NDBIOO1: Query Languages |
http://www.ksi.mff.cuni.cz/~svoboda/courses/231-NDBI001/

Lecture

XML Databases: XQuery

Martin Svoboda
martin.svoboda@ matfyz.cuni.cz

19. 12. 2023

Charles University, Faculty of Mathematics and Physics

http://www.ksi.mff.cuni.cz/~svoboda/courses/231-NDBI001/
mailto:martin.svoboda@matfyz.cuni.cz

Lecture Outline

XPath and XQuery
° Query expressions
= Direct and computed constructors
= FLWOR expressions
= Conditional expressions
= Quantified expressions

XQuery

XML Query Language

Sample Data

<?xml version="1.1" encoding="UTF-8"7>
<movies>
<movie year="2006" rating="76" director="Jan Svérak">
<title>Vratné lahve</title>
<actor>Zdenék Svérak</actor>
<actor>Jifi Machacek</actor>
</movie>
<movie year="2000" rating="84">
<title>Samotari</title>
<actor>Jitka Schneiderova</actor>
<actor>Ivan Trojan</actor>
<actor>Jifi Machacek</actor>
</movie>
<movie year="2007" rating="53" director="Jan Hrebejk">
<title>Medvidek</title>
<actor>Jifi Machacek</actor>
<actor>Ivan Trojan</actor>
</movie>
</movies>

Expressions

XQuery expressions
* Path expressions (traditional XPath)
= Selection of nodes of an XML tree
* FLWOR expressions

= for .. let .. where .. order by .. return ..

¢ Conditional expressions
= if .. then .. else ..

* Quantified expressions

" somel|every .. satisfies ..

Expressions

XQuery expressions
* Boolean expressions
= and, or, not logical connectives
¢ Primary expressions
= Literals, variable references, function calls, constructors, ...

boolean expression
primary expression

Node Constructors

Constructors
* Allow for creation of new nodes for elements, attributes, ...
= |.e. nodes that do not exist in the original XML document
Direct constructor
* Well-formed XML fragment with embedded query expressions
= E.g.: <movies>{ count(//movie) }</movies>
Computed constructor
e Special syntax

" E.g.: element movies { count(//movie) }

Node Constructors

Direct constructor

e The entire expression must be a well-formed XML fragment
= Names of elements and attributes must be fixed

T@»- . ~0-®
@@ . oW

iH_G}Q}.*G)

* Embedded query expressions can be used
= However, only in attribute values and element content!

Node Constructors

Direct constructor
o Attribute

o G)~(2~ (s O
S~y

¢ Element content

’ }&_».

* Embedded query expressions
= Enclosed by curly braces {}
— Escaping sequence: {{ and }}

Node Constructors: Example

Create a summary of all movies

<movies>
<count>{ count(//movie) }</count>
{
for $m in //movie
return
<movie year="{ data($m/Qyear) }">{ $m/title/text() }</movie>
}
</movies>
<movies>
<count>3</count>

<movie year="2006">Vratné lahve</movie>

<movie year="2000">Samotafi</movie>

<movie year="2007">Medvidek</movie>
</movies>

Node Constructors

Computed constructor
* Names of elements and attributes can be dynamic

¢ Element node
=>(Celement) —7. @~
“om=ol | Lo

o Attribute node

A ﬁ*‘*.*’*

e Text node

@D - @[|- @~

Node Constructors: Example

Create a summary of all movies

element movies {
element count { count(//movie) 1},
for $m in //movie
return
element movie {
attribute year { data($m/@year) 7},
text { $m/title/text() }
}
}

<movies>
<count>3</count>
<movie year="2006">Vratné lahve</movie>
<movie year="2000">Samotafi</movie>
<movie year="2007">Medvidek</movie>
</movies>

FLWOR Expressions

FLWOR expression (XQuery 1.0)

Allow for advanced iterations over sequences of items

l for clause where clause ITT{ order by clause }7>l return clause }—»0

Clauses

for —selection of items to iterate over

let — bindings of auxiliary variables

where — conditions to be satisfied

order by - order in which the items are processed
return —result to be constructed

FLWOR Expressions: Example

Find titles of movies with rating 75 and more

for $m in //movie

let $r := $m/Q@rating
where $r >= 75

order by $m/@year
return $m/title/text()

Samotari
Vratné lahve

FLWOR Expressions: Clauses

For clause

* |terates over items of one or more input sequences
= These items are accessible via the introduced variables

H.T.»— AW .*_]

)
o/

e Optional positional variable
= Allows to access the ordinal number of the current item

* When multiple input sequences are provided...

= Then the behavior is identical to the usage of multiple
consecutive single-variable for clauses

— le., as if the for loops are embedded into each other

FLWOR Expressions: Clauses

Let clause

e Defines one or more auxiliary variable assignments

@~) - - -
)
o/

FLWOR Expressions: Clauses

Where clause
* Allows to describe complex filtering conditions
* Items not satisfying the conditions are skipped

0+-—> expression [>o

Order by clause
* Defines the order in which the items are processed

expression |
t ascending
descendlng

FLWOR Clauses

Return clause
* Defines how the result sequence is constructed
* Evaluated once for each suitable item

H.> expression (o

Various supported use cases

e Querying, joining, grouping, aggregation, integration,
transformation, validation, ...

FLWOR Examples

Find titles of movies filmed in 2000 or later such that they have at
most 3 actors and a rating above the overall average

let $r := avg(//movie/@rating)

for $m in //movie[@rating >= $r]

let $a := count($m/actor)

where ($a <= 3) and ($m/@year >= 2000)
order by $a ascending, $m/title descending
return $m/title

<title>Vratné lahve</title>
<title>Samotari</title>

FLWOR Examples

Find movies in which each individual actor stared

for $a in distinct-values(//actor)
return <actor name="{ $a }">
{
for $m in //movielactor[text() = $al]
return <movie>{ $m/title/text() }</movie>
¥

</actor>

<actor name="Zdenék Svérak">
<movie>Vratné lahve</movie>

</actor>

<actor name="Jiri Machacek">
<movie>Vratné lahve</movie>
<movie>Samotafri</movie>
<movie>Medvidek</movie>

</actor>

FLWOR Examples

Construct an HTML table with data about movies

<table>
<tr><th>Title</th><th>Year</th><th>Actors</th></tr>
{
for $m in //movie
return
<tr>
<td>{ $m/title/text() }</td>
<td>{ data($m/Qyear) }</td>
<td>{ count($m/actor) }</td>
</tr>
}
</table>

FLWOR Examples

Construct an HTML table with data about movies

<table>
<tr><th>Title</th><th>Year</th><th>Actors</th></tr>
<tr><td>Vratné lahve</td><td>2006</td><td>2</td></tr>
<tr><td>Samotari</td><td>2000</td><td>3</td></tr>
<tr><td>Medvidek</td><td>2007</td><td>2</td></tr>
</table>

Conditional Expressions

Conditional expression

H.—»@ expression G)».—> expression }—».—» expression }—»0

* Note that the else branch is compulsory
= Empty sequence () can be returned if needed

Example

if (count(//movie) > 0)
then <movies>{ string-join(//movie/title, ", ") }</movies>
else ()

<movies>Vratné lahve, Samota¥i, Medvidek</movies>

Switch Expressions

Switch

* The first matching branch is chosen,
its return clause is evaluated
and the result returned

~ G- ©-{z=n- D

t—[w(return }»I expression ﬂ

L. - > - -

e The default branch is compulsory
and must be provided as the last option

Switch Expressions

Example

Return movies with aggregated information about their actors

xquery version "3.0";
for $m in //movie
return
<movie>
{ $m/title }
{
switch (count($m/actor))
case 0 return <no-actors/>
case 1 return <actor>{ $m/actor/text() }</actor>
default return <actors>{ string-join($m/actor, ", ") }</actors>
¥

</movie>

Quantified Expressions

Quantifier
e Returns true if and only if...

= in case of some at least one item
= in case of every all the items

« ...of a given sequence/s satisfy the provided condition
T:-@ Gatisfies) [expression o
(every) ®)

Quantified Expressions

Examples

Find titles of movies in which Ivan Trojan played

for $m in //movie

where
some $a in $m/actor satisfies $a = "Ivan Trojan"

return $m/title/text ()

Samotari
Medvidek

Find names of actors who played in all movies

for $a in distinct-values(//actor)

where
every $m in //movie satisfies $m/actor[text() = $a]

return $a

Jiri Machéacek ‘

FLWOR Expressions

Extended FLWOR expression (XQuery 3.0)

return clause }—»c

where clause

order by clause

Clauses
* window — sliding or tumbling windows to iterate over

* group by - equality-based groupings of input items
e count — positional numbers of tuples in a stream

FLWOR For Clauses

For clause
e Optional allowing empty

= One () item is considered instead of an empty sequence
= Suitable for outer joins

— Does not eliminate one item when the other would be missing
¢ Positional variable
= Allows to access the ordinal number of the current item

variable name \ J \’.+.—> J
L@» expressmn

FLWOR Group By Clauses

Group by clause
* Performs equality-based grouping defined by one or more
grouping variables
= Only singleton values are permitted for these variables
— Otherwise a runtime error is raised
= Each input item will appear only in one output group
* Non-grouping variable is rebound to a sequence of all the
matching items from a given group

»— \@**
®

FLWOR Window Clauses

Window clause
* Allows to iterate over the generated windows
= Two modes: tumbling and sliding
* Window = sequence of consecutive items from the input

= Accessible via the main variable
= Contains the start item, end item, and all items between them

.

—-»»Cvariable name)»@—»[expression }—}

L_*_

FLWOR Window Clauses

Window start condition
» Start item is an item that satisfies a given condition

H-+ window variables -» expression [>o

Window end condition
e End item is the first item (beginning with the start item) that
satisfies a given condition
* When such an item cannot be found...
= Then the last item is the very last input item

= But only in case the only keyword is not specified
= Otherwise such a window is not generated at all

HW.. window variables .—» expression (>0
only

FLWOR Window Clauses

Window variables (all of them are optional)
¢ Bound to the first/last item
e at: bound to the ordinal position of the first/last item
* previous: bound to the item that precedes the first/last item
e next: bound to the item that follows the first/last item

@@ Gamberane)-
(

\ @D G- - @-®--Gameae)

FLWOR Window Clauses

Tumbling window

* Search for the start item of the next window begins with the
item that follows the end item of the previous window (or at
the very beginning)

* = windows never overlap

= Input item may never be found in multiple windows
* When the end condition is missing...

= All start items are first detected
= Each window is terminated by the item that precedes the next
starting one (or by the last input item at the very end)

NDBIOO1: Query Languages | | Lecture: XML Databases: XQuery | 19. 12. 2023

34

FLWOR Window Clauses

Sliding window

* Every item that satisfies the start condition becomes the
starting item of a new window

* = windows may overlap
= |nput item may be found in multiple windows

FLWOR Count Clauses

Count clause

* Allows to access the ordinal number of the current tuple in a
stream

~(count)~('s J-~(variable name)

Final Observations

XQuery
* Keywords must always be in lowercase
e XQuery is a functional query language

* Whenever expression is mentioned in any diagram,
expression of any kind can be used (without any limitations)

Lecture Conclusion

XPath expressions
e Absolute and relative paths
* Axes, node tests, and predicates
XQuery expressions
e Constructors: direct, computed
* FLWOR expressions

* Conditional, quantified, comparison, ...

	Outline
	XPath and XQuery
	Data Model
	Expressions
	Node Constructors
	FLWOR
	Conditions
	Switch
	Quantifiers
	FLWOR 3.0
	Final Observations

	Conclusion

