu every
maximal partition has cardinality at most 4° In this case the

algebra P(m’l)/iu is complete (see [14] and [13] p.76).
2¢6+ THEOREM. (¥) <> (RF).

Proof. F ~» RF. Let i be a nontrivial g-coumplete ideal. The
algebra P(w,])/i has no base of cardinality H')’ hence RF.

AF —> "1RF. Let i be a o~complete nontrivial ideal such that
the algebra P(w,')/i has not the property Rf(H,]). Thus sab(i) = Woe
By the theorems 2.4 and 1.6, even without the complsteness of
b= P(m,})/i, we have an eleuent [u] € ¥ such that b 4 has a base
of cardipality H,]. Hence by 2.5 the algebra P(w,l)/iu is complete
and isomorphic¢ to the algebra Col(w,w,]).

2¢7. THEOREMe 11U -> F.

Proof. "IF —» U. By the theorem 2.6 there is an ideal i such
that P(m,l)/i ¥ Col(wsw,y)e For « € w, take x € P(w,))-i such
that {[xa] i @ € wy) is a base of P(w,)/i. Let i Dbe the ideal
generated by the set i V {m,]-xu). For every x& w4 either x ¢ i
or there exists « such that (x&-—x) € 1 apd therefore (w,l—x) € iu.

2.8+ The implications (F) -» 1(III) and
Rfip(Col(m,w,l),m,]) =» 71 (II1) follow directly from the results
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in section 1. and the method used in the proof of theorem 2.6.
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