
NSWI170 – Computer Systems – 2023/24 Summer – Martin Svoboda

Assignment A6: Messages
Binding Instructions | Well-Meant Advice | Ideas for Thought | Common Mistakes

601. [Basic display extension] We will preserve the existing functions of the basic display and add new
ones according to our needs. It will at least be a function allowing to display an arbitrary letter of the
English alphabet and subsequently also a function for displaying arbitrary characters.

602. [Domain of supported symbols] This second wrapping function will accept a single arbitrary
character in the form of the char data type, and determine a correct glyph to be displayed for all of
the following situations via branching: the already mentioned letters of the English alphabet, decimal
digits, an empty glyph for any white character (space, tab, etc.) and likewise an empty glyph for any
other, say, unsupported character.

603. [Suppressing the size of letters] Specifically as for the letters of the English alphabet, we will
suppress their size. This means that we will support both lowercase and uppercase letters in the
input, but we will only have one single glyph for each corresponding pair.

604. [Passing symbols by value] Both the mentioned functions will expect a parameter of type char
and not a pointer to such a character. This will lead to a faster and more universal implementation
since we will be able to call them over separate characters as well as individual characters belonging
to strings or arrays.

605. [Temporary debugging glyphs] For debugging purposes, it will be worthwhile to temporarily use
some other, non-empty, and in particular different special glyphs instead of the expected empty glyphs
for spaces and unsupported characters. Thanks to that, we can distinguish these situations (including
the explicitly requested empty glyphs) from each other visually, and thus increase the chance of creating
a correctly working code. Only before the assignment submission do we adjust both the constants
accordingly.

606. [Preserving position numbering] Although it would rather make sense to align letters on our
display to the left as opposed to digits, we will still preserve the convention of numbering display
positions from 0 to 3 from the right to the left.

607. [Text display class] Similarly to the numerical display from the previous assignment, this time too
we will program our text display using the inheritance by deriving it from the basic display. It will
then be able to display a string of the requested characters using the time multiplex mechanism.

608. [Driver and application separation] The goal of this task is to implement displaying of the running
messages. This does not mean that such a functionality should be implemented in full directly by the
text display as such, though. Let us not forget that we understand it as a hardware device driver. Its
interface and capabilities may thus be non-trivial, but it must be universally applicable and limited to
reasonably expected general functionality. On the contrary, it cannot preconceive and solve specifics
of applications that might want to use it in the future and which, above all, do not even exist yet.

609. [Text display interface] The text display driver will therefore remember and be able to display only
and only four particular symbols. That is, an array of characters with the length exactly corresponding
to the number of positions we have on the display.

610. [Alternative string representation] Instead of an array of characters, we could alternatively or
even additionally store the corresponding array of the already translated glyphs. On the one hand,
this will make it possible to display arbitrary special glyphs, but it will suppress the logical nature of
the entire text display on the other.

611. [Setting the requested string] Inside the function for setting a new string, we need to copy all the
characters into our internal data member. In other words, it would not be enough to just remember
a pointer to this string since we do not want to force the caller to guarantee us the immutability and
even the very existence of such a string for the entire time during which we will use it.

612. [String constancy flag] In terms of the interface, we will expect a pointer to a constant string,
i.e., const char*. By using the constancy flag we are saying that we are not interested in changing
the content of this string, which the compiler will then help to enforce. More importantly, however,
we would not be able to even call this function with constant strings otherwise. And that means
anonymous strings written as literals, too.

613. [Input string length] Even though we primarily expect that the length of the provided string will
correspond exactly to the size of our display, we will nevertheless implement the entire function in a
way that we will correctly handle even shorter or longer strings, respectively. In the former case, we
append them with spaces from the right, in the latter case, we cut them off and simply ignore the rest.

614. [Treatment of low-level errors] If we did not want to detect the mentioned situations, it would
certainly be in accordance with the custom we already explained in the previous task regarding the
treatment of similar low-level errors. However, in order to learn how to work with strings better and
to understand the consequences of such errors, we will treat them carefully this time.

615. [Array bounds checking] We specifically need to prevent potential reading or even writing beyond
the array end. In the best case, these errors will lead to an immediate crash of the program when
accessing unallocated memory, in the worst case, we will overwrite some of our other data. The
problem can then manifest itself in strange behavior of the program at any time later and it will be
very difficult to debug.

616. [Strings and arrays of characters] A traditional string in C++ is modeled as an ordinary array
of characters, which, however, contains one special termination character '\0' at its end. Without it,
we would not be able to recognize this end, since strings themselves are not aware of their length. Our
setting function should be able to correctly handle these strings as well as general arrays of characters
without the described termination character.

617. [Usage of the pointer arithmetic] If we want to sequentially process a whole string or at least some
larger continuous part of it, it is faster to manually use pointers instead of the square bracket operator.
So, instead of a loop over the position numbers and accessing the elements using the string[i]
construct, we will use a gradually incremented pointer and the * operator for dereferencing.

618. [Limiting the number of passes] We will process the input string using only one pass, no more
are needed. We also do not need to calculate the length of this string.

619. [Filling the internal array from outside] Finally, let us add that the data member of the internal
array for the current characters is owned by the text display, so we need to fill the content of this
array from inside using the discussed setting function. In other words, it is not possible to provide a
pointer to this internal array to someone else to fill it from the outside, thus losing the control over it.

620. [Extended control functions] As we have already stated, the text display cannot solve the actual
logic of the running messages. On the other hand, this does not mean that, in addition to the
basic function for setting the entire string, we cannot offer some others, for example, allowing to set
characters on particular positions, or for basic logical modification of the current string, let us say in
the sense of its shifting or appending.

621. [Display turning off] As with the numeric display, we will also implement the text display in a way
that we have the option to explicitly turn it off.

622. [Class for running messages] We will encapsulate the entire functionality of running messages in
a separate class. It will of course use and control the text display to achieve the necessary behavior.

623. [Prohibition of further display extension] The messages class must be completely isolated from
our text display, as well as we cannot implement it as its extension using the inheritance. Simply
because it is not a driver, but a specific application.

624. [Volatile data members] Each class should only contain data members that have a long-term
character. We should therefore not use them to store purely temporary or auxiliary values for which
ordinary local variables inside functions would suffice.

625. [Concealing internal methods] Similarly as we normally use private data members, we should also
mark as private methods that are of a purely internal nature and are not intended for direct use by
the users, especially if their thoughtless execution could cause inconsistencies or other complications.

626. [Retrieving messages to scroll] In order to obtain messages intended for displaying, we create an
instance of a pre-implemented class SerialInputHandler available via the attached input.h header
file. It allows to receive messages sent from a computer to the Arduino via the serial line.

627. [Alternative sources of messages] Although we will solely use the described message retrieval
mechanism within this task, we want to support alternative approaches as well. This means that our
running message class cannot hard-wire our default source in any way, and thus it needs to allow the
entire process to be controlled from the outside through appropriately designed methods.

628. [Public interface of the messages class] This involves at least a method for setting a new message
to be displayed, but it could also be useful to enable detection of a successfully completed message
run, or provide even other methods depending on the chosen implementation.

629. [Controlling the entire process] Having displayed the entire current message, perhaps the most
reasonable response is to stop the internal message scrolling mechanism, do nothing else, and simply
wait for another instruction for starting a new message, if any. This will elegantly allow for one-time
usage, repeated use of the same message, or even subsequent alternation of different messages.

630. [Setting up a new message] Although it would be preferable to make our own copy of the provided
message string, we will just store a pointer to this string. In other words, this time we will rely on the
fact that this pointer will be valid and the original string available all the time.

631. [Dynamic memory allocation] The reason is that our message can have an arbitrary length
unknown in advance. If we really wanted to make its copy, we would have to use the so-called
dynamic memory allocation. We would like to avoid this mechanism in this course, however, because
its use requires a certain level of circumspection and discipline. Otherwise, we could uncontrollably
and irreversibly lose available memory in a running program.

632. [Arbitrary message length] Length of a message requested to be displayed can really be arbitrary,
including zero. However, we will never get an invalid pointer.

633. [Redundant display changes] It goes without saying that we give instructions to the text display
only when a change occurs, i.e., at the moment the current message is scrolled to the next position.

634. [Disallowed system functions] We avoid dynamic allocation, it is not necessary, and we did not
learn it anyway. Likewise, we will not use any resources offered by the cstring library.

