Efficient Querying of Distributed Linked Data

Martin Svoboda

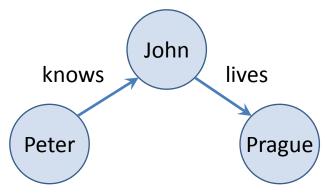
svoboda@ksi.mff.cuni.cz

Faculty of Mathematics and Physics
Charles University in Prague
Czech Republic

25th March 2011

Outline

- Introduction
- Open problems
- Research intent
- Existing approaches
- Preliminary ideas
- Conclusion


Introduction

- Motivation
 - Web of Documents
 - Web of Data
- Linked Data
 - Identifiers
 - Information
 - Links

Introduction

- RDF
 - Triples
 - Subject Predicate Object.
 - Graph
 - Vertices for subjects and objects
 - Edges for predicates

Peter knows John. John lives Prague.

Open Problems

- Application architectures
 - Local/distributed approaches
 - Caching data copies
 - Accessing data online
- Links maintenance
 - Changes detection
 - Automatic correction

Open Problems

- User interaction
 - Query submitting
 - Data browsing
 - Links navigation
- Trust and quality
 - Data provenance
 - Social networks
 - Result ordering

Research Intent

- Querying framework
 - Index structures
 - Query processor
- Focused problems
 - Scalability
 - Distribution
 - Volatility

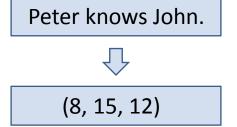
Research Intent

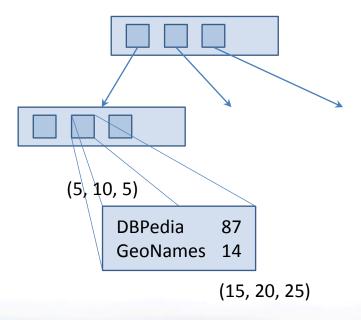
- Scalability
 - Large datasets
 - 200 datasets, 25 billions triples, 395 millions links
- Volatility
 - Values/links changes
- Distribution
 - Local/distributed approaches

Existing approaches

- Source selection
 - Data Summaries for On-Demand Queries over Linked Data
 - Andreas Harth et al.
- Query processor
 - Matrix "Bit"loaded: A Scalable Lightweight Join
 Query Processor for RDF Data
 - Medha Atre et al.

Source Selection

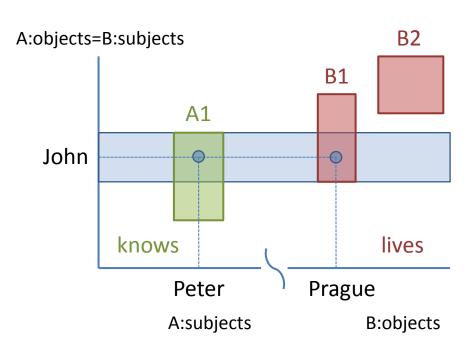

- Context
 - High number of small distributed datasets
 - Conjunctive SPARQL queries
- Contributions
 - Local index structure
 - Source selection algorithm


Peter knows John. John lives Prague.

(Peter knows ?P) (?P lives Prague)

Source Selection

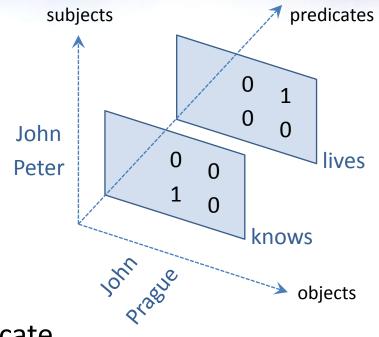
- Index structure
 - Data transformation
 - 3-dimenisonal space
 - Hash functions
 - Q-trees based on R-trees
 - Overlapping bounding boxes
 - Buckets with summaries



Source Selection

- Selection algorithm
 - Query transformation
 - Source selection
 - Individual patterns
 - Index traversal
 - Sets of buckets
 - Inductive joins
 - Required overlapping
 - Query processing

(Peter knows ?P) (?P lives Prague)



Query Processor

- Context
 - Local database
 - Conjunctive SPARQL queries
- Contributions
 - Index structure
 - Query evaluation algorithm

Query Processor

- Index structure
 - 3-dimensional matrix
 - S, P, O dimensions
 - Bit values
 - 2-dimensional slices
 - S-O, O-S slices for each predicate
 - P-O slices for subjects, P-S slices for objects
 - Physical file
 - Compressed bit runs

John 0 0 Peter 1 0

S-O slice for knows

Query Processor

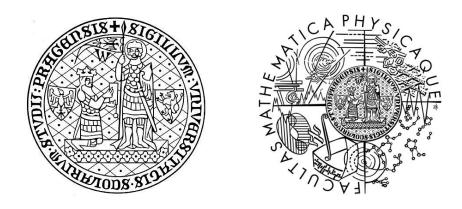
- Evaluation algorithm
 - Initialization
 - Loading required parts of index
 - Pruning
 - Operations over compressed runs
 - Evaluation
 - Inductively joining graph patterns
 - Idea of nested loops algorithm

(Peter knows ?P) (?P lives Prague)

Peter

S-O map for knows

John


S-O map for lives

Preliminary ideas

- Ideas
 - Local dynamic index
 - Spatial techniques
 - Result ordering
- Plan
 - Real-world data analysis
 - Prototype implementation
 - Evaluation experiments

Conclusion

- Research area
 - Linked Data querying
 - Large/distributed/volatile datasets
- Planned contributions
 - Index structure
 - Query processor

Thank you for your attention...