
NSWI170 – Computer Systems – 2023/24 Summer – Martin Svoboda

Assignment A3: Counter
Binding Instructions | Well-Meant Advice | Ideas for Thought | Common Mistakes

301. [Decomposition into classes] All code related to the operation of diodes, buttons and timers, as
well as code for the counter itself, will be encapsulated in appropriately designed classes. Their data
members will then exclusively be private.

302. [Universal functions] An exception to the previous requirement could be standalone global functions
if they are usable universally even outside of the context of our particular problem.

303. [Systematic names for constants] Given that the number of various constants in our program is
increasing, it is reasonable to start naming them in a systematic way, i.e., so that it is clear just from
their names at first glance what they relate to (diodes, buttons, …).

304. [Analogy of buttons to diodes] In general, we have basically the same or similar requirements for
working with buttons as we had with diodes before. Therefore we represent them using an appropriate
class, maintain a global array of their instances, etc.

305. [Logical button numbers] Specifically, this also means that we will again use logical numbers 0 to 2
when working with buttons B1 to B3 instead of low-level pins corresponding to constants button1_pin
to button3_pin.

306. [Class for button representation] Class for a button driver must encapsulate all the data members
and methods we might need for seamless working with buttons, including necessary internal states or
timing. Its implementation must be universal and robust enough, because we cannot preconceive how
in particular they will be used.

307. [Concealing internal implementation] Interface of public methods of buttons must be designed
in a way to be as simple, intuitive, and elegant for the users as it is possible. In other words, we again
want to deliberately hide all the internal implementation or technical details so that we do not have
to understand them from the outside, let alone solve or control them somehow.

308. [Types of button events] Although we are only interested in the button press event within this
task, we will also find useful to detect the release event in the future. When it comes specifically to
the press event, it could even be useful to distinguish its specific variant, i.e., whether it is the initial
or recurring events when the button is held for a longer time, as well as being able not to distinguish
such variants, because we want to handle them the same as we do now.

309. [Event occurrence detection] Event detection depends not only on the return value yielded by
the digitalRead function, but also on the correct work with the internal state logic. This means that
such a detection is not repeatable, though. If we tried it for multiple times in one iteration of the loop
function, we might get unexpected results. So either we rely (without any guarantee) on the discipline
of our users that repeated calls will not occur, or we simply separate event occurrence detection from
querying completely.

310. [Public button interface] In addition to the button initialization method, we will also offer an
update function and query functions for individual types of events. We will always call the update
function for each button at the beginning of the loop function, remember the detected conclusions
internally and declare them valid for the entire given iteration of the loop function. Thanks to this,
it will then be possible to safely carry out queries even repeatedly.

311. [Activation of recurring events] If we did not want to handle recurring button events, it would
perhaps be possible to simply ignore them. However, it would be better if we could explicitly enable
or disable such a functionality during the button initialization.

312. [Button debouncing] As a part of the button internal logic, we should also be capable to filter out
short state fluctuations caused by mechanical aspects and button imperfections. Specifically, we will
work with the idea that a state change (both press and release) must last continuously for at least, let
us say, 10 ms in order to register it. If the commenced intention is violated during this time, no change
will occur at all. On the contrary, until a successful transition really takes place, we will continue to
function without any change, e.g., we will not stop triggering any recurring press events.

313. [Timer class exploitation] For the timing control within the buttons, we will of course use instances
of the timer class we already have from the previous assignment.

314. [Code comments] At least the more complicated parts of the code should always be accompanied
by sufficiently explanatory comments to make their understanding easier. We can in particular focus,
for example, on solving the state logic of buttons and explaining the actions performed.

315. [Usage of selected buttons] The way in which we will work with instances of individual buttons
in our code cannot be influenced by the fact whether we really want to work with all of them or just
with some selected ones. Therefore we need to have them all available, only the application itself (i.e.,
our counter) will determine which ones it really wants to work with and which ones it does not.

316. [Assigning functions to buttons] Assignment of user functions handling the respective events of
our individual buttons must not be hard-wired in the code, so we must be able to change it easily. In
this sense, it is fully sufficient to use suitable named constants.

317. [Class for counter representation] Entire logic of our counter will again be solved by a suitably
designed class. As for the interface of its public methods, we must distinguish at least counter
initialization, operations changing its value, handling of events triggered by buttons, or displaying
its value on diodes.

318. [Separation of application from drivers] At the same time, it is necessary to add that the
implementation of our counter, diodes and buttons must be consistently separated from each other.
Counter, as an analogy to the user application, will of course use the services provided by diodes and
buttons, but from the opposite point of view, it is necessary to strictly ensure that our drivers for
diodes and buttons do not solve any aspect of the counter, they must not even be aware of its mere
existence.

319. [Counter value representation] Even though we will have to obtain binary decomposition of the
counter value in order to display it on diodes, the counter as such should remember information about
this value at the logical level, i.e., as an ordinary integer number. It is certainly not appropriate to
use an array of binary digits, let alone an array of diode logical states.

320. [Counter overflow checking] Value of the counter as such must always fall within the allowed
interval, therefore we must check for a possible overflow during each increment or decrement operation.
In addition, this must be handled without any undue delay in order to ensure consistency at the
expected level of atomicity.

321. [Correction of overflowed values] If an overflow occurs, we would certainly be able to adjust the
new value using conditional branching. However, it is also possible to do it via a simple calculation
without branching, which is certainly the preferred option. Just be aware that the modulo operator
for integer division can return negative numbers, too.

322. [Maximal counter value] When dealing with overflows, we cannot do it without determining and
then using the maximal allowed value of our counter. We will of course introduce this value using a
named constant. However, be careful that it can be derived from other already known information,
and therefore it is necessary to calculate it and not define it as a fixed literal.

323. [Initial counter value] Part of the counter initialization at the end of the setup function should be
setting and displaying its current, i.e., default value. Even though it is specifically equal to 0 in our
context, it might not be the case in general. I.e., we could legitimately want to start with some other
initial value.

324. [Initialization and reset distinction] Although in general we should try not to repeat similar or
even the same code fragments, it is also necessary to prefer preserving the expected logical meaning of
the code over its technical form. Specifically, the content of our functions for initializing and resetting
the counter can be analogous, but they are semantically different operations, and therefore we cannot
combine them into just one function.

325. [Calculation of binary decomposition] When calculating the binary decomposition of a counter
value, we should focus on its efficiency. In particular, we should avoid functions that calculate general
powers. I.e., specifically for powers of two, we can easily do without them. We just need to elegantly
use selected bitwise operations and masks.

326. [Conversion of boolean values] If a boolean value is expected somewhere in our code, we should
not rely on automatic language-driven conversions to determine it (0 means false and anything else
true). For example, the result of bit operations is a number, so we first need to convert it to the
required logical value explicitly, for example, using comparison.

327. [Order of initialization actions] Initialization actions performed during the setup function should,
by nature, be arranged in such a way that we first deal with the hardware aspects and only then with
the application aspects.

328. [Simple content of the loop] Like the main function in a normal program, the loop function should
not contain any complex or low-level code. On the other hand, it also does not make sense to take all
the intended actions and just wrap them into one auxiliary function that would just be called here.

329. [Misused for loops] Loops are generally suitable in situations where we expect each of their iterations
to look, let us say, similar. Therefore, if we have buttons and each of them is supposed to invoke a
different action, it does not make sense to handle the events triggered by them using a for loop, so
that we would in turn need branching for individual cases using a switch or otherwise. Such a loop
would then be completely meaningless.

330. [Independence of individual buttons] Individual buttons are independent on each other, therefore
we must be able to handle even situations when an event is triggered by several of them at once within
just one run of the loop function.

331. [Unnecessary diode updates] Since the diode lighting state remains valid until the next change, it
is appropriate to avoid readjustment of the diodes in every single run of the loop function. In other
words, we will only perform it when it becomes necessary, i.e., only when the counter value changes.

332. [Disallowed system functions] In addition to the already prohibited system functions, we will also
not use function bitRead, because we can easily do without it.

