NIE-PDB: Advanced Database Systems

http://www.ksi.mff.cuni.cz/~svoboda/courses/231-NIE-PDB/

Query Evaluation

Martin Svoboda martin.svoboda@fit.cvut.cz

12. and 19. 12. 2023

Charles University, Faculty of Mathematics and Physics Czech Technical University in Prague, Faculty of Information Technology

Lecture Outline

Algorithms

- Access methods
- External sort
- Nested loops join
- Sort-merge join
- Hash join

Evaluation

- Query evaluation plans
- Optimization techniques

Introduction

SQL queries

• SELECT statements

Introduction

Relational algebra

- <u>Basic</u> and inferred operations
 - Selection σ_{φ} , projection $\pi_{a_1,...,a_n}$, renaming $\rho_{b_1/a_1,...,b_n/a_n}$
 - Set operations: <u>union</u> ∪, intersection ∩, <u>difference</u> \
 - Inner joins: <u>cross join</u> ×, natural join ⋈, theta join ⋈_φ
 - Left / right natural / theta semijoin \ltimes , \rtimes , \ltimes_{φ} , \rtimes_{φ}
 - Left / right natural / theta antijoin \triangleright , \triangleleft , \triangleright_{φ} , \triangleleft_{φ}
 - Division ÷
- Extended operations
 - Left / right / full outer natural join ⋈, ⋈, ⋈
 - Left / right / full outer theta join \mathbb{M}_{φ} , \mathbb{M}_{φ} , \mathbb{M}_{φ}
 - Sorting, grouping and aggregation, distinct, ...

Naïve Algorithms

Selection: $\sigma_{\varphi}(E)$

- Iteration over all tuples and removal of those filtered out
- Projection: $\pi_{a_1,...,a_n}(E)$
 - Iteration over all tuples and removal of excluded attributes
 - But also removal of duplicates within the traditional model

Distinct

- Sorting of all tuples and removal of adjacent duplicates Inner joins: $E_R \times E_S$, $E_R \bowtie E_S$, $E_R \bowtie_{\varphi} E_S$
- Iteration over all the possible combinations via nested loops
 Sorting
 - Quick sort, heap sort, bubble sort, insertion sort, ...

Challenges

Blocks

- Tuples stored in data files are not accessible directly
 - Since we have read / write operations for whole blocks only
- That is true for all types of files...
 - And so not just **data files** for tables
 - But also files for index structures or system catalog

Latency

- Traditional magnetic hard drives are extremely slow
 - Efficient management of cached pages is hence essential

Memory

• Size of available system memory is always limited

\Rightarrow external algorithms are needed

Objectives

Query evaluation plan

Based on the database context and available memory...
 ... suitable evaluation algorithms need to be selected...
 ... so that the overall evaluation cost is minimal

Database context

- Relational schema: tables, columns, data types
- Integrity constraints: primary / unique / foreign keys, ...
- Data organization: heap / sorted / hashed file
- Index structures: B⁺ tree, bitmap index, hash index
- Available statistics: min / max values, histograms, ...

Objectives

Available system memory

- Number of pages allocated for the execution of a given query
- There are two possible scenarios...
 - Having a particular memory size...
 - Propose its usage and estimate the evaluation cost
 - Having a particular cost expectation...
 - Determine the required memory and propose its usage

Evaluation algorithms

- Access methods
- Sorting: external sort approaches
- Joining: nested loops, merge join, and hash join approaches

• .

Objectives

Cost estimation

- Expressed in terms of read / write disk operations
 - Since hard drives are extremely slow, as already stated...
 - And so everything else can boldly be ignored
- We are interested in estimates only
 - Since it is unlikely we could provide accurate calculations
 - But still...
 - The more accurate estimates, the better evaluation plans
 - And there can really be huge differences in their efficiency...
 - Even up to several orders of magnitude!
- In other words...
 - Query optimization is <u>crucial</u> for any database system
 - As well as we also need to know what we are doing...

Available Statistics

Environment

- B: size of a block / page, usually $\approx 4 \, kB$
- *M*: number of available **system memory** pages

Relation ${\cal R}$

- *n_R*: number of tuples
- *s_R*: average / fixed tuple size
- $b_R \approx \lfloor B/s_R \rfloor$: blocking factor
 - Number of tuples that can be stored within one block
- $p_R \approx \lceil n_R/b_R \rceil$: number of blocks
- *V_{R.A}*: cardinality of the **active domain** of attribute *A*
 - Number of distinct values of A occurring in ${\mathcal R}$
- *min*_{*R.A*} and *max*_{*R.A*}: minimal and maximal values for *A*

Access Methods

Data Files

Internal structure

Blocks of data files for tables are divided into slots

- Each slot is intended for storing exactly one tuple
 - By the way, they can easily be uniquely identified
 - Using a pair of **block and slot logical ordinal numbers**
- Fixed-size slots
 - Usage status of each slot just needs to be remembered

Variable-size slots

- When at least one variable-size attribute is involved
- Slot beginnings and lengths need to be remembered

Heap File

Heap file

- Tuples are put into individual slots entirely arbitrarily
 - I.e., we do not have any specific knowledge of their position

Selection costs

Full scan is inevitable in almost all situations

• $c = p_R$

• Equality test with respect to a unique attribute

• $c = \lceil p_R/2 \rceil$

- Since we can stop at the moment a given tuple is found
- However, uniform distribution of data and queries is assumed
- And values outside of the active domain may also be queried

Sorted File

Sorted file

Tuples are ordered with respect to a particular attribute

 6
 11
 18
 20
 23
 25
 34
 36
 42
 49
 53
 53
 71
 75
 82
 93

Selection costs

- Binary search (half-interval search) can be used in general
 - However, only when <u>the same</u> attribute is queried, of course
 - I.e., the same attribute as the one used for sorting
 - Otherwise, sequential read as in a heap file would be needed
- Equality test
 - $c = \lceil \log_2 p_R \rceil$ for a **unique** attribute
 - $c = \lceil \log_2 p_R \rceil + \lceil p_R / V_{R,A} \rceil$ for a **non-unique** attribute
- Various range queries

Hashed File

Hashed file

- Tuples are put into disjoint buckets (logical groups of blocks)
 - Based on a selected hash function over a particular attribute

 $- \mathbf{F} \mathbf{g} \quad h(A) = A \mod 3$

Hash function

- Its domain are values of a given attribute A
- Its range provides H distinct values
 - There is exactly one bucket for each one of them
 - All tuples in a bucket always share the same hash value

Hashed File

File statistics

- *H_R*: number of buckets
- $C_R \approx \lceil p_R / H_R \rceil$: expected bucket size
 - Measured as a number of blocks in a bucket

Selection costs

- Equality test when the hashing attribute is queried
 - Only the corresponding bucket needs to be accessed
 - $c = C_R$ for a **non-unique** attribute
 - $c = \lceil C_R/2 \rceil$ for a **unique** attribute
 - Similar assumptions as in the case of heap files
- Any other condition
 - $c = p_R$
 - I.e., full scan is needed

B⁺ tree index structure = self-balanced search tree

- Logarithmic height is guaranteed (the same across all leaves)
- Moreover, very high fan-out is assumed
 - I.e., our trees will tend to be significantly wider than taller
 - \Rightarrow search times will not only be logarithmic, but also really low

Logical structure

- Internal node (including a non-leaf root node)
 - Contains an ordered sequence of dividing values and pointers to child nodes representing the sub-intervals they determine
- Leaf node
 - Contains individual values and pointers to tuples in data file
 - Leaves are also interconnected by pointers in both directions

- **B**⁺ tree index structure (cont'd)
 - Sample index for relation \mathcal{R} and its attribute A

Physical structure

- Each node is physically represented by one index file block
 - And so they are treated the same way as data file blocks
 - I.e., loaded into the system memory one by one, etc.

Index statistics

- *m_{R.A}*: maximal **number of children** (order of tree)
 - Usually up to small hundreds in practice
 - Actual number is guaranteed to be at least $\lceil m_{R.A}/2 \rceil$
 - Except for the root node
- *I_{R.A}*: index height
 - Usually just pprox 2-3 for typical real-world tables
- $p_{R.A}$: number of leaf nodes

Search algorithm

- Index is traversed from its root toward the corresponding leaf
 - Data tuple then needs to be fetched from the data file

Non-Clustered B⁺ Tree Index

Non-clustered index

- Order of items within the leaves and data file is not the same
 - I.e., data file is organized as a heap file of hashed file

Clustered B⁺ Tree Index

Clustered index

- On the contrary, order of items is (at least almost) the same
 - I.e., data file is a sorted file (with respect to the same attribute)

Selection costs

Non-clustered B⁺ tree index

• Equality test for a unique / non-unique attribute

• $c = I_{R.A} + 1$

- $c = I_{R.A} + \lceil p_{R.A} / V_{R.A} \rceil + \min(p_R, \lceil n_R / V_{R.A} \rceil)$
- Various range queries

• ...

...

Clustered B⁺ tree index

• Equality test for a unique / non-unique attribute

• $c = I_{R.A} + 1$

- $c = I_{R.A} + \lceil p_R / V_{R.A} \rceil$
- Various range queries

Sample scenario #1

- Movie (<u>id</u>, title, year, ...)
 - Basic statistics
 - $\ n_M = 100\ 000$ tuples, $b_M = 10,\ p_M = 10\ 000$ blocks
 - $-~V_{M.id}=n_M=100\ 000$ values (since they are unique)
 - Heap file
 - Sorted file (using ids)
 - Hashed file

$$- h(M.id) = M.id \mod 50$$

- $-~H_M=50$ buckets, $C_M=200$ blocks
- B⁺ tree index (using ids)
 - $m_{M.id} = 100$ followers
 - $-I_{M.id} = 3$, $p_{M.id} = 1500$ blocks

Equality test: movie with a particular identifier

- Heap file
 - $c = \lceil p_M/2 \rceil = 5\ 000$
- Sorted file
 - $c = \lceil \log_2 p_M \rceil = 14$
- Hashed file

• $c = \lceil C_M/2 \rceil = 100$

Non-clustered index (B⁺ tree & heap file)

• $c = I_{M.year} + 1 = 4$

Clustered index (B⁺ tree & sorted file)

•
$$c = I_{M.year} + 1 = 4$$

Sample scenario #2

- Movie (id, title, year, ...)
 - Basic statistics
 - $n_M = 100\ 000$ tuples, $b_M = 10$, $p_M = 10\ 000$ blocks
 - $V_{M.year} = 50$ values
 - $min_{M.year} = 1943$, $max_{M.year} = 2022$ (i.e., 80 values)
 - Heap file
 - Sorted file (using years)
 - Hashed file
 - $-h(M.year) = M.year \mod 20$
 - $H_M = 20$ buckets, $C_M = 500$ blocks
 - B⁺ tree index (using years)
 - $m_{M.year} = 100$ followers
 - $I_{M.year} = 3$, $p_{M.year} = 1500$ blocks

Equality test: movies filmed in a particular year

- Heap file
 - $c = p_M = 10\,000$
- Sorted file
 - $c = \lceil \log_2 p_M \rceil + \lceil p_M / V_{M.year} \rceil = 214$
- Hashed file

• $c = C_M = 500$

- Non-clustered index (B⁺ tree & heap file)
 - $c = I_{M.year} + \lceil p_{M.year} / V_{M.year} \rceil + \min(p_M, \lceil n_M / V_{M.year} \rceil)$ = 2 033
- Clustered index (B⁺ tree & sorted file)

• $c = I_{M.year} + \left\lceil p_M / V_{M.year} \right\rceil = 203$

External Sort

External Sort

N-way external merge sort

- Sort phase (pass 1)
 - Groups of input blocks are loaded into the system memory
 - Tuples in these blocks are then sorted
 - Any in-memory in-place sorting algorithm can be used
 - E.g.: quick sort, heap sort, bubble sort, insertion sort, ...
 - Created initial runs are written into a temporary file
- Merge phase (passes 2 and higher)
 - Groups of runs are loaded into the memory and merged
 - Newly created (longer) runs are written back on a hard drive
 - Merging is finished when exactly one run is obtained
 - And so the entire input table is sorted

Sort Phase

Pass 1

- Input data file
 - Relational table \mathcal{R}

 $-\,$ E.g., $n_R=18$ tuples, $b_R=4$ tuples/block, $p_R=5$ blocks

$\mathcal R$	49	15	27	81	27	11	43	36	1	92	19	72	68	26	63	43	32	84	35		
	$\mathcal{R}[1]$]			$\mathcal{R}[2]$				T	R[3]				$\mathcal{R}[4]$				$\mathcal{R}[5]$			

- System memory layout
 - Input buffer ${\mathcal I}$
 - E.g., size M=2 pages

Sort Phase

Pass 1

- Groups of M blocks are presorted and so initial runs created

- Input blocks from R are first loaded to I
 - Individual tuples in *I* are then sorted
 - $-\,$ Created runs are stored to a temporary file \mathcal{R}^1

Sort Phase

Pass 1

• **Resulting runs** in \mathcal{R}^1 within our sample scenario

Merge Phase

Pass 2

Groups of *M* runs are iteratively merged together

- Blocks from these input runs are gradually loaded into ${\cal I}$
 - $-\,$ Minimal items are then iteratively selected and moved to ${\cal O}$
 - $-\,$ Merged (longer) runs are written to a new temporary file \mathcal{R}^2

Merge Phase

Passes 2 and 3

Merging continues until just a single run is acquired

And so the entire input table is sorted

Algorithm

Sort phase (pass 1)

 $\mathbf{1} \ p \gets 1$

5

- $_2$ foreach group of blocks B_1,\ldots,B_M (if any) from $\mathcal R$ do
- $_3$ read these blocks to $\mathcal I$
- 4 sort all items in \mathcal{I}
 - write all blocks from ${\mathcal I}$ as a new run to ${\mathcal R}^p$

Algorithm

Merge phase (passes 2 and higher)

6	while \mathcal{R}^p has more then just one run do
7	$p \leftarrow p+1$
8	foreach group of runs R_1, \ldots, R_M (if any) from \mathcal{R}^{p-1} do
9	start constructing a new run in \mathcal{R}^p
10	read the first block from each run R_x to $\mathcal{I}[x]$
11	while ${\mathcal I}$ contains at least one item do
12	select the minimal item and move it to ${\cal O}$
13	if the corresponding $\mathcal{I}[x]$ is empty then
14	read the next block from R_x (if any) to $\mathcal{I}[x]$
15	if \mathcal{O} is full then write \mathcal{O} to \mathcal{R}^p and empty \mathcal{O}
16	if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{R}^p and empty \mathcal{O}
Summary

Memory layout

- Sort phase (pass 1): M
 - Input buffer \mathcal{I} : M pages

- Merge phase (passes 2 and higher): M+1
 - Input buffer $\mathcal{I}: M \geq 2$ pages
 - Output buffer O: 1 page

Summary

Time complexity

- Single pass (regardless of the phase)
 - $c_{\text{read}} = c_{\text{write}} = p_R$
- Number of passes
 - $t = \lceil \log_M(p_R) \rceil$
- Overall cost

•
$$c_{\text{ES}} = t \cdot (c_{\text{read}} + c_{\text{write}}) = \lceil \log_M(p_R) \rceil \cdot 2p_R$$

Limitation of the overall number of passes

In general...

•
$$M = \lceil \sqrt[t]{p_R} \rceil$$

• Specifically for t = 2 (i.e., exactly 2 passes)

•
$$M = \lceil \sqrt{p_R} \rceil$$

Nested Loops Join

Nested Loops

Binary nested loops

Universal approach for all types of inner joins

- Natural join, cross join, theta join
 - I.e., arbitrary joining condition can be involved
- Support possible duplicates
- Requires no index structures
- Not the best option in all situations, though
 - Suitable for tables with significantly different sizes

Basic idea

- Outer loop: iteration over the blocks of the first table
- Inner loop: iteration over the blocks of the second table

Nested Loops

Sample input data

• Tables ${\mathcal R}$ and ${\mathcal S}$ to be joined using a value equality test

Basic setup

- Memory layout: 1 + 1 + 1
 - Input buffer *I_R*: 1 page
 - Input buffer *I*_S: 1 page
 - Output buffer O: 1 page

Nested Loops

Basic setup (1 + 1 + 1**)**

Another pair of loops is used for joining tuples in the memory

Algorithm

Basic setup (1 + 1 + 1**)**

Observations

Time complexity

- Basic setup (1 + 1 + 1)
 - $c_{\text{NL}} = p_R + p_R \cdot p_S$
- \Rightarrow smaller table should always be taken as the <u>outer</u> one

General setup

- Multiple pages are used for both the input buffers
- Memory layout: $M_R + M_S + 1$
 - Input buffer \mathcal{I}_R : M_R pages
 - Input buffer \mathcal{I}_S : M_S pages
 - Output buffer O: 1 page

Algorithm

General setup ($M_R + M_S + 1$)

¹ foreach group of blocks R_1,\ldots,R_{M_R} (if any) from ${\mathcal R}$ do		
2	r	ead these blocks into \mathcal{I}_R
3	foreach group of blocks S_1, \ldots, S_{M_S} (if any) from \mathcal{S} do	
4		read these blocks into \mathcal{I}_S
5		foreach item r in \mathcal{I}_R do
6		foreach item s in \mathcal{I}_S do
7		if r and s satisfy the join condition then
8		join r and s and put the result to ${\cal O}$
9		if \mathcal{O} is full then write \mathcal{O} to \mathcal{T} , empty \mathcal{O}
	L	
10	if \mathcal{O}	is not empty then write ${\mathcal O}$ to ${\mathcal T}$ and empty ${\mathcal O}$

Observations

Time complexity

• General setup ($M_R + M_S + 1$)

•
$$c_{\text{NL}} = p_R + \lceil p_R / M_R \rceil \cdot p_S$$

• \Rightarrow there is no reason of having $M_S \ge 2$

Standard setup

- Memory layout: $M_R + 1 + 1$
 - Input buffer \mathcal{I}_R : M_R pages
 - Input buffer *I*_S: 1 page
 - Output buffer O: 1 page

Standard Approach

Standard setup ($M_R + 1 + 1$) with zig-zag optimization

Multiple pages are used just for the outer table

Observations

Zig-zag optimization

- Reading of the inner table ${\mathcal S}$
 - Odd iterations normally
 - Even iterations in reverse order

Time complexity

- Standard setup ($M_R + 1 + 1$)
 - $c_{\mathrm{NL}} = p_R + \lceil p_R/M_R \rceil \cdot p_S$ (without zig-zag)
 - $c_{\mathrm{NL}} = p_R + \lceil p_R/M_R \rceil \cdot (p_S 1) + 1$ (with zig-zag)

Special cases

• Smaller table fits entirely within the memory, i.e., $p_R \leq M_R$

• $c_{\text{NL}} = p_R + p_S$

- Non-brute-force replacement for inner loops
 - When a suitable index exists on the inner table, ...

Sort-Merge Join

Sort-Merge Join

Sort-merge join algorithm (or just merge join)

- Inner joins based on value equality tests only
 - Basic version without duplicates
 - Could be extended to support them, though
- Suitable for tables with relatively similar sizes
 - Especially when they are already sorted
 - Or when the final result is expected to be sorted

Phases

- Sort phase
 - Both tables are externally sorted, one by one (if not yet)
- Join phase
 - Items are joined while simulating the merge of the two tables

Basic Approach

Sample input data

• Input tables \mathcal{R} and \mathcal{S}

Sort phase

Resulting sorted tables

Basic Approach

Join phase

Blocks from the sorted tables are processed one by one

Algorithm

Join phase

3

4

5

6

7

8

9

10

- $_1$ read block $\mathcal{R}'[1]$ to \mathcal{I}_R and block $\mathcal{S}'[1]$ to \mathcal{I}_S
- $_2$ while both \mathcal{I}_R and \mathcal{I}_S contain at least one item do
 - let r be the minimal item in \mathcal{I}_R and s minimal item in \mathcal{I}_S
 - if r and s can be joined then
 - join r and s and put the result to ${\cal O}$
 - **if** \mathcal{O} is full **then** write \mathcal{O} to \mathcal{T} and empty \mathcal{O} remove both r from \mathcal{I}_R and s from \mathcal{I}_S
 - else remove the lower one of r from \mathcal{I}_R or s from \mathcal{I}_S
 - if \mathcal{I}_R is empty then read the next block from \mathcal{R}' (if any)
 - if \mathcal{I}_S is empty **then** read the next block from \mathcal{S}' (if any)

11 if $\mathcal O$ is not empty then write $\mathcal O$ to $\mathcal T$ and empty $\mathcal O$

Observations

Join phase

- Memory layout: 1 + 1 + 1
 - Input buffer \mathcal{I}_R : 1 page
 - Input buffer *I*_S: 1 page
 - Output buffer O: 1 page

Time complexity

- Sort phase
- Join phase

•
$$c_{MJ} = p_R + p_S$$

Extended Version

Duplicate items

Possible duplicates in one table only

- Let it be S (without loss of generality)
- Algorithm modification is straightforward...
 - Having successfully joined r and s, we just remove s from \mathcal{I}_S and <u>not</u> r from \mathcal{I}_R (line 7)

Extended Version

Duplicate items

• Possible duplicates in **both tables**

- All matching pairs of r and s just need to be joined...
- Unfortunately, size of input buffers might not be sufficient
 - Since we may span block boundaries, even repeatedly

Hash Join

Hash Join

Hash join approaches

- Basic principle
 - Items of the first table are hashed into the system memory
 - Items of the second table are then attempted to be joined
- Limitations
 - Inner joins based on value equality tests only
 - Including possible duplicates
 - Not suitable for small active domains
- Particular approaches
 - Classic hash join, Simple hash join, Partition hash join, Grace hash join, and Hybrid hash join

Classic Hashing

Classic hash join

- Build phase
 - Smaller table (let it be R) is hashed into the system memory
 - I.e., it is sequentially loaded into the memory, block by block
 - All its tuples are then emplaced into the hash container
- Hash function h is assumed for this purpose
 - Its domain are values of the joining attribute A
 - Its range provides H distinct values
- Hash container internally contains H buckets
 - Its overall size will inevitably be somewhat larger than p_R
 - Let us say $M = \lceil F \cdot p_R \rceil$ pages for some small factor F
- Probe phase
 - Items from the larger table ${\mathcal S}$ are attempted to be joined

Build Phase

Build phase

- Tuples from the smaller table are hashed into the memory
 - E.g., hash function $h(A) = A \mod 2$ is assumed

Probe Phase

Probe phase

• Tuples from the larger table are attempted to be joined

Algorithm

Build phase

Algorithm

Probe phase

9 if ${\mathcal O}$ is not empty then write ${\mathcal O}$ to ${\mathcal T}$ and empty ${\mathcal O}$

Observations

Memory layout

- Build phase: M+1
 - Hash container \mathcal{H} : $M = \lceil F \cdot p_R \rceil$ pages
 - Input buffer I: 1 page

- Probe phase: M + 1 + 1
 - Hash container \mathcal{H} : *M* pages (preserved from the build phase)
 - Input buffer I: 1 page
 - Output buffer O: 1 page

Observations

Time complexity

- Build and probe phases
 - $c_{\texttt{build}} = p_R$
 - $c_{\text{probe}} = p_S$
- Overall cost
 - $c_{CH} = c_{build} + c_{probe} = p_R + p_S$

Summary

- Interesting approach as for its efficiency
 - However, usable only when the smaller table can entirely be hashed into the system memory...

Partition Hashing

Partition hash join

- Basic principle
 - Both tables are first partitioned
 - Using partition function p
 - Pairs of the corresponding partitions are then joined together
 - Using the classic hash join approach
 - Or actually even nested loops if desired

Overall procedure

- 1 split \mathcal{R} and create partitions $\mathcal{R}_0, \dots, \mathcal{R}_P$
- $_2$ split ${\mathcal S}$ and create partitions ${\mathcal S}_0,\ldots,{\mathcal S}_P$
- ${}_3$ foreach partition $p \in \{0,\ldots,P-1\}$ do
- 4 join partitions \mathcal{R}_p and \mathcal{S}_p

Partition Phase

Partition phase (for table \mathcal{R})

Tuples of a given table are split to disjoint partitions

Join Phase

Partition phase

• **Resulting partitions** for our sample scenario

Join phase

- Pairs of the corresponding partitions are then joined together
 - \mathcal{R}_0 and \mathcal{S}_0 , \mathcal{R}_1 and \mathcal{S}_1 , ...

Algorithm

Partition phase

• Table ${\mathcal R}$ is assumed, partitioning of ${\mathcal S}$ is analogous

Observations

Memory layout

- Partition phase: 1 + P
 - Input buffer I: 1 page
 - Partition buffers *P*: *P* pages

Time complexity

- Partitioning phase
 - $c_{\texttt{split}} \approx 2 \cdot p_R + 2 \cdot p_S$
- Overall cost (with classic hash join involved)

•
$$c_{\text{PH}} = c_{\text{split}} + P \cdot c_{\text{CH}} \approx c_{\text{split}} + P \Big[\frac{p_R}{P} + \frac{p_S}{P} \Big] \approx 3 \cdot (p_R + p_S)$$

Query Evaluation

Sample Query

Database schema

- Movie (<u>id</u>, title, year, ...)
- Actor (movie, actor, character, ...)
 - FK: Actor[movie] ⊆ Movie[id]

Sample query

- Actors and characters they played in movies filmed in 2000
 - SQL expression

SELECT title, actor, character
FROM Movie JOIN Actor
WHERE (year = 2000) AND (id = movie)

RA expression

 $\pi_{\text{title,actor,character}} \left(\varphi_{(\text{year}=2000) \land (\text{id}=\text{movie})} (\text{Movie} \times \text{Actor}) \right)$
Sample Query

Sample query (cont'd)

Actors and characters they played in movies filmed in 2000

• $\pi_{\text{title,actor,character}} \left(\varphi_{(\text{year}=2000) \land (\text{id}=\text{movie})} \left(\text{Movie} \times \text{Actor} \right) \right)$

Query Evaluation

Basic idea

• SQL query \rightarrow RA query \rightarrow evaluation plan \rightarrow query result

Evaluation process

- (1) Scanning [scanner]
 - Lexical analysis is performed over the input SQL expression
 - Lexemes are recognized and then tokens generated
- (2) Parsing [parser]
 - Syntactic analysis is performed
 - Derivation tree is constructed according to the SQL grammar
- (3) Translation
 - Query tree with relational algebra operations is constructed

Query Evaluation

Evaluation process (cont'd)

- (4) Validation [validator]
 - Semantic validity is checked
 - Compliance of relation schemas with intended operations
- (5) Optimization [optimizer]
 - Alternative evaluation plans are devised and compared
 - In order to find the most efficient plan
 - Based on their evaluation cost estimates
- (6) Code generation [generator]
 - Execution code is generated for the chosen plan
- (7) Execution [processor]
 - Intended query is finally evaluated
 - And the yielded result provided to the user

Query Evaluation

Query tree

- Internal tree structure
 - Leaf nodes = input tables
 - Inner nodes = individual RA operations (σ , π , \times , \bowtie , ...)
- Root node represents the entire query
 - Nodes are evaluated from leaves toward the root

Query evaluation plan

- Query tree
- For each inner node...
 - Calculated statistics (number of tuples, blocking factor, ...)
 - Selected algorithm (limited by context and available memory)
 - Estimated cost
- Overall cost

Evaluation Plan Cost

Overall evaluation cost

- Let us first assume that all intermediate results are always written to temporary files and so each involved operation...
 - Reads its inputs from / writes its output to a hard drive
- Overall cost then equals to the sum of all the partial costs

Cost of Plan #1

- M = 25 + 1 + 1 memory pages
- $c = [c_1^{\mathbf{r}} + c_1^{\mathbf{w}}] + [c_2^{\mathbf{r}} + c_2^{\mathbf{w}}] + [c_3^{\mathbf{r}}]$
- $c = [p_M + (p_M/25) \cdot p_A + p_1] + [p_1 + p_2] + [p_2]$
- $c = [10\ 010\ 000\ +\ 12\ 500\ 000\ 000]\ +\ [12\ 500\ 000\ 000\ +\ 2\ 500]\ +\ [2\ 500]$
- $c = 25\ 010\ 015\ 000$

Sample Query

Intuitive optimization

Actors and characters they played in movies filmed in 2000

SQL expression

SELECT title, actor, character
FROM Movie JOIN Actor ON (id = movie)
WHERE (year = 2000)

RA expression

 $\pi_{\mathsf{title},\mathsf{actor},\mathsf{character}} \Big(\varphi_{(\mathsf{year}=2000)} \big(\mathsf{Movie} \bowtie_{(\mathsf{id}=\mathsf{movie})} \mathsf{Actor} \big) \Big)$

Cost of Plan #2

- Again M = 25 + 1 + 1 memory pages
- $c = [c_1^r + c_1^w] + [c_2^r + c_2^w] + [c_3^r]$
- $c = [p_M + (p_M/25) \cdot p_A + p_1] + [p_1 + p_2] + [p_2]$
- $c = [10\ 010\ 000\ +\ 125\ 000]\ +\ [125\ 000\ +\ 2\ 500]\ +\ [2\ 500]$
- $c = 10\ 265\ 000$
 - That is approximately $2\,400$ times better than the first plan

Pipelining

Pipelining mechanism

- Intermediate results are passed between the operations directly without the usage of temporary files on a disk
 - And so just within the system memory
 - It may even be possible to do it **in-place** without extra pages
- Unfortunately, such an approach is not always possible...

Cost of Plan #2 with pipelining

- Still M = 25 + 1 + 1 memory pages
- $c = [c_1^r + \varkappa] + [\varkappa + \varkappa] + [\varkappa]$
 - Joined tuples are filtered and projected immediately in-place
- c = 10 010 000

Query Optimization

Objective = finding the most optimal query evaluation plan

- It is not possible to consider all plans, though
 - Simply because there are far too many of them
 - And so pruning and heuristics need to be incorporated

Optimization strategies

- Algebraic
 - Proposal of alternative plans using query tree transformations
- Statistical
 - Estimation of costs and result sizes based on available statistics
- Syntactic
 - Manual modification of query expressions by users themselves
 - In order to involve plans that would otherwise be unreachable
 - Breaches the principle of declarative querying, though

Statistical Optimization

Objective

- Capability of calculating necessary result characteristics...
 - Of both the final result as well as all intermediate ones
 - I.e., all individual nodes within a given evaluation plan tree
- ... so that the overall cost can be estimated
 - And thus alternative plans mutually compared

Basic statistics

- Data file for table ${\cal R}$
 - n_R number of tuples, s_R tuple size, b_R blocking factor
 - *p_R* number of pages
 - Hashed file: H_R number of buckets, C_R bucket size
- Index file for attribute A from table R
 - B⁺ tree: $I_{R.A}$ tree height, $p_{R.A}$ number of leaf nodes

Statistical Optimization

Additional statistics

- Provide deeper insight into the active domain
 - May even be implicitly derivable from index structures
 - Unfortunately, they may also be missing or unavailable
 - Especially as for intermediate results
- *V_{R.A}* number of distinct values
- *min*_{*R.A*} and *max*_{*R.A*} minimal and maximal values
- Histograms
 - Provide even more accurate understanding of the domain
 - And so better estimates
 - Especially useful for non-uniform distributions

Size Estimates: Selection

Selection:
$$T = \sigma_{\varphi}(E)$$

Tuple size

• $s_T = s_E$

Tuples are just filtered out and so their size remains untouched
 Blocking factor

• $b_T = b_E$

Number of tuples

- Basic idea: $n_T = \lceil n_E \cdot r_{\varphi} \rceil$
- $r_{\varphi} \in [0, 1]$ is an estimated reduction factor
 - Describes how much the original tuples will be reduced
 - $-\,$ Depends on a particular condition φ
 - As well as particular available statistics...

Size Estimates: Projection

Projection:
$$T = \pi_{a_1,...,a_n}(E)$$

Tuple size

s_T is simply calculated using sizes of all preserved attributes

Blocking factor

• $b_T = \lfloor B/s_T \rfloor$

Number of tuples

- Default SQL projection without the DISTINCT modifier
 - I.e., removal of potential duplicates is not performed
 - $n_T = n_E$
- With duplicates removal enabled
 - n_T = n_E if at least one key of E is preserved

Size Estimates: Joins

Inner joins: $T = E_R \times E_S$ or $E_R \bowtie E_S$ or $E_R \bowtie_{\varphi} E_S$ Tuple size

• $s_T \approx s_R + s_S$

Less for natural join since shared attributes are not repeated
 Blocking factor

•
$$b_T \approx \left\lfloor \frac{B}{s_T} \right\rfloor \approx \left\lfloor \frac{B}{s_R + s_S} \right\rfloor \approx \left\lfloor \frac{B}{B/b_R + B/b_S} \right\rfloor \approx \left\lfloor \frac{b_R \cdot b_S}{b_R + b_S} \right\rfloor$$

Can be calculated exactly from the actual resulting tuple size

As well as estimated just using the original blocking factors

Number of tuples

- $n_T = \lceil n_R \cdot n_S \cdot r_{\varphi} \rceil$ with $r_{\varphi} \in [0, 1]$ for joining condition φ
 - Similar approach with reduction factors as in selections

Algebraic Optimization

Objective

- Capability of finding alternative query evaluation plans
 - Based on various equivalence rules
 - E.g.: commutativity of selection, associativity of inner joins, ...
- Ultimate challenge
 - Space of all possible plans may be enormous
 - And so significant pruning must be involved
- Basic strategy for SPJ queries = select-project-join queries
 - They allow to be approached at two separate levels...
 - Single-relation plans = best access method for each table
 - Multi-relation plans = best join plan for all the tables
 - But still an NP-complete problem

Examples

Sample transformations

•
$$\pi_{\text{title},\text{actor},\text{character}}\left(\begin{array}{c} \varphi_{(\text{year}=2000)\wedge(\text{id}=\text{movie})} & (\text{Movie} \times \text{Actor}) \end{array} \right) // \#1$$

• $\pi_{\text{title},\text{actor},\text{character}}\left(\begin{array}{c} \varphi_{(\text{id}=\text{movie})} & (\begin{array}{c} \varphi_{(\text{year}=2000)} & (\text{Movie} \times \text{Actor}) \end{array} \right) \right)$
• $\pi_{\text{title},\text{actor},\text{character}} & (\begin{array}{c} \varphi_{(\text{year}=2000)} & (\begin{array}{c} \varphi_{(\text{id}=\text{movie})} & (\text{Movie} \times \text{Actor}) \end{array} \right) \right)$
• $\pi_{\text{title},\text{actor},\text{character}} & (\begin{array}{c} \varphi_{(\text{year}=2000)} & (\begin{array}{c} \text{Movie} \Join (\text{id}=\text{movie}) & \text{Actor} \end{array} \right) \right) // \#2$
• $\pi_{\text{title},\text{actor},\text{character}} & (\begin{array}{c} \varphi_{(\text{year}=2000)} & (\begin{array}{c} \text{Movie} \Join (\text{id}=\text{movie}) & \text{Actor} \end{array} \right) \\ \pi_{\text{title},\text{actor},\text{character}} & (\begin{array}{c} \pi_{\text{id},\text{title}} & (\begin{array}{c} \varphi_{(\text{year}=2000)} & (\begin{array}{c} \text{Movie} \end{matrix}) & \text{M}_{(\text{id}=\text{movie})} \\ \pi_{\text{movie},\text{actor},\text{character}} & (\begin{array}{c} \pi_{\text{id},\text{title}} & (\begin{array}{c} \varphi_{(\text{year}=2000)} & (\begin{array}{c} \text{Movie} \end{matrix}) \\ \end{array}) & \mathbb{M}_{(\text{id}=\text{movie})} \\ \pi_{\text{movie},\text{actor},\text{character}} & (\begin{array}{c} Actor \end{pmatrix}) \end{pmatrix} // \#3 \end{array}$

Cost of Plan #3 with pipelining

- M = 25 + 1 + 1 memory pages for buffers \mathcal{I}_1 , \mathcal{I}_2 and \mathcal{O}
 - I.e., still the same amount of system memory pages used
- $c = [c_1^r + \varkappa] + [\varkappa + \varkappa] + [c_3^r + \varkappa] + [\varkappa + \varkappa] + [\varkappa]$
 - \mathcal{I}_2 is used for index traversal and then reading of movies
 - All filtered and projected movies are put into \mathcal{I}_1
 - Actors are read into \mathcal{I}_2 , their projection is postponed
 - Joined tuples are put into O and projected
- $c = [I_{M.year} + p_M \cdot (1/V_{M.year})] + [p_A]$
- $c = [203] + [25\ 000]$
- $c = 25\ 203$
 - That is approximately 400 times better than the second plan
 - And so almost 1 million times better than the first plan

Explain Statements

EXPLAIN statement

Allows to retrieve the evaluation plan for a given query

- When ANALYZE modifier is provided...
 - Query is also executed and the actual run times are returned

Example

EXPLAIN
SELECT title, actor, character
FROM Movie JOIN Actor
WHERE (year = 2000) AND (id = movie)

Observations

• ...

False assumptions and simplifications

- Variable size of tuples
- Unused slots and inner fragmentation within blocks
- Overflow areas in sorted / hashed files
- Outer fragmentation of files on a hard drive
- Impact of the caching manager
- Extent of available statistics and their lazy maintenance
- Non-uniform distribution of data / queries
- Independence of conditions in reduction factors

Conclusion

Evaluation algorithms

- Access methods
- Sorting
 - External merge sort algorithm
- Joining
 - Binary nested loops join with / without zig-zag
 - Sort-merge join
 - Classic / partition hash join

Query evaluation and optimization

- Evaluation plans
 - Cost estimates, pipelining
- Statistical / algebraic optimization