
NIE‐PDB: Advanced Database Systems
http://www.ksi.mff.cuni.cz/~svoboda/courses/231‐NIE‐PDB/

Lecture 12

Query Evaluation
Martin Svoboda
martin.svoboda@fit.cvut.cz

12. and 19. 12. 2023

Charles University, Faculty of Mathematics and Physics
Czech Technical University in Prague, Faculty of Information Technology

http://www.ksi.mff.cuni.cz/~svoboda/courses/231-NIE-PDB/
mailto:martin.svoboda@fit.cvut.cz


Lecture Outline
Algorithms

• Access methods
• External sort
• Nested loops join
• Sort‐merge join
• Hash join

Evaluation
• Query evaluation plans
• Optimization techniques

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 2



Introduction
SQL queries

• SELECT statements

SELECT clauseSELECT clause FROM clauseFROM clause WHERE clauseWHERE clause

GROUP BY clauseGROUP BY clause HAVING clauseHAVING clause

SET operationSET operation

ORDER BY clauseORDER BY clause

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 3



Introduction
Relational algebra

• Basic and inferred operations
Selection σφ, projection πa1,...,an , renaming ρb1/a1,...,bn/an
Set operations: union ∪, intersection ∩, difference \
Inner joins: cross join×, natural join⋊⋉, theta join⋊⋉φ

Left / right natural / theta semijoin⋉,⋊,⋉φ,⋊φ

Left / right natural / theta antijoin ▷, ◁, ▷φ, ◁φ
Division÷

• Extended operations
Left / right / full outer natural join d|><|, |><|d, d|><|d

Left / right / full outer theta join d|><|φ, |><|dφ, d|><|dφ

Sorting, grouping and aggregation, distinct, …

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 4



Naïve Algorithms
Selection: σφ(E)

• Iteration over all tuples and removal of those filtered out
Projection: πa1,...,an(E)

• Iteration over all tuples and removal of excluded attributes
But also removal of duplicates within the traditional model

Distinct
• Sorting of all tuples and removal of adjacent duplicates

Inner joins: ER × ES, ER ⋊⋉ ES, ER ⋊⋉φ ES

• Iteration over all the possible combinations via nested loops
Sorting

• Quick sort, heap sort, bubble sort, insertion sort, …

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 5



Challenges
Blocks

• Tuples stored in data files are not accessible directly
Since we have read / write operations for whole blocks only

• That is true for all types of files…
And so not just data files for tables
But also files for index structures or system catalog

Latency
• Traditionalmagnetic hard drives are extremely slow

Efficient management of cached pages is hence essential
Memory

• Size of available system memory is always limited

⇒ external algorithms are needed

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 6



Objectives
Query evaluation plan

• Based on the database context and available memory…
… suitable evaluation algorithms need to be selected…
… so that the overall evaluation cost isminimal

Database context
• Relational schema: tables, columns, data types
• Integrity constraints: primary / unique / foreign keys, …
• Data organization: heap / sorted / hashed file
• Index structures: B+ tree, bitmap index, hash index
• Available statistics: min / max values, histograms, …

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 7



Objectives
Available system memory

• Number of pages allocated for the execution of a given query
• There are two possible scenarios…

Having a particularmemory size…
– Propose its usage and estimate the evaluation cost

Having a particular cost expectation…
– Determine the required memory and propose its usage

Evaluation algorithms
• Access methods
• Sorting: external sort approaches
• Joining: nested loops, merge join, and hash join approaches
• …

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 8



Objectives
Cost estimation

• Expressed in terms of read / write disk operations
Since hard drives are extremely slow, as already stated…

– And so everything else can boldly be ignored
• We are interested in estimates only

Since it is unlikely we could provide accurate calculations
But still…

– The more accurate estimates, the better evaluation plans
And there can really be huge differences in their efficiency…

– Even up to several orders of magnitude!
• In other words…

Query optimization is crucial for any database system
As well as we also need to know what we are doing…

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 9



Available Statistics
Environment

• B: size of a block / page, usually≈ 4 kB
• M: number of available system memory pages

RelationR
• nR: number of tuples
• sR: average / fixed tuple size
• bR ≈ ⌊B/sR⌋: blocking factor

Number of tuples that can be stored within one block
• pR ≈ ⌈nR/bR⌉: number of blocks
• VR.A: cardinality of the active domain of attribute A

Number of distinct values of A occurring inR
• minR.A and maxR.A: minimal and maximal values for A

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 10



Access Methods



Data Files
Internal structure

• Blocks of data files for tables are divided into slots
Each slot is intended for storing exactly one tuple

– By the way, they can easily be uniquely identified
– Using a pair of block and slot logical ordinal numbers

• Fixed‐size slots
Usage status of each slot just needs to be remembered

• Variable‐size slots
When at least one variable‐size attribute is involved
Slot beginnings and lengths need to be remembered

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 12



Heap File
Heap file

• Tuples are put into individual slots entirely arbitrarily
I.e., we do not have any specific knowledge of their position

53 20 18 23 42 53 82 75 34 36 93 49 18 11 71 6 25

Selection costs
• Full scan is inevitable in almost all situations

c = pR

• Equality test with respect to a unique attribute
c = ⌈pR/2⌉

– Since we can stop at the moment a given tuple is found
– However, uniform distribution of data and queries is assumed
– And values outside of the active domain may also be queried

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 13



Sorted File
Sorted file

• Tuples are ordered with respect to a particular attribute

532018 23 42 53 827534 36 93491811 716 25

Selection costs
• Binary search (half‐interval search) can be used in general

However, only when the same attribute is queried, of course
– I.e., the same attribute as the one used for sorting
– Otherwise, sequential read as in a heap file would be needed

• Equality test
c = ⌈log2 pR⌉ for a unique attribute
c = ⌈log2 pR⌉+ ⌈pR/VR.A⌉ for a non‐unique attribute

• Various range queries

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 14



Hashed File
Hashed file

• Tuples are put into disjoint buckets (logical groups of blocks)
Based on a selected hash function over a particular attribute

– E.g., h(A) = A mod 3

53 2018 2342 538275 3436

93

49

18 11 716

25


 
 


• Hash function
Its domain are values of a given attribute A
Its range provides H distinct values

– There is exactly one bucket for each one of them
– All tuples in a bucket always share the same hash value

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 15



Hashed File
File statistics

• HR: number of buckets
• CR ≈ ⌈pR/HR⌉: expected bucket size

Measured as a number of blocks in a bucket
Selection costs

• Equality test when the hashing attribute is queried
Only the corresponding bucket needs to be accessed
c = CR for a non‐unique attribute
c = ⌈CR/2⌉ for a unique attribute

– Similar assumptions as in the case of heap files
• Any other condition

c = pR
– I.e., full scan is needed

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 16



B+ Tree Index
B+ tree index structure = self‐balanced search tree

• Logarithmic height is guaranteed (the same across all leaves)
• Moreover, very high fan‐out is assumed

I.e., our trees will tend to be significantly wider than taller
– ⇒ search times will not only be logarithmic, but also really low

Logical structure
• Internal node (including a non‐leaf root node)

Contains an ordered sequence of dividing values and pointers
to child nodes representing the sub‐intervals they determine

• Leaf node
Contains individual values and pointers to tuples in data file
Leaves are also interconnected by pointers in both directions

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 17



B+ Tree Index
B+ tree index structure (cont’d)

• Sample index for relationR and its attribute A

8 14 21

26 57

10 11 14 19 21 21 23 26

Index

Table

28

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 18



B+ Tree Index
Physical structure

• Each node is physically represented by one index file block
And so they are treated the same way as data file blocks

– I.e., loaded into the system memory one by one, etc.

Index statistics
• mR.A: maximal number of children (order of tree)

Usually up to small hundreds in practice
Actual number is guaranteed to be at least ⌈mR.A/2⌉

– Except for the root node
• IR.A: index height

Usually just≈ 2− 3 for typical real‐world tables
• pR.A: number of leaf nodes

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 19



B+ Tree Index
Search algorithm

• Index is traversed from its root toward the corresponding leaf
Data tuple then needs to be fetched from the data file

8

57

10 11 14 21 21 23 26

Index

Table

14 21

26

19

19

28

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 20



Non‐Clustered B+ Tree Index
Non‐clustered index

• Order of items within the leaves and data file is not the same
I.e., data file is organized as a heap file of hashed file

Index

Table

11 19 21 23

10 83 3 74

8 14 21

26 57

26211410

19 14 26 21

28

21 23

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 21



Clustered B+ Tree Index
Clustered index

• On the contrary, order of items is (at least almost) the same
I.e., data file is a sorted file (with respect to the same attribute)

Index

Table

10 11 19 21 23

11 14 19 21 21 23 26 28 31

8 14 21

26 57

14 21 26 28

10

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 22



Selection costs
Non‐clustered B+ tree index

• Equality test for a unique / non‐unique attribute
c = IR.A + 1
c = IR.A + ⌈pR.A/VR.A⌉+min(pR, ⌈nR/VR.A⌉)

• Various range queries
• …

Clustered B+ tree index
• Equality test for a unique / non‐unique attribute

c = IR.A + 1
c = IR.A + ⌈pR/VR.A⌉

• Various range queries
• …

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 23



Examples
Sample scenario #1

• Movie ( id, title, year, … )
Basic statistics

– nM = 100 000 tuples, bM = 10, pM = 10 000 blocks
– VM.id = nM = 100 000 values (since they are unique)

Heap file
Sorted file (using ids)
Hashed file

– h(M.id) = M.id mod 50
– HM = 50 buckets, CM = 200 blocks

B+ tree index (using ids)
– mM.id = 100 followers
– IM.id = 3, pM.id = 1 500 blocks

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 24



Examples
Equality test: movie with a particular identifier

• Heap file
c = ⌈pM/2⌉= 5 000

• Sorted file
c = ⌈log2 pM⌉= 14

• Hashed file
c = ⌈CM/2⌉= 100

• Non‐clustered index (B+ tree & heap file)
c = IM.year + 1 = 4

• Clustered index (B+ tree & sorted file)
c = IM.year + 1 = 4

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 25



Examples
Sample scenario #2

• Movie ( id, title, year, … )
Basic statistics

– nM = 100 000 tuples, bM = 10, pM = 10 000 blocks
– VM.year = 50 values
– minM.year = 1943, maxM.year = 2022 (i.e., 80 values)

Heap file
Sorted file (using years)
Hashed file

– h(M.year) = M.year mod 20
– HM = 20 buckets, CM = 500 blocks

B+ tree index (using years)
– mM.year = 100 followers
– IM.year = 3, pM.year = 1 500 blocks

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 26



Examples
Equality test: movies filmed in a particular year

• Heap file
c = pM = 10 000

• Sorted file
c = ⌈log2 pM⌉+ ⌈pM/VM.year⌉= 214

• Hashed file
c = CM = 500

• Non‐clustered index (B+ tree & heap file)
c = IM.year + ⌈pM.year/VM.year⌉+min(pM, ⌈nM/VM.year⌉)
= 2 033

• Clustered index (B+ tree & sorted file)
c = IM.year + ⌈pM/VM.year⌉= 203

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 27



External Sort



External Sort
N‐way external merge sort

• Sort phase (pass 1)
Groups of input blocks are loaded into the system memory
Tuples in these blocks are then sorted

– Any in‐memory in‐place sorting algorithm can be used
– E.g.: quick sort, heap sort, bubble sort, insertion sort, …

Created initial runs are written into a temporary file
• Merge phase (passes 2 and higher)

Groups of runs are loaded into the memory and merged
Newly created (longer) runs are written back on a hard drive
Merging is finished when exactly one run is obtained

– And so the entire input table is sorted

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 29



Sort Phase
Pass 1

• Input data file
Relational tableR

– E.g., nR = 18 tuples, bR = 4 tuples/block, pR = 5 blocks

49 15 27 81 27 11 43 36 92 19 72 68 26 63 43 32 84 35



 
 
 
 


• System memory layout
Input buffer I

– E.g., size M = 2 pages

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 30



Sort Phase
Pass 1

• Groups of M blocks are presorted and so initial runs created
Input blocks fromR are first loaded to I

– Individual tuples in I are then sorted
– Created runs are stored to a temporary fileR1

92 19 72 68 26 63 43 32 84 3549 15 27 81 27 11 43 36

Memory

Hard disk













49 15 27 81 27 11 43 36


 


NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 31



Sort Phase
Pass 1

• Resulting runs inR1 within our sample scenario

84 35

11 15 27 27 36 43 49 81 19 26 32 43 63 68 72 92

92 19 72 68 26 63 43 3249 15 27 81 27 11 43 36









 






 
 


35 84




NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 32



Merge Phase
Pass 2

• Groups of M runs are iterativelymerged together
Blocks from these input runs are gradually loaded into I

– Minimal items are then iteratively selected and moved toO
– Merged (longer) runs are written to a new temporary fileR2

11 15 27 27 36 43 49 81 19 26 32 43 63 68 72 92 35 84

11 15 27 27 19 26 32 43

Memory

Hard disk




















NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 33



Merge Phase
Passes 2 and 3

• Merging continues until just a single run is acquired
And so the entire input table is sorted

11 15 27 27 36 43 49 81 19 26 32 43 63 68 72 92 35 84


















11 15 19 26 27 27 32 35 36 43 43 49 63 68 72 81 84 92





11 15 19 26 27 27 32 36 43 43 49 63 68 72 81 92 35 84

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 34



Algorithm
Sort phase (pass 1)

1 p← 1
2 foreach group of blocks B1, . . . ,BM (if any) fromR do
3 read these blocks to I
4 sort all items in I
5 write all blocks from I as a new run toRp

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 35



Algorithm
Merge phase (passes 2 and higher)

6 whileRp has more then just one run do
7 p← p + 1
8 foreach group of runs R1, . . . ,RM (if any) fromRp−1 do
9 start constructing a new run inRp

10 read the first block from each run Rx to I[x]
11 while I contains at least one item do
12 select the minimal item and move it toO
13 if the corresponding I[x] is empty then
14 read the next block from Rx (if any) to I[x]
15 ifO is full then writeO toRp and emptyO
16 ifO is not empty then writeO toRp and emptyO

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 36



Summary
Memory layout

• Sort phase (pass 1): M
Input buffer I: M pages

Input buffer  

 pages

...

• Merge phase (passes 2 and higher): M + 1
Input buffer I: M ≥ 2 pages
Output bufferO: 1 page

Input buffer  

 pages

...

Output buffer  

 page

+

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 37



Summary
Time complexity

• Single pass (regardless of the phase)
cread = cwrite = pR

• Number of passes
t = ⌈ logM(pR) ⌉

• Overall cost
c ES = t · (cread + cwrite) = ⌈ logM(pR) ⌉ · 2pR

Limitation of the overall number of passes
• In general…

M = ⌈ t√pR ⌉
• Specifically for t = 2 (i.e., exactly 2 passes)

M = ⌈√pR ⌉

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 38



Nested Loops Join



Nested Loops
Binary nested loops

• Universal approach for all types of inner joins
Natural join, cross join, theta join

– I.e., arbitrary joining condition can be involved
Support possible duplicates
Requires no index structures

• Not the best option in all situations, though
Suitable for tables with significantly different sizes

Basic idea
• Outer loop: iteration over the blocks of the first table
• Inner loop: iteration over the blocks of the second table

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 40



Nested Loops
Sample input data

• TablesR and S to be joined using a value equality test






56 8421 84 56 19 41 72 69 35

72 37 64 35 14 6492 52 25 8131 56 75 43 88 21 43 14

Basic setup
• Memory layout: 1 + 1 + 1

Input buffer IR: 1 page
Input buffer IS: 1 page
Output bufferO: 1 page

++

 page  page page

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 41



Nested Loops
Basic setup (1 + 1 + 1)

• Another pair of loops is used for joining tuples in the memory

21 84 56 19

56 84

72 37 64 35 14 64

21 84 56 19 41 72 69 35

Memory

Hard disk










31 56 75 43
 


92 52 25 8131 56 75 43 88 21 43 14


56  56

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 42



Algorithm
Basic setup (1 + 1 + 1)

1 foreach block R fromR do
2 read R into IR
3 foreach block S from S do
4 read S into IS
5 foreach item r in IR do
6 foreach item s in IS do
7 if r and s satisfy the join condition then
8 join r and s and put the result toO
9 ifO is full then writeO to T , emptyO

10 ifO is not empty then writeO to T and emptyO

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 43



Observations
Time complexity

• Basic setup (1 + 1 + 1)
c NL = pR + pR · pS

• ⇒ smaller table should always be taken as the outer one
General setup

• Multiple pages are used for both the input buffers
• Memory layout: MR + MS + 1

Input buffer IR: MR pages
Input buffer IS: MS pages
Output bufferO: 1 page

... +... +

 page pages  pages

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 44



Algorithm
General setup (MR + MS + 1)

1 foreach group of blocks R1, . . . ,RMR (if any) fromR do
2 read these blocks into IR
3 foreach group of blocks S1, . . . , SMS (if any) from S do
4 read these blocks into IS
5 foreach item r in IR do
6 foreach item s in IS do
7 if r and s satisfy the join condition then
8 join r and s and put the result toO
9 ifO is full then writeO to T , emptyO

10 ifO is not empty then writeO to T and emptyO

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 45



Observations
Time complexity

• General setup (MR + MS + 1)
c NL = pR + ⌈pR/MR⌉ · pS

• ⇒ there is no reason of having MS ≥ 2
Standard setup

• Memory layout: MR + 1 + 1
Input buffer IR: MR pages
Input buffer IS: 1 page
Output bufferO: 1 page

... ++

 page  page pages

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 46



Standard Approach
Standard setup (MR + 1 + 1) with zig‐zag optimization

• Multiple pages are used just for the outer table

21 84 56 19

Memory

Hard disk











 





56  5641 72 69 35

56 8421 84 56 19 41 72 69 35

31 56 75 43

72 37 64 35 14 6492 52 25 8131 56 75 43 88 21 43 14

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 47



Observations
Zig‐zag optimization

• Reading of the inner table S
Odd iterations normally
Even iterations in reverse order

Time complexity
• Standard setup (MR + 1 + 1)

c NL = pR + ⌈pR/MR⌉ · pS (without zig‐zag)
c NL = pR + ⌈pR/MR⌉ · (pS − 1) + 1 (with zig‐zag)

Special cases
• Smaller table fits entirely within the memory, i.e., pR ≤ MR

c NL = pR + pS

• Non‐brute‐force replacement for inner loops
When a suitable index exists on the inner table, …

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 48



Sort‐Merge Join



Sort‐Merge Join
Sort‐merge join algorithm (or justmerge join)

• Inner joins based on value equality tests only
Basic version without duplicates

– Could be extended to support them, though
• Suitable for tables with relatively similar sizes

Especially when they are already sorted
Or when the final result is expected to be sorted

Phases
• Sort phase

Both tables are externally sorted, one by one (if not yet)
• Join phase

Items are joined while simulating the merge of the two tables

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 50



Basic Approach
Sample input data

• Input tablesR and S






65 19 35 92 49 31

52 94 38 71 11 50 4992 41 63 19 75 54 46 68 15 27 22 43

Sort phase
• Resulting sorted tables


 19 38 41 4643 49 50 52 54 63 68 71 75 92 9411 15 22 27

19 31 35 49 65 92


NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 51



Basic Approach
Join phase

• Blocks from the sorted tables are processed one by one

Memory

Hard disk











 





19  19

19 31 35 49 65 92

19 38 41 4643 49 50 52 54 63 68 71 75 92 9411 15 22 27

19 31 35 49 1911 15 22

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 52



Algorithm
Join phase

1 read blockR′[1] to IR and block S ′[1] to IS
2 while both IR and IS contain at least one item do
3 let r be the minimal item in IR and s minimal item in IS
4 if r and s can be joined then
5 join r and s and put the result toO
6 ifO is full then writeO to T and emptyO
7 remove both r from IR and s from IS
8 else remove the lower one of r from IR or s from IS
9 if IR is empty then read the next block fromR′ (if any)

10 if IS is empty then read the next block from S ′ (if any)
11 ifO is not empty then writeO to T and emptyO

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 53



Observations
Join phase

• Memory layout: 1 + 1 + 1
Input buffer IR: 1 page
Input buffer IS: 1 page
Output bufferO: 1 page

++

 page  page page

Time complexity
• Sort phase
• Join phase

c MJ = pR + pS

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 54



Extended Version
Duplicate items

• Possible duplicates in one table only
Let it be S (without loss of generality)
Algorithm modification is straightforward…

– Having successfully joined r and s, we just remove s from IS
and not r from IR (line 7)

28 30 31 34

14 19 28 28

52 57 61 65504835 38




54 57 5740 49 52 544037 40




40

514340 46

40







NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 55



Extended Version
Duplicate items

• Possible duplicates in both tables
All matching pairs of r and s just need to be joined…
Unfortunately, size of input buffersmight not be sufficient

– Since we may span block boundaries, even repeatedly

7 10 11 16

2 8 10 10

31 31 31 3427272516 19




25

29 29 3125 25 25 25 252517 25




25

3025







NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 56



Hash Join



Hash Join
Hash join approaches

• Basic principle
Items of the first table are hashed into the system memory
Items of the second table are then attempted to be joined

• Limitations
Inner joins based on value equality tests only

– Including possible duplicates
Not suitable for small active domains

• Particular approaches
Classic hash join, Simple hash join, Partition hash join,
Grace hash join, and Hybrid hash join

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 58



Classic Hashing
Classic hash join

• Build phase
Smaller table (let it beR) is hashed into the system memory

– I.e., it is sequentially loaded into the memory, block by block
– All its tuples are then emplaced into the hash container

• Hash function h is assumed for this purpose
Its domain are values of the joining attribute A
Its range provides H distinct values

• Hash container internally contains H buckets
Its overall size will inevitably be somewhat larger than pR

– Let us say M = ⌈F · pR⌉ pages for some small factor F
• Probe phase

Items from the larger table S are attempted to be joined

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 59



Build Phase
Build phase

• Tuples from the smaller table are hashed into the memory
E.g., hash function h(A) = A mod 2 is assumed

25 14 38 42

Memory

Hard disk





 57 69 13 93 84 57 692

25 14 38 57





14 38 25 57




43

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 60



Probe Phase
Probe phase

• Tuples from the larger table are attempted to be joined

Memory

Hard disk




87 14 65 19



 


19 4465 614 5787 28 16913572 28933714 2891





 14  14

38 42

92

14

6

84 136957

93 57 43

25

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 61



Algorithm
Build phase

1 foreach block R fromR do
2 read R into I
3 foreach item r in I do
4 calculate hash value h← h(r.A)
5 add r into bucket h inH

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 62



Algorithm
Probe phase

1 foreach block S from S do
2 read S into I
3 foreach item s in I do
4 calculate hash value h← h(s.A)
5 foreach item r in bucket h inH do
6 if r and s can be joined then
7 join r and s and put the result toO
8 ifO is full then writeO to T and emptyO

9 ifO is not empty then writeO to T and emptyO

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 63



Observations
Memory layout

• Build phase: M + 1
Hash containerH: M = ⌈F · pR⌉ pages
Input buffer I: 1 page

Hash container 

 pages

...

Input buffer  

 page

+

• Probe phase: M + 1 + 1
Hash containerH: M pages (preserved from the build phase)
Input buffer I: 1 page
Output bufferO: 1 page

Hash container 

 pages

... +

Input buffer  

 page

+

Output buffer  

 page

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 64



Observations
Time complexity

• Build and probe phases
cbuild = pR
cprobe = pS

• Overall cost
c CH = cbuild + cprobe = pR + pS

Summary
• Interesting approach as for its efficiency

However, usable only when the smaller table can entirely be
hashed into the system memory…

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 65



Partition Hashing
Partition hash join

• Basic principle
Both tables are first partitioned

– Using partition function p
Pairs of the corresponding partitions are then joined together

– Using the classic hash join approach
– Or actually even nested loops if desired

Overall procedure

1 splitR and create partitionsR0, . . . ,RP
2 split S and create partitions S0, . . . ,SP
3 foreach partition p ∈ {0, . . . ,P− 1} do
4 join partitionsRp and Sp

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 66



Partition Phase
Partition phase (for tableR)

• Tuples of a given table are split to disjoint partitions

Memory

Hard disk







89 21 46 15
 68 43 78 93

46
89 21 46 15

89 21

15





 
 
 


NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 67



Join Phase
Partition phase

• Resulting partitions for our sample scenario


 449652 1268


 89 93 33 21 37 5321 73 4569


 46 78 22 54


 7115 433543 79 55













18463046

45572593

52847228

39958351

Join phase
• Pairs of the corresponding partitions are then joined together

R0 and S0,R1 and S1, …

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 68



Algorithm
Partition phase

• TableR is assumed, partitioning of S is analogous

1 foreach block R fromR do
2 read R into I
3 foreach item r in I do
4 calculate partition value p← p(r.A)
5 add r into partition buffer Pp
6 if Pp is full then write Pp toRp and empty Pp

7 foreach partition p ∈ {0, . . . ,P− 1} do
8 if Pp is not empty then write Pp toRp and empty Pp

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 69



Observations
Memory layout

• Partition phase: 1 + P
Input buffer I: 1 page
Partition buffers P : P pages

Partition buffers  

 pages

...

Input buffer  

 page

+

Time complexity
• Partitioning phase

csplit ≈ 2 · pR + 2 · pS

• Overall cost (with classic hash join involved)
c PH = csplit + P · c CH ≈ csplit + P

[
pR
P + pS

P

]
≈ 3 · (pR + pS)

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 70



Query Evaluation



Sample Query
Database schema

• Movie ( id, title, year, … )
• Actor ( movie, actor, character, … )

FK: Actor[movie]⊆Movie[id]
Sample query

• Actors and characters they played in movies filmed in 2000
SQL expression
SELECT title, actor, character
FROM Movie JOIN Actor
WHERE (year = 2000) AND (id = movie)

RA expression

πtitle,actor,character

(
φ(year=2000)∧(id=movie)

(
Movie×Actor

))
NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 72



Sample Query
Sample query (cont’d)

• Actors and characters they played in movies filmed in 2000
πtitle,actor,character

(
φ(year=2000)∧(id=movie)

(
Movie×Actor

))

Movie Actor

Selection (year = 2000)  (id = movie)

Cross join

Projection [title, actor, character]

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 73



Query Evaluation
Basic idea

• SQL query→ RA query→ evaluation plan→ query result
Evaluation process

• (1) Scanning [scanner]
Lexical analysis is performed over the input SQL expression

– Lexemes are recognized and then tokens generated
• (2) Parsing [parser]

Syntactic analysis is performed
– Derivation tree is constructed according to the SQL grammar

• (3) Translation
Query tree with relational algebra operations is constructed

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 74



Query Evaluation
Evaluation process (cont’d)

• (4) Validation [validator]
Semantic validity is checked

– Compliance of relation schemas with intended operations
• (5) Optimization [optimizer]

Alternative evaluation plans are devised and compared
– In order to find the most efficient plan
– Based on their evaluation cost estimates

• (6) Code generation [generator]
Execution code is generated for the chosen plan

• (7) Execution [processor]
Intended query is finally evaluated

– And the yielded result provided to the user

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 75



Query Evaluation
Query tree

• Internal tree structure
Leaf nodes = input tables
Inner nodes = individual RA operations (σ, π,×,⋊⋉, …)

• Root node represents the entire query
Nodes are evaluated from leaves toward the root

Query evaluation plan
• Query tree
• For each inner node…

Calculated statistics (number of tuples, blocking factor, …)
Selected algorithm (limited by context and availablememory)
Estimated cost

• Overall cost
NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 76



Sample Plan #1

Movie Actor Heap file

 1 000 000

 40

 25 000

Selection (year = 2000)  (id = movie)

 20 000


 8

 2 500


 12 500 000 000

 2 500

Cross join

 100 000 000 000


 8

 12 500 000 000


Nested loops

 27


 10 010 000

 12 500 000 000

Projection [title, actor, character]

 20 000


 50

 400


 2 500

 400

Sorted file (year)

 100 000
 10

 10 000


 50

B  tree index (year)


 100

 3

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 77



Evaluation Plan Cost
Overall evaluation cost

• Let us first assume that all intermediate results are always
written to temporary files and so each involved operation…

Reads its inputs from / writes its output to a hard drive
• Overall cost then equals to the sum of all the partial costs

Cost of Plan #1
• M = 25 + 1 + 1 memory pages
• c = [cr

1 + cw
1] + [cr

2 + cw
2] + [cr

3]

• c = [pM + (pM/25) · pA + p1] + [p1 + p2] + [p2]

• c = [10 010 000+ 12 500 000 000] + [12 500 000 000+ 2 500]+
[2 500]

• c = 25 010 015 000

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 78



Sample Query
Intuitive optimization

• Actors and characters they played in movies filmed in 2000
SQL expression
SELECT title, actor, character
FROM Movie JOIN Actor ON (id = movie)
WHERE (year = 2000)

RA expression

πtitle,actor,character

(
φ(year=2000)

(
Movie⋊⋉(id=movie) Actor

))

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 79



Sample Plan #2

Movie Actor Heap file

 1 000 000

 40

 25 000

Selection (year = 2000)

 20 000


 8

 2 500


 125 000

 2 500

Theta join [id = movie]

 1 000 000


 8

 125 000


Nested loops

 27


 10 010 000

 125 000

Projection [title, actor, character]

 20 000


 50

 400


 2 500

 400

Sorted file (year)

 100 000
 10

 10 000


 50

B  tree index (year)


 100

 3

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 80



Sample Plan #2
Cost of Plan #2

• Again M = 25 + 1 + 1 memory pages
• c = [cr

1 + cw
1] + [cr

2 + cw
2] + [cr

3]

• c = [pM + (pM/25) · pA + p1] + [p1 + p2] + [p2]

• c = [10 010 000 + 125 000] + [125 000 + 2 500] + [2 500]
• c = 10 265 000

That is approximately 2 400 times better than the first plan

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 81



Pipelining
Pipeliningmechanism

• Intermediate results are passed between the operations
directly without the usage of temporary files on a disk

And so just within the system memory
– It may even be possible to do it in‐place without extra pages

• Unfortunately, such an approach is not always possible…
Cost of Plan #2 with pipelining

• Still M = 25 + 1 + 1 memory pages
• c = [cr

1 + ��SScw
1] + [��SScr

2 + ��SScw
2] + [��SSc

r
3]

Joined tuples are filtered and projected immediately in‐place
• c = 10 010 000

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 82



Query Optimization
Objective = finding the most optimal query evaluation plan

• It is not possible to consider all plans, though
Simply because there are far too many of them
And so pruning and heuristics need to be incorporated

Optimization strategies
• Algebraic

Proposal of alternative plans using query tree transformations
• Statistical

Estimation of costs and result sizes based on available statistics
• Syntactic

Manual modification of query expressions by users themselves
– In order to involve plans that would otherwise be unreachable
– Breaches the principle of declarative querying, though

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 83



Statistical Optimization
Objective

• Capability of calculating necessary result characteristics…
Of both the final result as well as all intermediate ones

– I.e., all individual nodes within a given evaluation plan tree
• … so that the overall cost can be estimated

And thus alternative plans mutually compared
Basic statistics

• Data file for tableR
nR number of tuples, sR tuple size, bR blocking factor
pR number of pages
Hashed file: HR number of buckets, CR bucket size

• Index file for attribute A from tableR
B+ tree: IR.A tree height, pR.A number of leaf nodes

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 84



Statistical Optimization
Additional statistics

• Provide deeper insight into the active domain
May even be implicitly derivable from index structures
Unfortunately, they may also bemissing or unavailable

– Especially as for intermediate results

• VR.A number of distinct values
• minR.A and maxR.A minimal and maximal values
• Histograms

Provide even more accurate understanding of the domain
– And so better estimates

Especially useful for non‐uniform distributions

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 85



Size Estimates: Selection
Selection: T = σφ(E)
Tuple size

• sT = sE
Tuples are just filtered out and so their size remains untouched

Blocking factor
• bT = bE

Number of tuples
• Basic idea: nT = ⌈nE · rφ⌉
• rφ ∈ [0, 1] is an estimated reduction factor

Describes how much the original tuples will be reduced
– Depends on a particular condition φ
– As well as particular available statistics…

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 86



Size Estimates: Projection
Projection: T = πa1,...,an(E)
Tuple size

• sT is simply calculated using sizes of all preserved attributes
Blocking factor

• bT = ⌊B/sT⌋
Number of tuples

• Default SQL projection without the DISTINCT modifier
I.e., removal of potential duplicates is not performed
nT = nE

• With duplicates removal enabled
nT = nE if at least one key of E is preserved
…

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 87



Size Estimates: Joins
Inner joins: T = ER × ES or ER ⋊⋉ ES or ER ⋊⋉φ ES

Tuple size
• sT ≈ sR + sS

Less for natural join since shared attributes are not repeated
Blocking factor

• bT ≈
⌊

B
sT

⌋
≈

⌊
B

sR + sS

⌋
≈

⌊
B

B/bR + B/bS

⌋
≈

⌊
bR · bS

bR + bS

⌋
Can be calculated exactly from the actual resulting tuple size
As well as estimated just using the original blocking factors

Number of tuples
• nT = ⌈nR · nS · rφ⌉ with rφ ∈ [0, 1] for joining condition φ

Similar approach with reduction factors as in selections

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 88



Algebraic Optimization
Objective

• Capability of finding alternative query evaluation plans
Based on various equivalence rules

– E.g.: commutativity of selection, associativity of inner joins, …
• Ultimate challenge

Space of all possible plansmay be enormous
And so significant pruningmust be involved

Basic strategy for SPJ queries = select‐project‐join queries
• They allow to be approached at two separate levels…

Single‐relation plans = best access method for each table
Multi‐relation plans = best join plan for all the tables

• But still an NP‐complete problem

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 89



Examples
Sample transformations

• πtitle,actor,character

(
φ(year=2000)∧(id=movie)

(
Movie×Actor

))
// #1

• πtitle,actor,character

(
φ(id=movie)

(
φ(year=2000) (Movie×Actor)

))
• πtitle,actor,character

(
φ(year=2000)

(
φ(id=movie) (Movie × Actor)

))
• πtitle,actor,character

(
φ(year=2000)

(
Movie⋊⋉(id=movie) Actor

))
// #2

• πtitle,actor,character

(
φ(year=2000)(Movie)⋊⋉(id=movie) Actor

)
• πtitle,actor,character

(
πid,title

(
φ(year=2000)(Movie)

)
⋊⋉(id=movie)

πmovie,actor,character(Actor)
)

// #3

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 90



Sample Plan #3

Movie

Actor

Heap file

 1 000 000

 40

 25 000

Selection (year = 2000)

 2 000


 10

 200


 203

Projection [movie, actor, character]

 1 000 000


 65

 25 000

Projection [id, title]

 2 000


 80

 25

Theta join [id = movie]

 20 000


 35

Nested loops


 27

Projection [title, actor, character]

 20 000


 50

 400


 400

Sorted file (year)

 100 000
 10

 10 000


 50

B  tree index (year)


 100

 3

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 91



Sample Plan #3
Cost of Plan #3 with pipelining

• M = 25 + 1 + 1 memory pages for buffers I1, I2 andO
I.e., still the same amount of system memory pages used

• c = [cr
1 + ��SScw

1] + [��SScr
2 + ��SScw

2] + [cr
3 + ��SSc

w
3] + [��SScr

4 + ��SScw
4] + [��SSc

r
5]

I2 is used for index traversal and then reading of movies
All filtered and projected movies are put into I1
Actors are read into I2, their projection is postponed
Joined tuples are put intoO and projected

• c = [IM.year + pM · (1/VM.year)] + [pA]

• c = [203] + [25 000]
• c = 25 203

That is approximately 400 times better than the second plan
– And so almost 1 million times better than the first plan

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 92



Explain Statements
EXPLAIN statement

• Allows to retrieve the evaluation plan for a given query
When ANALYZE modifier is provided…

– Query is also executed and the actual run times are returned

EXPLAINEXPLAIN

ANALYZEANALYZE

SELECT querySELECT query

Example
• EXPLAIN

SELECT title, actor, character
FROM Movie JOIN Actor
WHERE (year = 2000) AND (id = movie)

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 93



Observations
False assumptions and simplifications

• Variable size of tuples
• Unused slots and inner fragmentation within blocks
• Overflow areas in sorted / hashed files
• Outer fragmentation of files on a hard drive
• Impact of the caching manager
• Extent of available statistics and their lazy maintenance
• Non‐uniform distribution of data / queries
• Independence of conditions in reduction factors
• …

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 94





Conclusion
Evaluation algorithms

• Access methods
• Sorting

External merge sort algorithm
• Joining

Binary nested loops join with / without zig‐zag
Sort‐merge join
Classic / partition hash join

Query evaluation and optimization
• Evaluation plans

Cost estimates, pipelining
• Statistical / algebraic optimization

NIE‐PDB: Advanced Database Systems | Lecture 12: Query Evaluation | 12. and 19. 12. 2023 96


	Outline
	Introduction
	Access Methods
	File Organization
	Index Structures
	Examples

	External Sort
	Basic Approach

	Nested Loops Join
	Binary Nested Loops

	Sort-Merge Join
	Basic Approach

	Hash Join
	Classic Hashing
	Partition Hashing

	Query Evaluation
	Evaluation Process
	Statistical Optimization
	Size Estimates
	Algebraic Optimization
	Query Evaluation

	Conclusion

