IDEAS 2021

Montreal, Canada

Multi-Model Data Modeling and Representation: State of the Art and Research Challenges

Pavel Čontoš, Irena Holubová, Martin Svoboda
svoboda@ksi.mff.cuni.cz

July 14, 2021

Charles University, Prague, Czech Republic

Data Variety

Structure of data

- Logical models
- Relational, key/value, wide column, document, graph, ...
- Data formats
- XML or JSON for the document model, ...
- Schemas
- DTD or XML Schema schema languages, ...
- Vocabularies
- Names of XML elements or attributes, ...

Other aspects

- Technologies: implementations, interfaces, protocols, ...
- Query languages: syntax, constructs, expressive power

Database Systems

Traditional approach

- Relational databases
- Primary option for decades
- Alternatives
- Native XML databases, RDF stores, ...

NoSQL databases

- Core models
- Key/value, wide column, document, graph
- Finding the best model respecting the nature of data / queries
- Not always possible

Multi-model databases

- Multiple models supported within just a single system

Sample Database

Multi-model scenario

relational table T

customer	name	address	credit
1	Mary	\ldots	3000
2	Anne	\ldots	2000
3	John	\ldots	5000

wide-column table w

customer	orders
1	$[220,230,270, \ldots]$
2	$[10,217]$
3	$[370,214,94,137]$

property graph G

document collection D

\{ order: 220,
paid: true, items: [
\{ product: T1, name : toy, price: 200, quantity: 2$\}$,
\{ product: B4, name : book, price : 150, quantity : 1 \}] \}
key/value pairs k

customer 1	cart
$\mathbf{2} \longrightarrow$	product: T1, name: toy, quantity: 2 product: B4, name: book, quantity: 1

Multi-Model Databases

Multi-model databases

- One database for several different data models at a time
- Provides a fully integrated backend
- More than 20 representatives
- E.g.: OrientDB, ArangoDB, MarkLogic, Virtuoso, ...

Issues and challenges

- Underlying models
- Number of supported models, non-equal roles, ...
- Cross-model processing
- Links between the models, querying, indexing, ...
- Formal background
- Proprietary solutions (often not well documented)

Paper Objectives

Formal unifying framework is necessary

- Solid theoretical background
- But still user-friendly enough

Our objective

- Survey of existing approaches that could be exploited
- Conceptual modeling
- Data representation
- Integrity constraints
- Evolution management
- ...

Conceptual Modeling

ER (Entity-Relationship model)

- Entity types, relationship types, attributes, identifiers, ...

- Not standardized, various notations, structured attributes, identifiers for relationship types, participants of weak relationship types, non-unique or ordered values, ...

Conceptual Modeling

UML (Unified Modeling Language)

- Classes, associations, attributes, ...

- Standardized, data oriented (conceals details such as weak entity types), ...

Data Representation

NoAM (NoSQL Abstract Model)

- Data model
- Database = set of collections, each with a unique name
- Collection = set of blocks, each with a unique identifier
- Block = set of entries, each with a unique key
- Entry = key / value pair, values can be simple or complex
- Different strategies
- Entry per Aggregate Object / Entry per Top-Level Field

220	paid	true
items $[\{$ product : T1, $\ldots\}]$		

- Aggregate-oriented models only (key/value, wide column, document), considered separately

Data Representation

Associative Arrays

- 2-dimensional matrix
- $A: K_{1} \times K_{2} \rightarrow \mathbb{V}$
- Mapping from row and column keys to values
relational table T

	name	address	credit
1	Mary	\ldots	3000
2	Anne	\ldots	2000
3	John	\ldots	5000

property graph G

	1	2	3
1	0	1	1
2	0	0	1
3	0	0	0

document collection D

	order	paid	items/product	items/name	\ldots
001	220	true			
$001 / 001$			T1	toy	
$001 / 002$			B4	book	

- Not straightforward for all models, matrix operations

Integrity Constraints

OCL (Object Constraint Language)

- Constructs
- Pre-conditions and post-conditions for methods and operations
- Rules for initial or derived values of attributes
- Invariants = assertions data instances must satisfy
- Example
- Each order must have at least one ordered item
- context Customer inv :

$$
\text { self.Orders->forAll(o | o.Items->size() >= } 1 \text {) }
$$

- Observations
- Complex, conceptual layer

Evolution Management

DaemonX

- Evolution management framework
- Platform-independent model (PIM)
- Individual single model platform-specific models (PSMs)
- Schema, operational, and extensional levels
- Correct and complete propagation of evolution changes

- Without inter-model links, without cross-model queries

Broader Generalization

Category theory

- Category $\mathbf{C}=(\mathcal{O}, \mathcal{M}, \circ)$
- Set of objects \mathcal{O} (acting as multigraph vertices)
- Set of morphisms \mathcal{M} (acting as directed edges)
- Each modeled as an arrow $f: A \rightarrow B$ with objects A, B
- Composition operation o for the morphisms
- Requirements
- Transitivity: $g \circ f \in \mathcal{M}$ for any suitable morphisms f, g
- Associativity: $h \circ(g \circ f)=(h \circ g) \circ f$ for any suitable f, g, h
- Identities: identity morphism 1_{A} for any object A such that $f \circ 1_{A}=f=1_{B} \circ f$ for any suitable morphism f
- Example
- Set: objects are sets, morphisms functions between them

Broader Generalization

Spivak 2009

- Description of a schema of a relational database
- Objects for tables and generalized data types
- Morphisms for attributes and foreign keys
- And respective identity morphisms

Observations

- Compulsory single-column primary key, relational model only

Broader Generalization

Multi-model scenario

- Draft of a possible extension to the previous approach

Challenges

- Contents of key/value pairs (black boxes), ordered collections (JSON arrays), embedded structures (JSON subdocuments), shared morphisms across models (names of customers), directions of morphisms, compound primary keys, ...

Conclusion

Observations

- Multi-model systems grow in importance
- Unifying conceptual framework is necessary
- Single-model solutions exist
- But they cannot be straightforwardly adopted

Particular challenges

- Schema design
- Data representation
- Unified querying
- Evolution management
- Autonomous database

Thank you for your attention...

