http://www.ksi.mff.cuni.cz/~svoboda/courses/222-NSWI1170/

Practical Classes

NSWI170: Computer Systems

2022/23 Summer

Martin Svoboda
martin.svoboda@ matfyz.cuni.cz

Charles University, Faculty of Mathematics and Physics

http://www.ksi.mff.cuni.cz/~svoboda/courses/222-NSWI170/
mailto:martin.svoboda@matfyz.cuni.cz

Class 1: Basics of C and C++ Languages

Tools Used

Mattermost

e https://ulita.ms.mff.cuni.cz/mattermost/
= _../ar2223ls/channels/nswil70-compsys-svoboda

ReCodEx
e https://recodex.mff.cuni.cz/
Coliru

¢ http://coliru.stacked-crooked.com/
Arduino IDE
¢ https://www.arduino.cc/en/software/

https://ulita.ms.mff.cuni.cz/mattermost/
https://ulita.ms.mff.cuni.cz/mattermost/ar2223ls/channels/nswi170-compsys-svoboda
https://recodex.mff.cuni.cz/
http://coliru.stacked-crooked.com/
https://www.arduino.cc/en/software/

E11: Hello World

Implement a simple Hello World application

e |.e., print Hello World message to the standard output
e Useful hints

= #include <stdio.h>

= int main(int argc, char** argv) { ... }
* int main() { ... }

= printf("...");

* \n

E12: Christmas Tree

Print a textual tree to the standard output
» Size of the tree is determined by its height
= Print the corresponding number of stars on each level
= Align them to the center, i.e., use spaces for indentation

* Sample output for a tree of size 4
*
* %k
%k ok ok k
kK k sk >k k

* Decompose the code appropriately into individual functions
* Another help

= printf("%c", '...");

* for (int i = 0; i < height; ++i) { ... }

E13: Integer Average

Calculate the integer average of given natural numbers
e Assume the input in the form of a local variable
* int numbers[] = { 6, 10, 12, 8 };
¢ Calculate the average value at first
e Print it to the output as the corresponding number of stars

= E.g.: skokkskskokokk

* Suggested interface

* int average(int numbers[], int count) { ... %}
= int size = sizeof (numbers) / sizeof (numbers[0]);

E14: Sliding Average

Calculate sliding averages of given natural numbers
e Assume the input in the form of a constant expression
* constexpr int numbers[] ={ 3, 8, 5, 7, 2, 5 };
e Sample expected output

= For the above input numbers and window of size 3
%k Kk %k
ok k k ok
k% kk
%k ok k

* Help
" void averages(
const int numbers[], int count, int window

) { ...}

Class 2: Arduino: Diodes

Arduino

Arduino platform
* Arduino UNO

= Motherboard, 14 digital and 6 analog pins
= CPU ATmega328P, 16 MHz, FLASH memory 32 kB

¢ Funduino

= Multifunction shield
= Diodes, buttons, segment display, ...

e Documentation

= https://docs.arduino.cc/
= http://kabinet.fyzika.net/dilna/ARDUINO/funduino-popis.php

https://docs.arduino.cc/
http://kabinet.fyzika.net/dilna/ARDUINO/funduino-popis.php

Arduino

Arduino IDE
* Basic control
= CTRL+S: file save (extension *.ino)
= CTRL+R: program compilation
= CTRL+U: upload to Arduino
Program structure
* Function void setup();

= Executed once at startup
= Contains various initializations

— E.g., setting pin modes, initial values, ...
e Function void loop();

= Contains the actual execution code
= Invoked perpetually, approximately 1000x per second

Arduino: Diodes

Diodes D1 to D4
e Accessible via pins 13 to 10
* Pin constants 1ed1l_pin, led2_pin, .., led4_pin
* We will use logical numbers 0 to 3 to reference our diodes
= In order to achieve a higher level of abstraction
* Program initialization
= Setting pin modes
* void pinMode(pin, QOUTPUT);
= Explicit turning off of all diodes
* Diode control
= Writing LOW (turn on) / HIGH (turn off) to a given pin
= void digitalWrite(pin, value);

E21: Diode Lighting

Light up a particular selected diode
¢ Header file with constants needs to be attached first

®* #include "funshield.h"

= https://www.ksi.mff.cuni.cz/teaching/
nswil70-web/downloads/Funshield.zip

= File funshield.h must be put into the program directory

¢ Translation array from diode numbers to pin numbers

= constexpr int diodePins[] =
{ ledi_pin, led2_pin, led3_pin, led4_pin };

* Encapsulate the necessary code into the following functions

= void diodeInitialize(int number) ;
® void diodeChange(int number, bool state);

» Test everything by turning on one particular diode

https://www.ksi.mff.cuni.cz/teaching/nswi170-web/downloads/Funshield.zip
https://www.ksi.mff.cuni.cz/teaching/nswi170-web/downloads/Funshield.zip

E22: Diode Flashing

Flash a particular selected diode
* Timing control

= unsigned long = millis();
— Returns the current system time in milliseconds

= Basic idea of detecting the moment of the next event
— if (currentTime >= previousTime + periodLength)

{ ...}
= We actually also need to check for time value overflows

— They occur after approximately 50 days
— Trick for finding the maximal value: ~ (unsigned long)0

e Store all the necessary information in global variables

= Timestamp of the previous event, logical state of the diode
» Test our code by flashing one selected diode

= Interval length as a named constant, e.g., 500 ms

NSWI170: Computer Systems | Practical Class 2: Arduino: Diodes | 8. 3. 2023

13

E23: Railway Traffic Lights

Implement the railway traffic lights
* l.e., alternately light up pairs of adjacent diodes
* Refactor the existing code working with diodes

= Individual diodes will be represented using objects
= |.e., instances of an appropriately designed class

— It will contain not only the necessary data members, ...
— ... but also encapsulates the required functionality

= Instances of all diodes will be kept in a global array

— Diode diodes[diodesCount];
— Their initialization will be performed within setup ()

* In an analogous way, propose also a class for our timer

NSWI170: Computer Systems | Practical Class 2: Arduino: Diodes | 8. 3. 2023 14

E23: Railway Traffic Lights

Pattern of a class for diode representation

class Diode {
private:
int diodeNumber_;
bool currentState_;
public:
void initialize(int diodeNumber) {

.

void change(bool newState) {

}
void change() {

}...
};

Class 3: Arduino: Buttons

Arduino: Buttons

Buttons B1 to B3
® Pinsbuttonl_pin, button2 pin, and button3_pin

= We want to work at a higher level of abstraction again
= And so we will use logical numbers 0 to 2 for buttons

e Button initialization
= void pinMode(pin, INPUT);
* Press detection

= Reading LOW (pressed) / HIGH (released) on a given pin
= int digitalRead(pin);

E31: Button Pressing

Signal pressing of a button by lighting up the corresponding diode
¢ Translation array for button pin numbers

" constexpr int buttonPins[] =
{ buttonl_pin, button2_pin, button3_pin };

e Entire functionality will be encapsulated into our own class
= Similarly as in the case of diodes

E32: Diodes Control

Change diode state by pressing the corresponding button
* l.e., turn on / off the given diode
= |t does not matter for how long the button will be pressed

E33: Button Bouncing

Fix the problem with bad detection of button pressing
* It is caused because of mechanical features of buttons
= As well as our buttons in particular are not of high quality
= And so they can generate short bounces by themselves
* We therefore simply filter out very short changes of state
= |.e., we ignore them
= In particular, let us assume an interval of, e.g., 10 ms

* We also refactor the existing code

= Function for detection of press / release event occurrences
will be detached and separated from queries on such events

— It will thus be possible to make such queries repeatedly
- l.e., repeatedly within just one execution of the main loop

NSWI170: Computer Systems | Practical Class 3: Arduino: Buttons | 22. 3. 2023

20

E34: Binary Decomposition

Display the value of an incremented counter using diodes

e Counter starts at 0 and increments by 1 every 1 second
= Permitted counter values are only within the interval 0 to 15
— On overflow, value is reset back to O
* Always show the lowest 4 bits of the current number

= Bit 1 turns a given diode on, bit O turns it off
= E.g., fora number 5;9 = 1015, display 0101

— l.e., diode number 0 does not light, 1 yes, 2 no, 3 yes
= Little help
— Bitwise conjunction x & 1, bitwise shiftx << 1

* Encapsulate the entire counter into a separate class
* Pressing button B1 manually resets the current value to 0

NSWI170: Computer Systems | Practical Class 3: Arduino: Buttons | 22. 3. 2023

21

Class 4: Arduino: Display |

Arduino: Serial Line

Serial line

¢ Initialization of bidirectional connection
= Our program: function setup
— Serial.begin(9600) ;
= Arduino IDE: Tools / Serial monitor
— Set the same speed

¢ Sending text
= Function Serial.print(..) or println(..)
— Different variants for numbers, symbols or whole strings

E41: Simple Timer

Print the elapsed time using the serial line
e |.e., send its value regularly from Arduino to the computer

= Do that every second
= Truncate the value to whole seconds

Arduino: Display

Segment display

* Pins latch _pin,data_pin,and clock pin
= |nitialize them in mode OUTPUT

e Process of displaying a specific glyph
= Close the latch

— digitalWrite(latch_pin, LOW);
= Send the glyph mask

— shiftOut(data_pin, clock_pin, MSBFIRST,
glyphMask) ;

= Send the position mask

— shiftOut(data_pin, clock_pin, MSBFIRST,
positionMask) ;

= QOpen the latch
— digitalWrite(latch_pin, HIGH);

Arduino: Display

Segment display (cont’d)
* Glyph representation

* byte glyphMask = ObHGFEDCBA;

— State of each segment needs to be described

— Bit O (turn on), bit 1 (turn off)

— Mapping of segments: from the upper one (4) in a clockwise
direction, then the middle bar (G), finally the decimal point (H)

e Position representation
* byte positionMask = ObOOOOLKJI;

— Positions are assigned numbers 0 (L) to 3 (I) from right to left
— Bit 0 (inactive), bit 1 (active)
— Multiple positions can in fact be activated at a time

* Display clearing (during the initialization)
= Glyph with a mask Ob11111111 at positions 0b00001111

NSWI170: Computer Systems | Practical Class 4: Arduino: Display | | 5. 4. 2023

26

E42: Display Control

Display a given glyph at a particular display position
o Glyph itself will be specified by its mask

e Position by its logical number

E43: Displaying Digits

Display a given digit at a particular display position
e Construct glyph masks for individual digits first

= constexpr byte digitGlyphs[] = {
0b11000000, // 0O

+;
= Put them into a translation array from digits to masks
) -, -, 2 2 -, D,)
00 0 0 0000 (3]

* Test everything experimentally

= On a selected position, display a digit corresponding to the
lowest order of the current time in seconds

E44: Single-Digit Counter

Display the value of a single-digit keystroke counter

e |t can therefore only hold values from 0 to 9
= Show the current value at one selected position
— It will be position 0 at the beginning

e Counter is controlled by buttons as follows
= Button B1: counter incrementation
= Button B3: cyclic position change (moving it by 1 to the left)
= Only simple presses without repetitions are assumed

Class 5: Arduino: Display Il

E51: Displaying Numbers

Implement a display extension for displaying whole numbers
* Non-negative integers from 0 to 9999 are assumed

= Displayed number will be aligned to the right
= For now, we will also preserve leading zeros

— E.g.: 0025 for number 25
e Use the idea of time multiplexing
= We activate only one position in each loop iteration
* Implement the extended display using the inheritance
= class NumericDisplay : public Display { ...
e Chain the call of the basic display initialization function

= Display::initialize();

NSWI170: Computer Systems | Practical Class 5: Arduino: Display Il | 19. 4. 2023

31

E52: Negative Numbers

Extend our numeric display to support also negative numbers
¢ |.e., we will now consider numbers from -999 to 9999
= Symbol - is shown immediately before the first significant digit

* We also stop displaying unnecessary leading zeros

E53: Simple Timer

Display the current time on the display
e Show this time in seconds with accuracy to 1 decimal place

= Eg:0.00r12.3
= Number of the required decimal places will be configurable

— None or decimal dot at positions 0 to 3

* Displaying decimal dots
= Extend our existing function for displaying digits
= Multiple masks can mutually be combined using a bitwise &

E54: Extended Counter

Show the current value of an improved counter on the display
e Counter can hold valid values from -999 to 999

= In the event of an overflow, the counter stops at the specified
min / max value and will no longer decrease / increase

e Counter will be controlled using buttons

= Buttons B1 and B2: counter incrementation / decrementation
= Button B3: cyclic position change

* Change of value always takes place by +/- 1 in a given order
= |.e., +/- 1, 10 or 100 depending on the currently active position

* Active position will be marked using the decimal dot

NSWI170: Computer Systems | Practical Class 5: Arduino: Display Il | 19. 4. 2023 34

Class 6: Arduino: Display Il

E61: Displaying Characters

Extend our display to support displaying selected characters

» Specifically, we want to work with the following characters
= Letters of the English alphabet (case-insensitive)
— Glyph masks are in the assignment starter pack in ReCodEx
= Digits 0to 9
= Space _ for any white character
= Some special distinct glyph for all other unknown characters

e Let us assume, e.g., the following interface
* void showChar(char , int)
» Useful functions and tricks
* isAlpha, isDigit, isSpace, isUpperCase
= symbol - 'A' and similarly to calculate glyph indices

* Experimentally test the newly added functionality

NSWI170: Computer Systems | Practical Class 6: Arduino: Display Ill | 3. 5. 2023

36

E62: Displaying Text

Extend our display to support displaying text strings

* We assume strings of (maximal) length 4
= Strings will be aligned to the left
— Spaces will hence be added on the right if necessary

= Longer strings will be truncated, excessive characters ignored
* Use the inheritance again

= class TextDisplay : public Display { ... 7}
* Tricks for working with strings

= char* pointervs. const char* pointer
= xpointer != '\0O'
= xpointer++

e Use the idea of time multiplexing again
e Experimentally test the newly added functionality

E63: Running Text

Implement a mechanism for displaying running text messages
e Let us assume only a fixed text string for now

= |ts length can be arbitrary, even zero

= We always show a window of its 4 current characters

= We start with just the first symbol located on the very right
= We then move the window to the left at regular intervals

= 4 separating spaces will be added beyond the string end

= Having finished, we terminate and wait for another string

* Provide the following public interface

= yoid (const charx)
= bool O;

* Experimentally test the newly added functionality

NSWI170: Computer Systems | Practical Class 6: Arduino: Display Ill | 3. 5. 2023

38

E64: Running Messages

Extend the previous mechanism for displaying multiple messages
* These messages will be defined using a constant array for now

= constexpr char* inputMessages[] = {
"Hello World",

+;
* Display them in a cyclical manner, one after the other

	Class 1: Basics
	Tools
	E11: Hello World
	E12: Christmas Tree
	E13: Integer Average
	E14: Sliding Average

	Class 2: Diodes
	Arduino
	Arduino: Diodes
	E21: Diode Lighting
	E22: Diode Flashing
	E23: Railway Traffic Lights

	Class 3: Buttons
	Arduino: Buttons
	E31: Button Pressing
	E32: Diodes Control
	E33: Button Bouncing
	E34: Binary Decomposition

	Class 4: Display I
	Arduino: Serial Line
	E41: Simple Timer
	Arduino: Display
	E42: Display Control
	E43: Displaying Digits
	E44: Single-Digit Counter

	Class 5: Display II
	E51: Displaying Numbers
	E52: Negative Numbers
	E53: Simple Timer
	E54: Extended Counter

	Class 6: Display III
	E61: Displaying Characters
	E62: Displaying Text
	E63: Running Text
	E64: Running Messages

