
Correction of Invalid XML Documents with
Respect to Single Type Tree Grammars⋆

Martin Svoboda and Irena Mlýnková

Department of Software Engineering, Charles University in Prague
Malostranske namesti 25, 118 00 Prague 1, Czech Republic
Contact e-mail: {svoboda,mlynkova}@ksi.mff.cuni.cz

Abstract. XML documents and related technologies represent a widely
accepted standard for managing semi-structured data. However, a sur-
prisingly high number of XML documents is affected by well-formedness
errors, structural invalidity or data inconsistencies. The aim of this paper
is the proposal of a correction framework involving structural repairs of
elements with respect to single type tree grammars. Via the inspection
of the state space of a finite automaton recognising regular expressions,
we are always able to find all minimal repairs against a defined cost
function. These repairs are compactly represented by shortest paths in
recursively nested multigraphs, which can be translated to particular
sequences of edit operations altering XML trees. We have proposed an
efficient algorithm and provided a prototype implementation.

Keywords: XML, correction, validity, grammar, tree.

1 Introduction

XML documents [10] and related standards represent without any doubt an
integral part of the contemporary Word Wide Web technologies. They are used
for data interchange, sharing knowledge or for storing semi-structured data.
However, the XML usage explosion is accompanied with a surprisingly high
number of documents involving various forms of errors [5].

These errors can cause that the given documents are not well-formed, they
do not conform to the required structure or have inconsistencies in data values.
Anyway, the presence of errors causes at least obstructions and may completely
prevent successful processing. Generally we can modify existing algorithms to
deal with errors, or we can attempt to modify invalid documents themselves.

We particularly focus on the problem of the structural invalidity of XML
documents. In other words we assume the inspected documents are well-formed
and constitute trees, however, these trees do not conform to a schema in DTD
[10] or XML Schema [4], i.e. a regular tree grammar with the expressive power
at the level of single type tree grammars [6]. Having a potentially invalid XML

⋆ This work was partially supported by the Czech Science Foundation (GAČR), grants
number 201/09/P364 and P202/10/0573.

document, we process it from its root node towards leaves and propose minimal
corrections of elements in order to achieve a valid document close to the original
one. In each node of a tree we attempt to statically investigate all suitable
sequences of its child nodes with respect to a content model and once we detect
a local invalidity, we propose modifications based on operations capable to insert
new minimal subtrees, delete existing ones or recursively repair them.

Related Work. The proposed framework is based primarily on ideas from
[1] and [9]. Authors of the former paper dynamically inspect the state space
of a finite automaton for recognising regular expressions in order to find valid
sequences of child nodes with minimal distance. However, this traversal is not
effective, requires a threshold pruning to cope with potentially infinite trees,
repeatedly computes the same repairs and acts efficiently only in the context of
incremental validation. Although these disadvantages are partially handled in
the latter paper, its authors focused on documents querying, but not repairing.

Next, we can mention an approximate validation and correction approach
[11] based on testers and correctors from the theory of program verification.
Repairs of data incosistencies like functional dependencies, keys and multivalued
dependencies are the subject of [8, 12].

Contributions. Contrary to all existing approaches we consider single type
tree grammars instead only local tree grammars. Thus we work both with DTD
and XML Schema. Approaches in [1, 11] are not able to find repairs of more
damaged documents, we are able to always find all minimal repairs and even
without any threshold pruning to handle potentially infinite XML trees. Next,
we have proposed much more efficient algorithm following only perspective ways
of the correction and without any repeated repair computations. Finally, we have
a prototype implementation available at [3] and performed experiments show a
linear time complexity depending on a number of nodes in documents.

Outline. In Section 2 we define a formal model of XML documents and
schemata as regular tree grammars. Section 3 introduces the entire proposed
correction framework and Section 4 concludes this paper.

2 Preliminaries

In this section, we introduce preliminary definitions used in this paper.

2.1 XML Trees

Analogously to [1], we represent XML documents as data trees based on under-
lying trees with prefix numbering of nodes.

Definition 1 (Underlying Tree). Let N∗
0 be the set of all finite words over

the set of non-negative integers N0, ϵ be an empty word and . a concatenation. A
set D ⊂ N∗

0 is an underlying tree or just tree, if the following conditions hold:

– D is closed under prefixes, i.e. having a binary prefix relation ≼ (where
∀u, v ∈ N∗

0 we define u ≼ v if u.w = v for some w ∈ N∗
0) we require that

∀u, v ∈ N∗
0, u ≼ v: v ∈ D implies u ∈ D.

– ∀u ∈ N∗
0, ∀j ∈ N0: if u.j ∈ D then ∀i ∈ N0, 0 ≤ i ≤ j, u.i ∈ D.

We say that D is an empty tree, if D = ∅. Elements of D are called nodes,
node ϵ is a root node and LeafNodes(D) = {u | u ∈ D and ¬∃ i ∈ N0 such
that u.i ∈ D} represents a set of leaf nodes.

Given a node u ∈ D we define fanOut(u) as n ∈ N0 such that u.(n− 1) ∈ D
and ¬∃n′ ∈ N, n′ > n−1 such that u.n′ ∈ D. If u.0 /∈ D, we put n = 0. Finally,
we define Dp = {s | s ∈ N∗

0, p.s ∈ D} as a subtree of D at position p.

Since we are interested only in elements, we ignore attributes. Data values
and element labels are modelled as partial functions on underlying nodes.

Definition 2 (Data Tree). Let D be an underlying tree, V a domain for data
values and E a domain of element labels (i.e. set of distinct element names).
Tuple T = (D, lab, val) is a data tree, if the following conditions are satisfied:

– lab is a labelling function D → E ∪ {data}, where data /∈ E:
– DataNodes(T) = {p ∈ D | lab(p) = data} is a set of data nodes.
– If p ∈ DataNodes(T), then necessarily p ∈ LeafNodes(D).

– val is a function DataNodes(T) → V∪ {⊥} assigning values to data nodes,
where ⊥ /∈ V is a special symbol representing undefined values.

Finally, we define Tp = (D′, lab′, val′) as a data subtree of T at position p,
where D′ = Dp and for each function ϕ ∈ {lab, val}: if ϕ(p.s) is defined, then
ϕ′(s) = ϕ(p.s), where s ∈ N∗

0.

Example 1. In Figure 1 we can find sample data tree T based on an underlying
treeD = {ϵ, 0, 0.0, 1, 1.0, 1.1}. Values of lab function are inside nodes, an implicit
tree structure is depicted using edges. Ignoring val function this data tree corre-
sponds to an XML fragment: <a><x><d/></x><d><d/><d/></d>.

Fig. 1. Sample data tree

Fig. 2. Glushkov automaton for C.D∗

2.2 Regular Expressions

Schemata for XML documents especially restrict nesting of elements through
allowed content models. These are based on regular expressions.

Definition 3 (Regular Expression). Let Σ be a finite nonempty alphabet
and S = {∅, ϵ, |, ., ∗, (,)}, such that Σ ∩ S = ∅. We inductively define a regular
expression r as a word in Σ ∪ S and L(r) as an associated language:

– r ≡ ∅ and L(∅) = ∅. r ≡ ϵ and L(ϵ) = {ϵ}. ∀x ∈ Σ: r ≡ x and L(x) = {x}.
– r ≡ (r1|r2) and L(r1|r2) = L(r1) ∪ L(r2),
– r ≡ (r1.r2) and L(r1.r2) = L(r1).L(r2),
– r ≡ r1

∗ and L(r1
∗) = (L(r1))

∗,

where r1 and r2 are already defined regular expressions. Having an expression r
= s1 . . . sn, we define symbols(r) = {si | ∃ i ∈ N0, 1 ≤ i ≤ n, si ∈ Σ}.

Languages of regular expressions can be recognised by finite automata. We
use Glushkov automata [2], because they are deterministic for 1-unambiguous
regular expressions required by DTD and XML Schema and without ϵ-transitions.

Definition 4 (Glushkov Automaton). The Glushkov automaton for a 1-
unambiguous regular expression r over an alphabet Σ is a deterministic finite
automaton Ar = (Q, Σ, δ, q0, F), where Q = Σ′ ∪ {q0} is a set of states, Σ is
an input alphabet, δ is a partial transition function Q×Σ → Q, q0 ∈ Q is an
initial state and F ⊆ Q is a set of accepting states.

Example 2. The Glushkov automaton Ar for regular expression r = C.D∗ over
NR = {C,D} is depicted in Figure 2. This automaton has states Q = {0, 1, 2},
from which q0 = 0 is the initial state and F = {1, 2} are accepting states. The
transition function δ is represented by directed edges between states.

2.3 Tree Grammars

Adopting and slightly modifying the formalism from [6], we represent schemata
in DTD and XML Schema as regular tree grammars.

Definition 5 (Regular Tree Grammar). A regular tree grammar is a tuple
G = (N,T, S, P), where:

– N is a set of nonterminal symbols and T a set of terminal symbols,
– S ⊆ N is a set of starting symbols,
– P is a set of production rules of the form [a, r → n], where a ∈ T , r

is a 1-unambiguous regular expression over N and n ∈ N . Without loss of
generality, for each a ∈ T and n ∈ N there exists at most one [a, r → n] ∈ P .

Definition 6 (Competing Nonterminals). Let G = (N , T , S, P) be a reg-
ular tree grammar and n1, n2 ∈ N , n1 ̸= n2 are two nonterminal symbols. We
say that n1 and n2 are competing with each other, if there exist two production
rules [a, r1 → n1], [a, r2 → n2] ∈ P sharing the same terminal symbol a.

The presence of competing nonterminals makes the processing more compli-
cated, thus we define two main subclasses with less expressive power.

Definition 7 (Tree Grammar Classes). Let G = (N , T , S, P) be a regular
tree grammar. We say that G is a local tree grammar, if it has no competing
nonterminal symbols, and that G is a single type tree grammar, if for each
production rule [a, r → n] all nonterminal symbols in r do not compete with
each other and starting symbols in S do not compete with each other too.

As a consequence, we do not need to distinguish between terminal and non-
terminal symbols in local tree grammars. DTD schemata correspond to local
tree grammars and XML Schema almost to single type tree grammars [6].

Example 3. Following the data tree from Example 1 we can introduce grammar
G, where N = {A,B,C,D} are nonterminals, T = {a, b, c, d} are terminals and
S = {A,B} are starting symbols. The set P contains these transition rules: F1 =
[a, C.D∗ → A], F2 = [b, D∗ → B], F3 = [c, ∅→ C] and F4 = [d, D∗ → D]. Since
there are no competing nonterminals, this grammar is a local tree grammar.

2.4 Data Trees Validity

The validity of data trees can be defined via the existence of interpretation trees.

Definition 8 (Interpretation Tree). Let T = (D, lab, val) be a data tree
and G = (N , T , S, P) be a regular tree grammar. An interpretation tree of a
data tree T against grammar G is a tuple N = (D, int), where D is the original
underlying tree and int is a function D → N satisfying the following conditions:

– ∀p ∈ D there exists a rule [a, r → n] ∈ P such that int(p) = n, lab(p) = a
and int(p.0).int(p.1) . . . int(p.k) ∈ L(r), where k = fanOut(p)− 1.

– If p = ϵ is the root node, then we moreover require int(p) ∈ S.

Definition 9 (Data Tree Validity). We say that a data tree T = (D, lab,
val) is valid against a regular tree grammar G = (N , T , S, P), if there exists
at least one interpretation N of T against G. Given a node p ∈ D, we say that
p is locally valid, if T tree

p is valid against grammar G′ = (N , T , N , P).

By L(G) we denote a local, single type or regular tree language, i.e. a set of
all trees valid against a regular, single type or local tree grammar G respectively.

Example 4. The data tree from Example 1 represented in Figure 1 is not valid
against G from Example 3, especially because lab(0) /∈ T and thus there can not
exist any production rule to be used for interpretation of node 0.

Definition 10 (Grammar Context). Let G = (N , T , S, P) be a single type
tree grammar and F = [a, r → n] ∈ P . We define CF = (a, n, NR, PR, map,
r) to be a general context of grammar G for rule F , where:

– NR = {x | x ∈ symbols(r)} is a set of allowed nonterminal symbols.
– PR = {F ′ | F ′ = [a′, r′ → n′] ∈ P and n′ ∈ NR} is a set of active rules.
– map is a function T → NR ∪ {⊥} such that ∀F ′ = [a′, r′ → n′] ∈ PR:

map(a′) = n′ and for all other a′ ∈ T : map(a′) = ⊥ (where ⊥ /∈ N).

Next, we define a starting context to be C• = (⊥, ⊥, NR, PR, map, r•),
where NR = S, both PR and map are defined standardly and r• = (n1| . . . |ns)
is a starting regular expression meeting s = |S|, ∀i ∈ N, 1 ≤ i ≤ s, ni ∈ S and
∀i, j ∈ N, 1 ≤ i < j ≤ s, ni ̸= nj. Finally, C∅ = (⊥, ⊥, ∅, ∅, map, r∅) is an
empty context, where r∅ = ∅ and map is defined standardly again.

Example 5. Having production rule F1 of grammar G from Example 3, we can
derive its context C1 = (a, A, {C,D}, {F3,F4}, {(a,⊥), (b,⊥), (c, C), (d,D)},
C.D∗). Since S = {A,B} are starting symbols, the starting context is equal to
C• = (⊥, ⊥, {A,B}, {F1,F2}, {(a,A), (b, B), (c,⊥), (d,⊥)}, A|B).

During the data trees correction, being in each particular node, the local cor-
rection possibilities are defined by a corresponding grammar context. However,
the content model is represented as a regular expression over nonterminal sym-
bols, thus we first need to transform the labels of existing nodes to nonterminals.

Definition 11 (Node Sequence Imprint). Let T = (D, lab, val) be a data
tree and u = ⟨u1, . . . , uk⟩ a sequence of nodes for some k ∈ N0, where ∀i ∈ N,
1 ≤ i ≤ k, ui ∈ D. We define an imprint of u in context C = (a, n, NR, PR,
map, r) to be sequence imprint(u) = ⟨map(lab(u1)), . . . , map(lab(uk))⟩.

Example 6. Suppose that u = ⟨0, 1⟩ is a sequence of child nodes of the root node
in data tree T from Example 1. Labels of these nodes are ⟨x, d⟩. An imprint of
u in C1 from Example 5 is a sequence ⟨⊥, D⟩.

3 Corrections

In order to propose a new correction framework, we especially need to introduce
a model of allowed data trees transformations and efficient algorithms.

3.1 Edit Operations

First, we define several auxiliary sets of nodes, which become useful in a definition
of such allowed transformations, called edit operations.

Definition 12 (Auxiliary Node Sets). Given a tree D and a position p ∈ D,
p ̸= ϵ, p = u.i, u ∈ N∗

0, i ∈ N with f = fanOut(u), we define node sets:

– PosNodes(D) = {u.i | i ∈ N0, u.i /∈ D, u ∈ D and either i = 0 or i > 0
and u.(i− 1) ∈ D}. If D is an empty tree, then PosNodes(D) = {ϵ}.

– ExpNodes(D, p) = {u.k.v | k ∈ N0, i ≤ k < f , v ∈ N∗
0, u.k.v ∈ D}.

– IncNodes(D, p) = {u.(k + 1).v | k ∈ N0, i ≤ k < f , v ∈ N∗
0, u.k.v ∈ D}.

– DecNodes(D, p) = {u.(k−1).v | k ∈ N0, i+1 ≤ k < f , v ∈ N∗
0, u.k.v ∈ D}.

Set PosNodes together with the underlying tree represent positions ready for
insertions, whereas nodes in ExpNodes are transferred to IncNodes or DecNodes
after a performed insertion or deletion respectively.

Example 7. Having a data tree T from Example 1 and p = 0 we can derive
PosNodes(D) = {0.0.0, 0.1, 1.0.0, 1.1.0, 1.2, 2}, ExpNodes(D, 0) = {0, 0.0, 1,
1.0, 1.1} and IncNodes(D, 0) = {1, 1.0, 2, 2.0, 2.1}.

Although we have considered also an internal node insertion/deletion in [7],
we focus only on a leaf node insertion/deletion and node renaming in this paper.
For the purpose of the following definition of allowed edit operations, we use a
symbol ← as an assignment conditioned by the definability.

Definition 13 (Edit Operations). An edit operation e is a partial function
transforming a data tree T0 = (D0, lab0, val0) into T1 = (D1, lab1, val1), denoted

by T0
e−→ T1. Assuming that ϕ ∈ {lab, val}, we define these operations:

– e = addLeaf(p, a) for p ∈ D0 ∪ PosNodes(D0), p ̸= ϵ, p = u.i, u ∈ N∗
0,

i ∈ N0, u /∈ DataNodes(D0) and a ∈ E:
– D1 = [D0 \ ExpNodes(D0, p)] ∪ IncNodes(D0, p) ∪ {p}.
– ∀w ∈ D0 \ ExpNodes(D0, p): ϕ1(w)← ϕ0(w).
– lab1(p) = a and if lab1(p) = data, then val1(p) = ⊥.
– ∀(u.(k + 1).v) ∈ IncNodes(D0, p): ϕ1(u.(k + 1).v)← ϕ0(u.k.v).

– e = addLeaf(p, a) for p = ϵ, D0 = ∅ and a ∈ E:
– D1 = {p}, lab1(p) = a and if a = data, then val1(p) = ⊥.

– e = removeLeaf(p) for p ∈ LeafNodes(D0), p ̸= ϵ, p = u.i, u ∈ N∗
0, i ∈ N0:

– D1 = [D0 \ ExpNodes(D0, p)] ∪ DecNodes(D0, p).
– ∀w ∈ D0 \ ExpNodes(D0, p): ϕ1(w)← ϕ0(w).
– ∀(u.(k − 1).v) ∈ DecNodes(D0, p): ϕ1(u.(k − 1).v)← ϕ0(u.k.v).

– e = removeLeaf(p) for p = ϵ, D0 = {ϵ}:
– D1 = ∅, lab1 and val1 are not defined anywhere.

– e = renameLabel(p, a) for p ∈ D0, a ∈ E and a ̸= lab0(p):
– D1 = D0.
– ∀w ∈ [D0 \ {p}]: ϕ1(w)← ϕ0(w).
– lab1(p) = a and if a = data, then val1(p) = ⊥.

Combining edit operations into edit sequences, we obtain complex operations
capable to insert new subtrees, delete existing ones or recursively repair them.

Example 8. Assume that we have edit sequences X1 = ⟨addLeaf(0, c), rename-
Label(1, d)⟩, X2 = ⟨renameLabel(0, c), removeLeaf(0.0)⟩ and X3 = ⟨rename-
Label(ϵ, b), renameLabel(0, d)⟩. Applying these sequences separately to data tree
T from Example 1, we obtain data trees depicted in Figures 3(a), 3(b) and 3(c)
respectively. Auxiliary node sets for addLeaf(0, c) are derived in Example 7.

(a) Insert-Rename (b) Rename-Delete (c) Rename-Rename

Fig. 3. Transforming sample data tree using edit operations

Definition 14 (Cost Function). Given an edit operation e, we define cost(e)
to be a function assigning to e its non-negative cost. Having a sequence of edit
operations E = ⟨e1, . . . , ek⟩ for some k ∈ N0, we define cost(E) =

∑k
i=1 cost(ei).

Definition 15 (Data Tree Distance). Assume that T1 and T2 are two data
trees and S is a set of all sequences of update operations capable to transform T1
to T2. We define distance of T1 and T2 to be dist(T1, T2) = minE∈S cost(E).

Given a regular tree grammar G and the corresponding regular tree lan-
guage L(G), we define the distance between a tree T1 and language L(G) as
dist(T1, L(G)) = minT2∈L(G) dist(T1, T2).

The goal of the correction algorithm is to find all minimal repairs, i.e. edit
sequences of minimal cost. Although the definition of distances talks about all
sequences, the algorithm can clearly inspect only the perspective ones.

Example 9. Assigning unit costs to all edit operations, we can find out that
dist(T , L(G)) = 2 for T from Example 1 and grammar G from Example 3.

Our algorithm is always able to find all such sequences and because we would
like to represent found repairs compactly, we need to abstract away positions
from edit operations. Thus we introduce repairing instructions, which need to
be translated later on to edit operations over particular nodes.

Definition 16 (Repairing Instructions). For edit operations addLeaf(p, a),
removeLeaf(p) and renameLabel(p, a) with p ∈ N∗

0 and a ∈ E we define asso-
ciated repairing instructions (addLeaf, a), (removeLeaf) and (renameLabel, a)
respectively. Each repairing instruction is assigned with the corresponding cost.

3.2 Correction Intents

Assume that we are processing a sequence of sibling nodes in order to correct
them. For this purpose we statically investigate the state space of the corre-
sponding Glushkov automaton to find edit sequences transforming the original
sequence and all nested subtrees with the minimal cost. Being on a given po-
sition, we have already considered the given sequence prefix. The notion of a
correction intent involves the assignment for this recursive subtree processing.

Definition 17 (Correction Intent). Given Ω = {correct, insert, delete,
repair, rename} we define a correction intent to be a tuple I = (t, p, e, vI , vE,
u, C, QT , Y) satisfying the following general constraints:

– t ∈ Ω is an intent type, p is a base node and e is a repairing instruction.
– vI = (sI , qI): sI ∈ N0 is an initial stratum and qI is an initial state.
– vE = (sE, qE): sE ∈ N0 is an ending stratum and qE is an ending state.
– u = ⟨u1, . . . , uk⟩ is a sequence of nodes to be processed for some k ∈ N0.
– C is a grammar context and QT is a set of target states.
– Y ⊆ Ω is a set of allowed types for nested correction intents.

Definition 18 (Starting Intent). Having a data tree T = (D, lab, val) and
a single type tree grammar G = (N , T , S, P), we define I• = (correct, ⊥, ⊥,
⊥, ⊥, u, C, QT , Y) to be a starting correction intent, where:

– If D is not empty, then u = ⟨ϵ⟩, else u = ⟨⟩.
– C = C• = (⊥, ⊥, NR, PR, map, r•) is the starting context.
– QT = F from the Glushkov automaton Ar = (Q, NR, δ, q0, F) for r•.
– Y = Ω \ {correct}.

The data tree correction starts at its root by the starting intent and re-
cursively continues towards leaves by the invocation of nested recursive intents.
Authors in [1], contrary to our framework, process data trees from leaves towards
a root and attempt to correct only subtrees of locally invalid nodes.

Definition 19 (Recursive Intents). Let T = (D, lab, val) be a data tree and
G = (N , T , S, P) a single type tree grammar. Next, assume that I = (t, p, e,
vI , vE, u, C, QT , Y) is an already defined correction intent, where u = ⟨u1, . . . ,
uk⟩, k ∈ N0, C = (a, n, NR, PR, map, r) and Ar = (Q, NR, δ, q0, F) is the
Glushkov automaton for r. Finally, let imprint(u) = ⟨m1, . . . , mk⟩.

Given a position v′I = (s′I , q
′
I), where s′I ∈ N0, s

′
I ≤ k, q′I ∈ Q, we define the

following recursive correction intents I ′ = (t′, p′, e′, v′I , v
′
E, u

′, C′, Q′
T , Y

′):

– If insert ∈ Y : ∀x ∈ NR: if δ(q
′
I , x) is defined, then we define I ′, where:

– Let F = [a′, r′ → n′] ∈ PR such that n′ = x and map(a′) = x.
– t′ = insert, p′ = ⊥, e′ = (addLeaf, a′), v′E = (s′I , δ(q

′
I , x)), u

′ = ⟨⟩.
– C′ = CF = (a′, n′, N ′

R, P
′
R, map′, r′) with Ar′ = (Q′, N ′

R, δ
′, q′0, F

′).
– If r′ ̸= ∅, then Q′

T = F ′, else Q′
T = {q′0}. Y ′ = {insert}.

Suppose that ⟨I1, . . . , Ij⟩ is the longest sequence of correction intents for
some j ∈ N0, such that ∀i ∈ N, 1 ≤ i < j, ti = insert, Ii invokes Ii+1 and
Ij = I, tj = insert. We do not allow the previously described intent I ′, if
∃ i, 1 ≤ i ≤ j: ai = a′ and ni = x with symbols ai and ni from Ci. Finally,
we put ContextChain(I) = ⟨(a1, n1), . . . , (aj , nj)⟩.

– If delete ∈ Y and s′I < k, then we define I ′, where:
– t′ = delete, p′ = us′I+1 and e′ = (removeLeaf).
– v′E = (s′I + 1, q′I) and u′ = ⟨us′I+1.0, . . . , us′I+1.(fanOut(us′I+1)− 1)⟩.
– C′ = C∅ = (⊥, ⊥, ∅, ∅, map, r∅) with A∅ = (Q′, N ′

R, δ
′, q′0, F

′).
– Q′

T = {q′0} and Y ′ = {delete}.
– If repair ∈ Y , s′I < k, mk+1 ̸= ⊥ and δ(q′I ,ms′I+1) is defined, then:

– Let F = [a′, r′ → n′] ∈ PR such that n′ = ms′I+1 and a′ = lab(us′I+1).
– t′ = repair, p′ = us′I+1, e

′ = ⊥ and v′E = (s′I + 1, δ(q′I ,ms′I+1)).
– u′ = ⟨us′I+1.0, . . . , us′I+1.(fanOut(us′I+1)− 1)⟩.
– C′ = CF = (a′, n′, N ′

R, P
′
R, map′, r′) with Ar′ = (Q′, N ′

R, δ
′, q′0, F

′).
– If r′ ̸= ∅, then Q′

T = F ′, else Q′
T = {q′0}.

– If r′ ̸= ∅, then Y ′ = Ω \ {correct}, else Y ′ = {delete}.
– If rename ∈ Y , s′I < k and [ms′I+1 = ⊥ or δ(q′I ,ms′I+1) is not defined], then
∀x ∈ NR: if δ(q

′
I , x) is defined, then we define I ′, where:

– Let F = [a′, r′ → n′] ∈ PR such that n′ = x and map(a′) = x.

– t′ = rename, p′ = us′I+1 and e′ = (renameLabel, a′).
– v′E = (s′I +1, δ(q′I , x)), u

′ = ⟨us′I+1.0, . . . , us′I+1.(fanOut(us′I+1)− 1)⟩.
– C′ = CF = (a′, n′, N ′

R, P
′
R, map′, r′) with Ar′ = (Q′, N ′

R, δ
′, q′0, F

′).
– If r′ ̸= ∅, then Q′

T = F ′, else Q′
T = {q′0}.

– If r′ ̸= ∅, then Y ′ = Ω \ {correct}, else Y ′ = {delete}.

Finally, we define NestedIntents(I) as a set of all nested correction intents
invoked by I, i.e. all I ′ introduced in this definition and derived from I.

Example 10. Suppose that within the starting intent I• for data tree T from
Example 1 and grammar G from Example 3 we have invoked a nested repair

intent I on base node ϵ. Thus we need to process sequence u = ⟨0, 1⟩ of nodes
with labels ⟨x, d⟩ in context C1 from Example 5. Being at a position (0, 0), i.e.
at stratum 0 (before the first node from u) and in the initial state q0 = 0 of Ar

for r = C.D∗ in Example 2, we can derive these nested intents:
I1 = (insert, ⊥, (addLeaf, c), (0, 0), (0, 1), ⟨⟩, C3, Q3, {insert}),
I2 = (rename, 0, (renameLabel, c), (0, 0), (1, 1), ⟨0.0⟩, C3,Q3, Ω\{correct}),
I3 = (delete, 0, (removeLeaf), (0, 0), (1, 0), ⟨0.0⟩, C∅, Q∅, {delete}),

where Q3 is a set of accepting states for C3 based on F3 and Q∅ contains only
the initial state of A∅ for r = ∅.

The recursive nesting terminates, if the node sequence to be processed is
empty and the context allows only an empty model.

3.3 Correction Multigraphs

Correction intents can be viewed as multigraphs with edges corresponding to
nested intents and vertices to pairs of sequence positions and automaton states.
The idea of these multigraphs is adopted and extended from [9].

Definition 20 (Exploration Multigraph). Assume that T is a data tree, G
a single type tree grammar and I = (t, p, e, vI , vE, u, C, QT , Y) a correction
intent with u = ⟨u1, . . . , uk⟩, k ∈ N0. We define an exploration multigraph for
I to be a directed multigraph E(I) = (V , E), where:

– V = {(s, q) | s ∈ N0, 0 ≤ s ≤ k, q ∈ Q} is a set of exploration vertices.
– E = {(v1, v2, I ′) | ∃ I ′ ∈ NestedIntents(I), I ′ = (t′, p′, e′, v′I , v

′
E, u

′, C′,
Q′

T , Y
′) and v1 = v′I , v2 = v′E} is a set of exploration edges.

Extending the exploration multigraph and especially its edges with already
evaluated intent repairs of nested intents, we obtain a correction multigraph.

Definition 21 (Correction Multigraph). Given an exploration multigraph
E(I) = (V , E) for correction intent I = (t, p, e, vI , vE, u, C, QT , Y) with u of
size k ∈ N0 and finite automaton Ar = (Q, NR, δ, q0, F) for r from context C,
we define a correction multigraph to be a tuple C(I) = (V ′, E′, vS, VT), where:

– V ′ = V is a set of correction vertices.

– E′ = {(v1, v2, I ′, RI′ , c) | (v1, v2, I ′) ∈ E} is a set of correction edges,
where RI′ is an intent repair for I ′ and c = cost(RI′) is a cost of RI′ .

– vS = (0, q0) is a source vertex.
– VT = {vT | vT = (k, qT), qT ∈ QT } is a set of target vertices.

Example 11. Continuing with Example 10, we can represent all nested intents
derived from I by a correction multigraph C(I) with vS = (0, 0) and VT =
{(2, 1), (2, 2)} in Figure 4. For simplicity, edges are described only by abbreviated
intent types (I for insert, D for delete, R for repair and N for rename),
supplemented by a repairing instruction parameter if relevant and, finally, the
complete cost of assigned intent repair. Names of vertices are concatenations of
a stratum number and an automaton state.

Fig. 4. Sample correction multigraph Fig. 5. Sample repairing multigraph

The problem of finding minimal repairs, i.e. the evaluation of correction in-
tents, can now be easily converted to the problem of finding all shortest paths
from the source vertex to any target vertex in correction multigraphs.

Definition 22 (Correction Paths). Let C(I) = (V , E, vS, VT) be a correc-
tion multigraph. Given x, y ∈ V , we define a correction path from x to y to be a
sequence px,y = ⟨e1, . . . , en⟩ of correction edges, where n ∈ N0 is a length and:

– Let ∀k ∈ N, 1 ≤ k ≤ n, ek = (vk1 , v
k
2 , Ik, Rk

Ik , c
k).

– If n > 0, then v11 = x and vn2 = y. Next, ∀k ∈ N, 1 ≤ k < n: vk2 = vk+1
1 .

– ¬∃ j, k ∈ N, 1 ≤ j < k ≤ n: vj1 = vk1 or vj2 = vk2 or vj1 = vj2.

If x = y, then px,y = ⟨⟩. Next, Px,y is a set of all correction paths from x
to y. Path cost for px,y is defined as cost(px,y) =

∑n
k=1 c

k. We say that px,y
is the shortest path from x to y, if and only if ¬∃ p′x,y such that cost(p′x,y) <

cost(px,y). By Pmin
x,y we denote a set of all shortest paths from x to y. Given

nonempty Z ⊆ V , let m = minz∈Z cost(px,z). Then Pmin
x,Z = {p | ∃ z ∈ Z,

p ∈ Pmin
x,z and cost(p) = m} is a set of all shortest paths from x to any z ∈ Z.

Finally, given a vertex v ∈ V , we say that v ∈ px,y, if ∃ k ∈ N, 1 ≤ k ≤ n
such that v = vk1 or v = vk2 . Analogously, given an edge e ∈ E, we say that
e ∈ px,y, if ∃ k ∈ N, 1 ≤ k ≤ n such that e = ek.

Once we have found all required shortest paths, we can forget not involved
parts of the correction multigraph. And moreover, these shortest paths them-
selves constitute the compact structure of the intent repair.

Definition 23 (Repairing Multigraph). Given a correction intent I and its
correction multigraph C(I) = (V , E, vS, VT), we define a repairing multigraph
for I to be a tuple R(I) = (V ′, E′, vS, VT , c) as a subgraph of C(I), where:

– V ′ = {v | ∃ p ∈ Pmin
vS ,VT

, v ∈ p} and E′ = {e | ∃ p ∈ Pmin
vS ,VT

, e ∈ p}.
– c = cost(pmin) for some (any) pmin ∈ Pmin

vS ,VT
.

Example 12. A repairing multigraph R(I) for correction intent I from Example
10 is derived from correction multigraph C(I) and is depicted in Figure 5.

Definition 24 (Intent Repair). Assume that R(I) = (V , E, vS, VT , c) is a
repairing multigraph for I = (t, p, e, vI , vE, u, C, QT , Y). We define an intent
repair for I to be a tuple RI = (RN , RS, cost), where RN = e is a repairing
instruction, RS = R(I) a repairing multigraph and cost = cost(e) + c.

At the bottom of the recursive intents nesting, the intent repair contains only
one shortest path – a path on one vertex, without edges and with zero cost.

3.4 Repairs Translation

Assume that we have processed the entire data tree and thus we have computed
all required nested intent repairs. The intent repair for the starting intent stands
for all minimal corrections of the given XML document. Our goal is to prompt
the user to choose the best suitable edit sequence, however, we first need to gain
all these sequences from nested shortest paths, which involves also the translation
of repairing instructions to edit operations along these paths.

Definition 25 (Repairing Instructions Translation). Given a repairing in-
struction e, we define a translation of e to the associated edit operation as fix(e):

– If e = (addLeaf, a), then fix(e) = addLeaf(0, a).
– If e = (removeLeaf), then fix(e) = removeLeaf(0).
– If e = (renameLabel, a), then fix(e) = renameLabel(0, a).

For the purpose of sequences translation, we need three auxiliary functions.

Definition 26 (Auxiliary Translation Functions). Given a node u ∈ N∗
0

and a constant c ∈ N0, we define modPre(u, c) = c.u. If u ̸= ϵ, u = i.v, i ∈ N0,
v ∈ N∗

0, then we define modAlt(i.v, c) = (i+ c).v and modCut(i.v) = v.

Once we have defined these functions on nodes, we can extend them on edit
operations, edit sequences and, finally, sets of edit sequences. We just straight-
forwardly transform the node parameter of each particular edit operation, e.g.
modPre(addLeaf(u, a), c) = addLeaf(modPre(u, c), a).

Definition 27 (Repairing Multigraph Translation). Let R(I) = (V , E,
vS, VT , c) be a repairing multigraph for I. For each path p ∈ Pmin

vS ,VT
, p = ⟨e1,

. . . , em⟩, m ∈ N0, we define Sp = {s1p.s2p . . . smp | ∀i ∈ N, 1 ≤ i ≤ m, sip ∈ Si
p},

where all particular Si
p are derived via the successive processing of edges from

e1 to em. Thus let ∀i ∈ N, 1 ≤ i ≤ m, ei = (vi1, v
i
2, Ii, RIi , ci). Starting with

a0 = 0 and i = 1, we put Si
p = modAlt(fix(RIi), ai−1) and ai = ai−1 + xi,

where: xi = 1 for ti ∈ {insert, repair, rename} and xi = 0 for ti = delete.
Finally, we define a repairing multigraph translation fix(R(I)) =

∪
p∈Pmin

vS,VT

Sp.

The intent repair translation idea is based on the traversal of all shortest
paths stored in the repairing multigraph and the successive processing of their
edges leading to the combination of already generated sequences from nested
intents and the proper numbering of position parameters in edit operations.

Example 13. Suppose we have paths p1 and p2 from (0, 0) to (2, 2) via (0, 1)
and (1, 1) respectively in R(I) from Example 12. For p1 we successively derive
a0 = 0, S1

p = {⟨addLeaf(0, c)⟩}, a1 = 1, S2
p = {⟨renameLabel(1, d)⟩}, a2 = 2,

S3
p = {⟨⟩} and a3 = 3. Analogously for p2: a0 = 0, S1

p = {⟨renameLabel(0, c),
removeLeaf(0.0)⟩}, a1 = 1, S2

p = {⟨⟩} and a2 = 2. Then Sp1
= {X1} and Sp2

= {X2} for X1 and X2 from Example 8. Finally, fix(R(I)) = {X1, X2}.

Definition 28 (Intent Repair Translation). We define fix(RI) to be an
intent repair translation for RI = (RN , RS, cost) of intent with type t, where:

– If t = correct, then fix(RI) = {modCut(rS) | rS ∈ fix(RS)}.
– If t = insert, then fix(RI) = {⟨fix(RN)⟩.modPre(rS , 0) | rS ∈ fix(RS)}.
– If t = delete, then fix(RI) = {modPre(rS , 0).⟨fix(RN)⟩ | rS ∈ fix(RS)}.
– If t = repair, then fix(RI) = {modPre(rS , 0) | rS ∈ fix(RS)}.
– If t = rename, then fix(RI) = {⟨fix(RN)⟩.modPre(rS , 0) | rS ∈ fix(RS)}.

Example 14. The correction of a data tree in Figure 1 against a local tree gram-
mar from Example 3 leads to fix(RI•) = {X1, X2, X3}, and thus all data trees
in Figure 3 represent corrections with cost 2 using X1, X2 and X3 respectively.

3.5 Correction Algorithms

Finally, we need to propose an algorithm for recursive intent repairs computa-
tion. A naive algorithm would first initiate the starting intent with the root node
and at each level of nesting, it would construct the entire exploration multigraph,
then evaluate its edges to acquire nested intent repairs to find shortest paths over
them. However, such algorithm would be extremely inefficient.

Definition 29 (Intent Signature). Assume that T = (D, lab, val) is a data
tree and I = (t, p, e, vI , vE, u, C, QT , Y) is a correction intent with grammar
context C = (a, n, NR, PR, map, r). We define a signature S(I) to be a tuple:

– If t = correct, then S(I) = (correct).

– If t = insert, then S(I) = (insert, n, a, ContextChain(I)).
– If t = delete, then S(I) = (delete, p).
– If t = repair, then S(I) = (repair, p, n).
– If t = rename, then S(I) = (rename, p, n, a).

First, we in fact do not need to construct and evaluate the entire correction
multigraph, we can use the idea of Dijsktra algorithm and directly find shortest
paths in a continuously constructed multigraph. Next, using the concept of intent
signatures, we can avoid repeated computations of the same repairs. Although
two different intents are always different, the resulting intent repair may be the
same, e.g. the deletion depends only on a subtree, but not on a particular context.

Algorithm 1: cachingCorrectionRoutine

Input : Data tree T , grammar G, intent I = (t, p, e, vI , vE , u, C, QT , Y).
Output: Intent repair RI for I.

1 RI ← getCachedRepair(S(I)); if RI ̸= ⊥ then return RI ;

2 Let u ← ⟨u1, . . . , uk⟩, C ← (a, n, NR, PR, map, r) and Ar ← (Q, NR, δ, q0, F);
3 C(I) ← (V ← {(0, q0)}, E ← ∅, vS ← (0, q0), VT ← {(k, qT) | qT ∈ QT });
4 pCost(vS) ← 0; pPrev(vS) ← ∅; reachedV ertices ← {vS}; finalCost ← ⊥;
5 while reachedV ertices ̸= ∅ do
6 v ← fetchMinimalVertex(reachedV ertices);
7 if v ∈ VT and finalCost = ⊥ then finalCost ← pCost(v);
8 if finalCost ̸= ⊥ and finalCost < pCost(v) then break;

9 foreach I′ = (t′, p′, e′, v′I = v, v′E, u
′, C′, Q′

T , Y
′) ∈ NestedIntents(I) do

10 R′
I = (RN , RS , cost) ← cachingCorrectionRoutine(T , G, I′);

11 if v′E /∈ V then Add correction vertex v′E into V and reachedV ertices;
12 Add correction edge (v, v′E , I′, R′

I , cost) into E;

13 c ← pCost(v) + cost;
14 if pCost(v′E) ̸= ⊥ and pCost(v′E) = c then p(v′E) ← pPrev(v′E) ∪ {v};
15 else if pCost(v′E) > c then pCost(v′E) ← c; pPrev(v′E) ← {v};

16 R(I) ← createRepairingGraph(C(I), finalCost, pPrev);
17 RI ← createIntentRepair(I, R(I)); setCachedRepair(S(I), RI);
18 return RI ;

The algorithm first detects, whether we have already computed the repair
with the same signature (line 1). If not, we initialise the correction multigraph
(lines 2-3) and start (line 4) the traversal for finding all shortest paths to any of
target vertices (lines 5-15). Finally, we compose the repair structure and store it
in the cache under its signature (lines 16-18).

4 Conclusion

We have proposed and formally described a correction framework based on exist-
ing approaches and dealing with invalid nesting of elements in XML documents

using the top-down recursive processing of potentially invalid data trees and the
state space traversal of automata for recognising regular expression languages
with the connection to regular tree grammars model of XML schemata.

Contrary to all existing approaches we have considered the class of single
type tree grammars instead only local tree grammars. Under any circumstances
we are able to find all minimal repairs using the efficient caching algorithm,
which follows only the perspective ways of the correction and prevents repeated
computations of the same correction intents. This efficiency is supported by per-
formed experiments using the prototype implementation. A direct experimental
comparison to other approaches cannot be presented, since these approaches
result to different correction qualities and have different presumptions.

However, we do not support neither local transpositions, nor global moves of
entire subtrees. In [7] we have considered wider set of edit operations and also
corrections of attributes. The framework can also be extended to find not only
minimal repairs and the algorithm can be improved to the parallel one.

References

1. B. Bouchou, A. Cheriat, M. H. Ferrari Alves, A. Savary: Integrating Correction
into Incremental Validation. In: BDA (2006)

2. C. Allauzen, M. Mohri: A Unified Construction of the Glushkov, Follow, and An-
timirov Automata. In: MFCS 2006. pp. 110–121. Springer (2006)

3. Corrector Prototype Implementation, http://www.ksi.mff.cuni.cz/~svoboda/
4. H. S. Thompson, D. Beech, M. Maloney, N. Mendelsohn: XML Schema Part 1:

Structures (Second Edition) (2004), http://www.w3.org/TR/xmlschema-1/
5. I. Mlynkova, K. Toman, J. Pokorny: Statistical Analysis of Real XML Data Col-

lections. In: Proceedings of the 13th International Conference on Management of
Data (2006)

6. M. Murata, D. Lee, M. Mani, K. Kawaguchi: Taxonomy of XML Schema Lan-
guages using Formal Language Theory. ACM Trans. Internet Technol. 5(4), 660–
704 (2005)

7. M. Svoboda: Processing of Incorrect XML Data. Master’s thesis, Department of
Software Engineering, Charles University in Prague, Czech Republic, Malostranske
namesti 25, 118 00 Praha 1, Czech Republic (July 2010)

8. S. Flesca, F. Furfaro, S. Greco, E. Zumpano: Querying and Repairing Inconsistent
XML Data. In: WISE ’05: Proceedings of the 6th International Conference on Web
Information Systems Engineering. LNCS, vol. 3806/2005, pp. 175–188. Springer
(2005)

9. S. Staworko, J. Chomicky: Validity-Sensitive Querying of XML Databases. In: Cur-
rent Trends in Database Technology – EDBT 2006, DataX’06. Lecture Notes in
Computer Science, vol. 4254/2006, pp. 164–177. Springer (2006)

10. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, J.
Cowan: Extensible Markup Language (XML) 1.1 (Second Edition) (2006),
http://www.w3.org/XML/

11. U. Boobna, M. de Rougemont: Correctors for XML Data. In: Database and XML
Technologies. LNCS, vol. 3186/2004, pp. 69–96. Springer (2004)

12. Z. Tan, Z. Zhang, W. Wang, B. Shi: Computing Repairs for Inconsistent XML
Document Using Chase. In: Advances in Data and Web Management. LNCS, vol.
4505/2007, pp. 293–304. Springer (2007)

