NIE-PDB: Advanced Database Systems

http://www.ksi.mff.cuni.cz/~svoboda/courses/231-NIE-PDB/

Lecture 12

Query Evaluation

Martin Svoboda
martin.svoboda@fit.cvut.cz
12. and 19. 12. 2023

Charles University, Faculty of Mathematics and Physics
Czech Technical University in Prague, Faculty of Information Technology

Lecture Outline

Algorithms

- Access methods
- External sort
- Nested loops join
- Sort-merge join
- Hash join

Evaluation

- Query evaluation plans
- Optimization techniques

Introduction

SQL queries

- SELECT statements

Introduction

Relational algebra

- Basic and inferred operations
- Selection σ_{φ}, projection $\pi_{a_{1}, \ldots, a_{n}}$, renaming $\rho_{b_{1} / a_{1}, \ldots, b_{n} / a_{n}}$
- Set operations: union \cup, intersection \cap, difference
- Inner joins: cross join \times, natural join \bowtie, theta join \bowtie_{φ}
- Left / right natural / theta semijoin $\ltimes, \rtimes, \ltimes_{\varphi}, \rtimes_{\varphi}$
- Left / right natural / theta antijoin $\triangleright, \triangleleft, \triangleright_{\varphi}, \triangleleft_{\varphi}$
- Division -
- Extended operations

- Left / right / full outer theta join $\bowtie_{\varphi}, \bowtie_{\varphi}, \aleph_{\varphi}$
- Sorting, grouping and aggregation, distinct, ...

Naïve Algorithms

Selection: $\sigma_{\varphi}(E)$

- Iteration over all tuples and removal of those filtered out Projection: $\pi_{a_{1}, \ldots, a_{n}}(E)$
- Iteration over all tuples and removal of excluded attributes
- But also removal of duplicates within the traditional model

Distinct

- Sorting of all tuples and removal of adjacent duplicates

Inner joins: $E_{R} \times E_{S}, E_{R} \bowtie E_{S}, E_{R} \bowtie_{\varphi} E_{S}$

- Iteration over all the possible combinations via nested loops

Sorting

- Quick sort, heap sort, bubble sort, insertion sort, ...

Challenges

Blocks

- Tuples stored in data files are not accessible directly
- Since we have read / write operations for whole blocks only
- That is true for all types of files...
- And so not just data files for tables
- But also files for index structures or system catalog

Latency

- Traditional magnetic hard drives are extremely slow
- Efficient management of cached pages is hence essential

Memory

- Size of available system memory is always limited
\Rightarrow external algorithms are needed

Objectives

Query evaluation plan

- Based on the database context and available memory...
... suitable evaluation algorithms need to be selected...
... so that the overall evaluation cost is minimal
Database context
- Relational schema: tables, columns, data types
- Integrity constraints: primary / unique / foreign keys, ...
- Data organization: heap / sorted / hashed file
- Index structures: B^{+}tree, bitmap index, hash index
- Available statistics: min / max values, histograms, ...

Objectives

Available system memory

- Number of pages allocated for the execution of a given query
- There are two possible scenarios...
- Having a particular memory size...
- Propose its usage and estimate the evaluation cost
- Having a particular cost expectation...
- Determine the required memory and propose its usage

Evaluation algorithms

- Access methods
- Sorting: external sort approaches
- Joining: nested loops, merge join, and hash join approaches

Objectives

Cost estimation

- Expressed in terms of read / write disk operations
- Since hard drives are extremely slow, as already stated...
- And so everything else can boldly be ignored
- We are interested in estimates only
- Since it is unlikely we could provide accurate calculations
- But still...
- The more accurate estimates, the better evaluation plans
- And there can really be huge differences in their efficiency...
- Even up to several orders of magnitude!
- In other words...
- Query optimization is crucial for any database system
- As well as we also need to know what we are doing...

Available Statistics

Environment

- B : size of a block / page, usually $\approx 4 k B$
- M : number of available system memory pages

Relation \mathcal{R}

- n_{R} : number of tuples
- s_{R} : average / fixed tuple size
- $b_{R} \approx\left\lfloor B / s_{R}\right\rfloor$: blocking factor
- Number of tuples that can be stored within one block
- $p_{R} \approx\left\lceil n_{R} / b_{R}\right\rceil$: number of blocks
- $V_{R . A}$: cardinality of the active domain of attribute A
- Number of distinct values of A occurring in \mathcal{R}
- $\min _{R . A}$ and $\max _{R . A}$: minimal and maximal values for A

Access Methods

Data Files

Internal structure

- Blocks of data files for tables are divided into slots
- Each slot is intended for storing exactly one tuple
- By the way, they can easily be uniquely identified
- Using a pair of block and slot logical ordinal numbers
- Fixed-size slots
- Usage status of each slot just needs to be remembered

- Variable-size slots
- When at least one variable-size attribute is involved
- Slot beginnings and lengths need to be remembered

Heap File

Heap file

- Tuples are put into individual slots entirely arbitrarily
- I.e., we do not have any specific knowledge of their position

Selection costs

- Full scan is inevitable in almost all situations
- $c=p_{R}$
- Equality test with respect to a unique attribute
- $c=\left\lceil p_{R} / 2\right\rceil$
- Since we can stop at the moment a given tuple is found
- However, uniform distribution of data and queries is assumed
- And values outside of the active domain may also be queried

Sorted File

Sorted file

- Tuples are ordered with respect to a particular attribute

Selection costs

- Binary search (half-interval search) can be used in general
- However, only when the same attribute is queried, of course
- I.e., the same attribute as the one used for sorting
- Otherwise, sequential read as in a heap file would be needed
- Equality test
- $c=\left\lceil\log _{2} p_{R}\right\rceil$ for a unique attribute
- $c=\left\lceil\log _{2} p_{R}\right\rceil+\left\lceil p_{R} / V_{R . A}\right\rceil$ for a non-unique attribute
- Various range queries

Hashed File

Hashed file

- Tuples are put into disjoint buckets (logical groups of blocks)
- Based on a selected hash function over a particular attribute
- E.g., $h(A)=A \bmod 3$

18 42 75 36 82 34	49	25		53	20	23	53				
93	18	6								11	71

- Hash function
- Its domain are values of a given attribute A
- Its range provides H distinct values
- There is exactly one bucket for each one of them
- All tuples in a bucket always share the same hash value

Hashed File

File statistics

- H_{R} : number of buckets
- $C_{R} \approx\left\lceil p_{R} / H_{R}\right\rceil$: expected bucket size
- Measured as a number of blocks in a bucket

Selection costs

- Equality test when the hashing attribute is queried
- Only the corresponding bucket needs to be accessed
- $c=C_{R}$ for a non-unique attribute
- $c=\left\lceil C_{R} / 2\right\rceil$ for a unique attribute
- Similar assumptions as in the case of heap files
- Any other condition

$$
c=p_{R}
$$

- l.e., full scan is needed

B^{+}Tree Index

B^{+}tree index structure = self-balanced search tree

- Logarithmic height is guaranteed (the same across all leaves)
- Moreover, very high fan-out is assumed
- I.e., our trees will tend to be significantly wider than taller
- \Rightarrow search times will not only be logarithmic, but also really low

Logical structure

- Internal node (including a non-leaf root node)
- Contains an ordered sequence of dividing values and pointers to child nodes representing the sub-intervals they determine
- Leaf node
- Contains individual values and pointers to tuples in data file
- Leaves are also interconnected by pointers in both directions

B^{+}Tree Index

B^{+}tree index structure (cont'd)

- Sample index for relation \mathcal{R} and its attribute A

B^{+}Tree Index

Physical structure

- Each node is physically represented by one index file block
- And so they are treated the same way as data file blocks
- I.e., loaded into the system memory one by one, etc.

Index statistics

- $m_{R . A}$: maximal number of children (order of tree)
- Usually up to small hundreds in practice
- Actual number is guaranteed to be at least $\left\lceil m_{R . A} / 2\right\rceil$
- Except for the root node
- $I_{\text {R.A }}$: index height
- Usually just $\approx 2-3$ for typical real-world tables
- $p_{R . A}$: number of leaf nodes

B $^{+}$Tree Index

Search algorithm

- Index is traversed from its root toward the corresponding leaf
- Data tuple then needs to be fetched from the data file

Non-Clustered B^{+}Tree Index

Non-clustered index

- Order of items within the leaves and data file is not the same
- I.e., data file is organized as a heap file of hashed file

Clustered B^{+}Tree Index

Clustered index

- On the contrary, order of items is (at least almost) the same
- I.e., data file is a sorted file (with respect to the same attribute)

Selection costs

Non-clustered B^{+}tree index

- Equality test for a unique / non-unique attribute

$$
\begin{aligned}
c & =I_{R . A}+1 \\
\text { - } c & =I_{R . A}+\left\lceil p_{R . A} / V_{R . A}\right\rceil+\min \left(p_{R},\left\lceil n_{R} / V_{R . A}\right\rceil\right)
\end{aligned}
$$

- Various range queries

Clustered B^{+}tree index

- Equality test for a unique / non-unique attribute

$$
\begin{aligned}
c & =I_{R . A}+1 \\
c & =I_{R . A}+\left\lceil p_{R} / V_{R . A}\right\rceil
\end{aligned}
$$

- Various range queries

Examples

Sample scenario \#1

- Movie (id, title, year, ...)
- Basic statistics
- $n_{M}=100000$ tuples, $b_{M}=10, p_{M}=10000$ blocks
- $V_{M . i d}=n_{M}=100000$ values (since they are unique)
- Heap file
- Sorted file (using ids)
- Hashed file
- $h($ M.id $)=M . i d \bmod 50$
- $H_{M}=50$ buckets, $C_{M}=200$ blocks
- B^{+}tree index (using ids)
- $m_{M . i d}=100$ followers
- $I_{M . i d}=3, p_{M . i d}=1500$ blocks

Examples

Equality test: movie with a particular identifier

- Heap file

$$
c=\left\lceil p_{M} / 2\right\rceil=5000
$$

- Sorted file
- $c=\left\lceil\log _{2} p_{M}\right\rceil=14$
- Hashed file
- $c=\left\lceil C_{M} / 2\right\rceil=100$
- Non-clustered index (B^{+}tree \& heap file)
- $c=I_{\text {M. year }}+1=4$
- Clustered index (B^{+}tree \& sorted file)
- $c=I_{\text {M. year }}+1=4$

Examples

Sample scenario \#2

- Movie (id, title, year, ...)
- Basic statistics
- $n_{M}=100000$ tuples, $b_{M}=10, p_{M}=10000$ blocks
- $V_{\text {M.year }}=50$ values
- $\min _{\text {M. year }}=1943, \max _{\text {M.year }}=2022$ (i.e., 80 values)
- Heap file
- Sorted file (using years)
- Hashed file
- $h($ M. year $)=$ M.year $\bmod 20$
- $H_{M}=20$ buckets, $C_{M}=500$ blocks
- B^{+}tree index (using years)
- $m_{\text {M. year }}=100$ followers
- $I_{M . \text { year }}=3, p_{M . \text { year }}=1500$ blocks

Examples

Equality test: movies filmed in a particular year

- Heap file
- $c=p_{M}=10000$
- Sorted file
- $c=\left\lceil\log _{2} p_{M}\right\rceil+\left\lceil p_{M} / V_{M . \text { year }}\right\rceil=214$
- Hashed file
- $c=C_{M}=500$
- Non-clustered index (B^{+}tree \& heap file)

$$
\begin{aligned}
& \text { - } c=I_{M . \text { year }}+\left\lceil p_{M . \text { year }} / V_{M . y e a r}\right\rceil+\min \left(p_{M},\left\lceil n_{M} / V_{M . \text { year }}\right\rceil\right) \\
& \quad=2033
\end{aligned}
$$

- Clustered index (B^{+}tree \& sorted file)
- $c=I_{\text {M.year }}+\left\lceil p_{M} / V_{M . y e a r}\right\rceil=203$

External Sort

External Sort

N -way external merge sort

- Sort phase (pass 1)
- Groups of input blocks are loaded into the system memory
- Tuples in these blocks are then sorted
- Any in-memory in-place sorting algorithm can be used
- E.g.: quick sort, heap sort, bubble sort, insertion sort, ...
- Created initial runs are written into a temporary file
- Merge phase (passes 2 and higher)
- Groups of runs are loaded into the memory and merged
- Newly created (longer) runs are written back on a hard drive
- Merging is finished when exactly one run is obtained
- And so the entire input table is sorted

Sort Phase

Pass 1

- Input data file
- Relational table \mathcal{R}
- E.g., $n_{R}=18$ tuples, $b_{R}=4$ tuples/block, $p_{R}=5$ blocks

- System memory layout
- Input buffer \mathcal{I}
- E.g., size $M=2$ pages

Sort Phase

Pass 1

- Groups of M blocks are presorted and so initial runs created
- Input blocks from \mathcal{R} are first loaded to \mathcal{I}
- Individual tuples in \mathcal{I} are then sorted
- Created runs are stored to a temporary file \mathcal{R}^{1}

Sort Phase

Pass 1

- Resulting runs in \mathcal{R}^{1} within our sample scenario

Merge Phase

Pass 2

- Groups of M runs are iteratively merged together
- Blocks from these input runs are gradually loaded into \mathcal{I}
- Minimal items are then iteratively selected and moved to \mathcal{O}
- Merged (longer) runs are written to a new temporary file \mathcal{R}^{2}

Merge Phase

Passes 2 and 3

- Merging continues until just a single run is acquired
- And so the entire input table is sorted

Algorithm

Sort phase (pass 1)

$1 p \leftarrow 1$
2 foreach group of blocks B_{1}, \ldots, B_{M} (if any) from \mathcal{R} do
3 read these blocks to \mathcal{I}
4 sort all items in \mathcal{I}
5
write all blocks from \mathcal{I} as a new run to \mathcal{R}^{p}

Algorithm

Merge phase (passes 2 and higher)

while \mathcal{R}^{p} has more then just one run do
$p \leftarrow p+1$
foreach group of runs R_{1}, \ldots, R_{M} (if any) from \mathcal{R}^{p-1} do start constructing a new run in \mathcal{R}^{p}
read the first block from each run R_{x} to $\mathcal{I}[x]$
while \mathcal{I} contains at least one item do select the minimal item and move it to \mathcal{O} if the corresponding $\mathcal{I}[x]$ is empty then read the next block from R_{x} (if any) to $\mathcal{I}[x]$
if \mathcal{O} is full then write \mathcal{O} to \mathcal{R}^{p} and empty \mathcal{O}
if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{R}^{p} and empty \mathcal{O}

Summary

Memory layout

- Sort phase (pass 1): M
- Input buffer I: M pages

- Merge phase (passes 2 and higher): $M+1$
- Input buffer I: $M \geq 2$ pages
- Output buffer $\mathcal{O}: 1$ page

Summary

Time complexity

- Single pass (regardless of the phase)
- $c_{\text {read }}=c_{\text {write }}=p_{R}$
- Number of passes
- $t=\left\lceil\log _{M}\left(p_{R}\right)\right\rceil$
- Overall cost
- $c_{\text {ES }}=t \cdot\left(c_{\text {read }}+c_{\text {write }}\right)=\left\lceil\log _{M}\left(p_{R}\right)\right\rceil \cdot 2 p_{R}$

Limitation of the overall number of passes

- In general...
- $M=\left\lceil\sqrt[t]{p_{R}}\right\rceil$
- Specifically for $t=2$ (i.e., exactly 2 passes)
- $M=\left\lceil\sqrt{p_{R}}\right\rceil$

Nested Loops Join

Nested Loops

Binary nested loops

- Universal approach for all types of inner joins
- Natural join, cross join, theta join
- I.e., arbitrary joining condition can be involved
- Support possible duplicates
- Requires no index structures
- Not the best option in all situations, though
- Suitable for tables with significantly different sizes

Basic idea

- Outer loop: iteration over the blocks of the first table
- Inner loop: iteration over the blocks of the second table

Nested Loops

Sample input data

- Tables \mathcal{R} and \mathcal{S} to be joined using a value equality test

\mathcal{R}	21	84	56	19	41	72	69	35	56	84									
\mathcal{S}	31	56	75	43	88	21	43	14	92	52	25	81	72	37	64	35	14	64	

Basic setup

- Memory layout: $1+1+1$
- Input buffer $\mathcal{I}_{R}: 1$ page
- Input buffer $\mathcal{I}_{S}: 1$ page
- Output buffer $\mathcal{O}: 1$ page

Nested Loops

Basic setup ($1+1+1$)

- Another pair of loops is used for joining tuples in the memory

Algorithm

Basic setup ($1+1+1$)
1 foreach block R from \mathcal{R} do
$2 \quad$ read R into \mathcal{I}_{R}
$3 \quad$ foreach block S from \mathcal{S} do
$4 \quad$ read S into \mathcal{I}_{S}
5
foreach item r in \mathcal{I}_{R} do
foreach item s in \mathcal{I}_{S} do
if r and s satisfy the join condition then join r and s and put the result to \mathcal{O} if \mathcal{O} is full then write \mathcal{O} to \mathcal{T}, empty \mathcal{O}

10 \square

Observations

Time complexity

- Basic setup $(1+1+1)$
- $c_{\mathrm{NL}}=p_{R}+p_{R} \cdot p_{S}$
- \Rightarrow smaller table should always be taken as the outer one

General setup

- Multiple pages are used for both the input buffers
- Memory layout: $M_{R}+M_{S}+1$
- Input buffer $\mathcal{I}_{R}: M_{R}$ pages
- Input buffer $\mathcal{I}_{S}: M_{S}$ pages
- Output buffer $\mathcal{O}: 1$ page

Algorithm

General setup $\left(M_{R}+M_{S}+1\right)$
1 foreach group of blocks $R_{1}, \ldots, R_{M_{R}}$ (if any) from \mathcal{R} do
2 read these blocks into \mathcal{I}_{R}
foreach group of blocks $S_{1}, \ldots, S_{M_{S}}$ (if any) from \mathcal{S} do
read these blocks into \mathcal{I}_{S}
foreach item r in \mathcal{I}_{R} do
foreach item s in \mathcal{I}_{S} do
if r and s satisfy the join condition then join r and s and put the result to \mathcal{O} if \mathcal{O} is full then write \mathcal{O} to \mathcal{T}, empty \mathcal{O}

10 if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}

Observations

Time complexity

- General setup $\left(M_{R}+M_{S}+1\right)$
- $c_{\mathrm{NL}}=p_{R}+\left\lceil p_{R} / M_{R}\right\rceil \cdot p_{S}$
- \Rightarrow there is no reason of having $M_{S} \geq 2$

Standard setup

- Memory layout: $M_{R}+1+1$
- Input buffer $\mathcal{I}_{R}: M_{R}$ pages
- Input buffer $\mathcal{I}_{S}: 1$ page
- Output buffer \mathcal{O} : 1 page

Standard Approach

Standard setup ($M_{R}+1+1$) with zig-zag optimization

- Multiple pages are used just for the outer table

Observations

Zig-zag optimization

- Reading of the inner table \mathcal{S}
- Odd iterations normally
- Even iterations in reverse order

Time complexity

- Standard setup $\left(M_{R}+1+1\right)$
- $c_{\mathrm{NL}}=p_{R}+\left\lceil p_{R} / M_{R}\right\rceil \cdot p_{S}$ (without zig-zag)
- $c_{\mathrm{NL}}=p_{R}+\left\lceil p_{R} / M_{R}\right\rceil \cdot\left(p_{S}-1\right)+1$ (with zig-zag)

Special cases

- Smaller table fits entirely within the memory, i.e., $p_{R} \leq M_{R}$
- $c_{\mathrm{NL}}=p_{R}+p_{S}$
- Non-brute-force replacement for inner loops
- When a suitable index exists on the inner table, ...

Sort-Merge Join

Sort-Merge Join

Sort-merge join algorithm (or just merge join)

- Inner joins based on value equality tests only
- Basic version without duplicates
- Could be extended to support them, though
- Suitable for tables with relatively similar sizes
- Especially when they are already sorted
- Or when the final result is expected to be sorted

Phases

- Sort phase
- Both tables are externally sorted, one by one (if not yet)
- Join phase
- Items are joined while simulating the merge of the two tables

Basic Approach

Sample input data

- Input tables \mathcal{R} and \mathcal{S}

Sort phase

- Resulting sorted tables

Basic Approach

Join phase

- Blocks from the sorted tables are processed one by one

Algorithm

Join phase

read block $\mathcal{R}^{\prime}[1]$ to \mathcal{I}_{R} and block $\mathcal{S}^{\prime}[1]$ to \mathcal{I}_{S}
while both \mathcal{I}_{R} and \mathcal{I}_{S} contain at least one item do
let r be the minimal item in \mathcal{I}_{R} and s minimal item in \mathcal{I}_{S}
if r and s can be joined then
join r and s and put the result to \mathcal{O}
if \mathcal{O} is full then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}
remove both r from \mathcal{I}_{R} and s from \mathcal{I}_{S}
else remove the lower one of r from \mathcal{I}_{R} or s from \mathcal{I}_{S}
if \mathcal{I}_{R} is empty then read the next block from \mathcal{R}^{\prime} (if any) if \mathcal{I}_{S} is empty then read the next block from \mathcal{S}^{\prime} (if any)
if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}

Observations

Join phase

- Memory layout: $1+1+1$
- Input buffer $\mathcal{I}_{R}: 1$ page
- Input buffer $\mathcal{I}_{S}: 1$ page
- Output buffer \mathcal{O} : 1 page

Time complexity

- Sort phase
- Join phase
- $c_{\mathrm{MJ}}=p_{R}+p_{S}$

Extended Version

Duplicate items

- Possible duplicates in one table only
- Let it be \mathcal{S} (without loss of generality)
- Algorithm modification is straightforward...
- Having successfully joined r and s, we just remove s from \mathcal{I}_{S} and not r from \mathcal{I}_{R} (line 7)

Extended Version

Duplicate items

- Possible duplicates in both tables
- All matching pairs of r and s just need to be joined...
- Unfortunately, size of input buffers might not be sufficient
- Since we may span block boundaries, even repeatedly

Hash Join

Hash Join

Hash join approaches

- Basic principle
- Items of the first table are hashed into the system memory
- Items of the second table are then attempted to be joined
- Limitations
- Inner joins based on value equality tests only
- Including possible duplicates
- Not suitable for small active domains
- Particular approaches
- Classic hash join, Simple hash join, Partition hash join, Grace hash join, and Hybrid hash join

Classic Hashing

Classic hash join

- Build phase
- Smaller table (let it be \mathcal{R}) is hashed into the system memory
- I.e., it is sequentially loaded into the memory, block by block
- All its tuples are then emplaced into the hash container
- Hash function h is assumed for this purpose
- Its domain are values of the joining attribute A
- Its range provides H distinct values
- Hash container internally contains H buckets
- Its overall size will inevitably be somewhat larger than p_{R}
- Let us say $M=\left\lceil F \cdot p_{R}\right\rceil$ pages for some small factor F
- Probe phase
- Items from the larger table \mathcal{S} are attempted to be joined

Build Phase

Build phase

- Tuples from the smaller table are hashed into the memory
- E.g., hash function $h(A)=A \bmod 2$ is assumed

Probe Phase

Probe phase

- Tuples from the larger table are attempted to be joined

Algorithm

Build phase

1 foreach block R from \mathcal{R} do
$2 \quad$ read R into \mathcal{I}
foreach item r in \mathcal{I} do
calculate hash value $h \leftarrow h(r . A)$
add r into bucket h in \mathcal{H}

Algorithm

Probe phase

1 foreach block S from \mathcal{S} do
2 read S into \mathcal{I}
3 foreach item s in \mathcal{I} do
calculate hash value $h \leftarrow h(s . A)$ foreach item r in bucket h in \mathcal{H} do
if r and s can be joined then
join r and s and put the result to \mathcal{O}
if \mathcal{O} is full then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}

9 if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}

Observations

Memory layout

- Build phase: $M+1$
- Hash container $\mathcal{H}: M=\left\lceil F \cdot p_{R}\right\rceil$ pages
- Input buffer I: 1 page

- Probe phase: $M+1+1$
- Hash container $\mathcal{H}: M$ pages (preserved from the build phase)
- Input buffer I: 1 page
- Output buffer $\mathcal{O}: 1$ page

Hash container \mathcal{H} M pages

Input buffer $\mathcal{I} \quad$ Output buffer \mathcal{O}
1 page
1 page

Observations

Time complexity

- Build and probe phases
- $c_{\text {build }}=p_{R}$
- $c_{\text {probe }}=p_{S}$
- Overall cost
- $c_{\mathrm{CH}}=c_{\mathrm{build}}+c_{\text {probe }}=p_{R}+p_{S}$

Summary

- Interesting approach as for its efficiency
- However, usable only when the smaller table can entirely be hashed into the system memory...

Partition Hashing

Partition hash join

- Basic principle
- Both tables are first partitioned
- Using partition function p
- Pairs of the corresponding partitions are then joined together
- Using the classic hash join approach
- Or actually even nested loops if desired

Overall procedure

1 split \mathcal{R} and create partitions $\mathcal{R}_{0}, \ldots, \mathcal{R}_{P}$
2 split \mathcal{S} and create partitions $\mathcal{S}_{0}, \ldots, \mathcal{S}_{P}$
3 foreach partition $p \in\{0, \ldots, P-1\}$ do
$4 \quad$ join partitions \mathcal{R}_{p} and \mathcal{S}_{p}

Partition Phase

Partition phase (for table \mathcal{R})

- Tuples of a given table are split to disjoint partitions

Join Phase

Partition phase

- Resulting partitions for our sample scenario

Join phase

- Pairs of the corresponding partitions are then joined together
- \mathcal{R}_{0} and $\mathcal{S}_{0}, \mathcal{R}_{1}$ and \mathcal{S}_{1}, \ldots

Algorithm

Partition phase

- Table \mathcal{R} is assumed, partitioning of \mathcal{S} is analogous
foreach block R from \mathcal{R} do
2 read R into \mathcal{I}
foreach item r in \mathcal{I} do
calculate partition value $p \leftarrow p(r . A)$ add r into partition buffer \mathcal{P}_{p}
if \mathcal{P}_{p} is full then write \mathcal{P}_{p} to \mathcal{R}_{p} and empty \mathcal{P}_{p}
7 foreach partition $p \in\{0, \ldots, P-1\}$ do
$8 \quad$ if \mathcal{P}_{p} is not empty then write \mathcal{P}_{p} to \mathcal{R}_{p} and empty \mathcal{P}_{p}

Observations

Memory layout

- Partition phase: $1+P$
- Input buffer I: 1 page
- Partition buffers \mathcal{P} : P pages

Time complexity

- Partitioning phase
- $c_{\text {split }} \approx 2 \cdot p_{R}+2 \cdot p_{S}$
- Overall cost (with classic hash join involved)
- $c_{\mathrm{PH}}=c_{\mathrm{split}}+P \cdot c_{\mathrm{CH}} \approx c_{\mathrm{split}}+P\left[\frac{p_{R}}{P}+\frac{p_{S}}{P}\right] \approx 3 \cdot\left(p_{R}+p_{S}\right)$

Query Evaluation

Sample Query

Database schema

- Movie (id, title, year, ...)
- Actor (movie, actor, character, ...)
- FK: Actor[movie] \subseteq Movie[id]

Sample query

- Actors and characters they played in movies filmed in 2000
- SQL expression

SELECT title, actor, character
FROM Movie JOIN Actor
WHERE (year = 2000) AND (id = movie)

- RA expression
$\pi_{\text {title,actor, character }}\left(\varphi_{(\text {year }=2000)}\right) \wedge($ (id $=$ movie $)($ Movie \times Actor $\left.)\right)$

Sample Query

Sample query (cont'd)

- Actors and characters they played in movies filmed in 2000
- $\pi_{\text {title,actor }, \text { character }}\left(\varphi_{(\text {year }=2000) \wedge(\text { id }=\text { movie })}(\right.$ Movie \times Actor $\left.)\right)$

Query Evaluation

Basic idea

- SQL query \rightarrow RA query \rightarrow evaluation plan \rightarrow query result

Evaluation process

- (1) Scanning [scanner]
- Lexical analysis is performed over the input SQL expression
- Lexemes are recognized and then tokens generated
- (2) Parsing [parser]
- Syntactic analysis is performed
- Derivation tree is constructed according to the SQL grammar
- (3) Translation
- Query tree with relational algebra operations is constructed

Query Evaluation

Evaluation process (cont'd)

- (4) Validation [validator]
- Semantic validity is checked
- Compliance of relation schemas with intended operations
- (5) Optimization [optimizer]
- Alternative evaluation plans are devised and compared
- In order to find the most efficient plan
- Based on their evaluation cost estimates
- (6) Code generation [generator]
- Execution code is generated for the chosen plan
- (7) Execution [processor]
- Intended query is finally evaluated
- And the yielded result provided to the user

Query Evaluation

Query tree

- Internal tree structure
- Leaf nodes = input tables
- Inner nodes = individual RA operations ($\sigma, \pi, \times, \bowtie, \ldots$)
- Root node represents the entire query
- Nodes are evaluated from leaves toward the root

Query evaluation plan

- Query tree
- For each inner node...
- Calculated statistics (number of tuples, blocking factor, ...)
- Selected algorithm (limited by context and available memory)
- Estimated cost
- Overall cost

Sample Plan \#1

Cross join

- Projection [title, actor, character]
$n_{1}=n_{M} \cdot n_{A}=100000000000$
$b_{1}=\left(b_{M} \cdot b_{A}\right) /\left(b_{M}+b_{A}\right)=8$
$p_{1}=n_{1} / b_{1}=12500000000$
Nested loops
$M_{1}=25+1+1=27$
$c_{1}^{r}=p_{M}+\left(p_{M} / 25\right) \cdot p_{A}=10010000$
$c_{1}^{\mathrm{W}}=p_{1}=12500000000$
$n_{3}=n_{2}=20000$
$b_{3} \leftarrow 50$
$p_{3}=n_{3} / b_{3}=400$
$c_{3}^{\mathrm{r}}=p_{2}=2500$
$c_{3}^{\mathrm{W}}=p_{3}=400$
- Selection (year $=2000) \wedge($ id $=$ movie $)$
$n_{2}=n_{1} \cdot\left(1 / V_{M . y e a r}\right) \cdot\left(1 / n_{M}\right)=20000$
$b_{2}=b_{1}=8$
$p_{2}=n_{2} / b_{2}=2500$
$c_{2}^{r}=p_{1}=12500000000$
$c_{2}^{\mathrm{W}}=p_{2}=2500$
$n_{M}=100000$
$b_{M}=10$
$p_{M}=10000$
$V_{M . y e a r}=50$
Movie
B^{+}tree index (year)
$m_{M \text {.year }}=100$
$I_{M . \text { year }}=3$

Evaluation Plan Cost

Overall evaluation cost

- Let us first assume that all intermediate results are always written to temporary files and so each involved operation...
- Reads its inputs from / writes its output to a hard drive
- Overall cost then equals to the sum of all the partial costs

Cost of Plan \#1

- $M=25+1+1$ memory pages
- $c=\left[c_{1}^{\mathrm{r}}+c_{1}^{\mathrm{w}}\right]+\left[c_{2}^{\mathrm{r}}+c_{2}^{\mathrm{W}}\right]+\left[c_{3}^{\mathrm{r}}\right]$
- $c=\left[p_{M}+\left(p_{M} / 25\right) \cdot p_{A}+p_{1}\right]+\left[p_{1}+p_{2}\right]+\left[p_{2}\right]$
- $c=[10010000+12500000000]+[12500000000+2500]+$ [2 500]
- $c=25010015000$

Sample Query

Intuitive optimization

- Actors and characters they played in movies filmed in 2000
- SQL expression

SELECT title, actor, character
FROM Movie JOIN Actor ON (id = movie)
WHERE (year = 2000)

- RA expression
$\pi_{\text {title,actor,character }}\left(\varphi_{(\text {year }=2000)}\left(\right.\right.$ Movie $\bowtie_{\text {(id=movie) }}$ Actor $\left.)\right)$

Sample Plan \#2

Theta join [id = movie]
$n_{1}=n_{A}=1000000$
$b_{1}=\left(b_{M} \cdot b_{A}\right) /\left(b_{M}+b_{A}\right)=8$
$p_{1}=n_{1} / b_{1}=125000$
Nested loops
$M_{1}=25+1+1=27$
$c_{1}^{x}=p_{M}+\left(p_{M} / 25\right) \cdot p_{A}=10010000$
$c_{1}^{\mathrm{W}}=p_{1}=125000$

Selection (year $=2000$)
$n_{2}=n_{1} \cdot\left(1 / V_{M \text {.year }}\right)=20000$
$b_{2}=b_{1}=8$
$p_{2}=n_{2} / b_{2}=2500$
$c_{2}^{r}=p_{1}=125000$
$c_{2}^{W}=p_{2}=2500$

Sample Plan \#2

Cost of Plan \#2

- Again $M=25+1+1$ memory pages
- $c=\left[c_{1}^{\mathrm{r}}+c_{1}^{\mathrm{W}}\right]+\left[c_{2}^{\mathrm{r}}+c_{2}^{\mathrm{W}}\right]+\left[c_{3}^{\mathrm{r}}\right]$
- $c=\left[p_{M}+\left(p_{M} / 25\right) \cdot p_{A}+p_{1}\right]+\left[p_{1}+p_{2}\right]+\left[p_{2}\right]$
- $c=[10010000+125000]+[125000+2500]+[2500]$
- $c=10265000$
- That is approximately 2400 times better than the first plan

Pipelining

Pipelining mechanism

- Intermediate results are passed between the operations directly without the usage of temporary files on a disk
- And so just within the system memory
- It may even be possible to do it in-place without extra pages
- Unfortunately, such an approach is not always possible...

Cost of Plan \#2 with pipelining

- Still $M=25+1+1$ memory pages
- $c=\left[c_{1}^{r}+x^{x}\right]+\left[x_{8}^{y}+x^{x}\right]+\left[x^{x}\right]$
- Joined tuples are filtered and projected immediately in-place
- $c=10010000$

Query Optimization

Objective = finding the most optimal query evaluation plan

- It is not possible to consider all plans, though
- Simply because there are far too many of them
- And so pruning and heuristics need to be incorporated

Optimization strategies

- Algebraic
- Proposal of alternative plans using query tree transformations
- Statistical
- Estimation of costs and result sizes based on available statistics
- Syntactic
- Manual modification of query expressions by users themselves
- In order to involve plans that would otherwise be unreachable
- Breaches the principle of declarative querying, though

Statistical Optimization

Objective

- Capability of calculating necessary result characteristics...
- Of both the final result as well as all intermediate ones
- I.e., all individual nodes within a given evaluation plan tree
- ... so that the overall cost can be estimated
- And thus alternative plans mutually compared

Basic statistics

- Data file for table \mathcal{R}
- n_{R} number of tuples, s_{R} tuple size, b_{R} blocking factor
- p_{R} number of pages
- Hashed file: H_{R} number of buckets, C_{R} bucket size
- Index file for attribute A from table \mathcal{R}
- B^{+}tree: $I_{R . A}$ tree height, $p_{R . A}$ number of leaf nodes

Statistical Optimization

Additional statistics

- Provide deeper insight into the active domain
- May even be implicitly derivable from index structures
- Unfortunately, they may also be missing or unavailable
- Especially as for intermediate results
- $V_{R . A}$ number of distinct values
- $\min _{R . A}$ and $\max _{R . A}$ minimal and maximal values
- Histograms
- Provide even more accurate understanding of the domain
- And so better estimates
- Especially useful for non-uniform distributions

Size Estimates: Selection

Selection: $T=\sigma_{\varphi}(E)$

Tuple size

- $s_{T}=s_{E}$
- Tuples are just filtered out and so their size remains untouched

Blocking factor

- $b_{T}=b_{E}$

Number of tuples

- Basic idea: $n_{T}=\left\lceil n_{E} \cdot r_{\varphi}\right\rceil$
- $r_{\varphi} \in[0,1]$ is an estimated reduction factor
- Describes how much the original tuples will be reduced
- Depends on a particular condition φ
- As well as particular available statistics...

Size Estimates: Projection

Projection: $T=\pi_{a_{1}, \ldots, a_{n}}(E)$

Tuple size

- s_{T} is simply calculated using sizes of all preserved attributes Blocking factor
- $b_{T}=\left\lfloor B / s_{T}\right\rfloor$

Number of tuples

- Default SQL projection without the DISTINCT modifier
- I.e., removal of potential duplicates is not performed
- $n_{T}=n_{E}$
- With duplicates removal enabled
- $n_{T}=n_{E}$ if at least one key of E is preserved
- ...

Size Estimates: Joins

Inner joins: $T=E_{R} \times E_{S}$ or $E_{R} \bowtie E_{S}$ or $E_{R} \bowtie_{\varphi} E_{S}$

Tuple size

- $s_{T} \approx s_{R}+s_{S}$
- Less for natural join since shared attributes are not repeated

Blocking factor

- $b_{T} \approx\left\lfloor\frac{B}{s_{T}}\right\rfloor \approx\left\lfloor\frac{B}{s_{R}+s_{S}}\right\rfloor \approx\left\lfloor\frac{B}{B / b_{R}+B / b_{S}}\right\rfloor \approx\left\lfloor\frac{b_{R} \cdot b_{S}}{b_{R}+b_{S}}\right\rfloor$
- Can be calculated exactly from the actual resulting tuple size
- As well as estimated just using the original blocking factors

Number of tuples

- $n_{T}=\left\lceil n_{R} \cdot n_{S} \cdot r_{\varphi}\right\rceil$ with $r_{\varphi} \in[0,1]$ for joining condition φ
- Similar approach with reduction factors as in selections

Algebraic Optimization

Objective

- Capability of finding alternative query evaluation plans
- Based on various equivalence rules
- E.g.: commutativity of selection, associativity of inner joins, ...
- Ultimate challenge
- Space of all possible plans may be enormous
- And so significant pruning must be involved

Basic strategy for SPJ queries = select-project-join queries

- They allow to be approached at two separate levels...
- Single-relation plans = best access method for each table
- Multi-relation plans = best join plan for all the tables
- But still an NP-complete problem

Examples

Sample transformations

- $\pi_{\text {title,actor, character }}(\varphi($ year $=2000) \wedge($ id $=$ movie $) ~($ Movie \times Actor $)) / / \# 1$
- $\pi_{\text {title,actor, character }}\left(\varphi_{(\text {id=movie })} \quad\left(\varphi_{(\text {year }=2000)} \quad(\right.\right.$ Movie \times Actor $\left.\left.)\right)\right)$
- $\pi_{\text {title,actor, character }}\left(\varphi_{(\text {year }=2000)}\left(\varphi_{(\text {id }=\text { movie })}(\right.\right.$ Movie \times Actor $\left.\left.)\right)\right)$
- $\pi_{\text {title,actor,character }}\left(\varphi_{(\text {year }=2000)} \quad\left(\right.\right.$ Movie $\bowtie_{(i d=m o v i e)}$ Actor $\left.)\right) / / \# 2$
- $\pi_{\text {title,actor,character }}\left(\varphi_{(\text {year }=2000)}(\right.$ Movie $) \bowtie_{(\text {id }=\text { movie })}$ Actor $)$
- $\pi_{\text {title,actor,character }}\left(\pi_{\text {id, title }}\left(\varphi_{(\text {year }=2000)}(\right.\right.$ Movie $\left.)\right) \bowtie_{(\text {id }=\text { movie })}$
$\pi_{\text {movie,actor,character }}($ Actor $\left.)\right) / / \# 3$

Sample Plan \#3

Sample Plan \#3

Cost of Plan \#3 with pipelining

- $M=25+1+1$ memory pages for buffers $\mathcal{I}_{1}, \mathcal{I}_{2}$ and \mathcal{O}
- I.e., still the same amount of system memory pages used

- \mathcal{I}_{2} is used for index traversal and then reading of movies
- All filtered and projected movies are put into \mathcal{I}_{1}
- Actors are read into \mathcal{I}_{2}, their projection is postponed
- Joined tuples are put into \mathcal{O} and projected
- $c=\left[I_{\text {M.year }}+p_{M} \cdot\left(1 / V_{\text {M. year }}\right)\right]+\left[p_{A}\right]$
- $c=[203]+[25000]$
- $c=25203$
- That is approximately 400 times better than the second plan
- And so almost 1 million times better than the first plan

Explain Statements

EXPLAIN statement

- Allows to retrieve the evaluation plan for a given query
- When ANALYZE modifier is provided...
- Query is also executed and the actual run times are returned

Example

- EXPLAIN

SELECT title, actor, character
FROM Movie JOIN Actor
WHERE (year = 2000) AND (id = movie)

Observations

False assumptions and simplifications

- Variable size of tuples
- Unused slots and inner fragmentation within blocks
- Overflow areas in sorted / hashed files
- Outer fragmentation of files on a hard drive
- Impact of the caching manager
- Extent of available statistics and their lazy maintenance
- Non-uniform distribution of data / queries
- Independence of conditions in reduction factors

Conclusion

Evaluation algorithms

- Access methods
- Sorting
- External merge sort algorithm
- Joining
- Binary nested loops join with / without zig-zag
- Sort-merge join
- Classic / partition hash join

Query evaluation and optimization

- Evaluation plans
- Cost estimates, pipelining
- Statistical / algebraic optimization

