
http://www.ksi.mff.cuni.cz/~svoboda/courses/222‐NSWI170/

Practical Classes

NSWI170: Computer Systems
2022/23 Summer

Martin Svoboda
martin.svoboda@matfyz.cuni.cz

Charles University, Faculty of Mathematics and Physics

http://www.ksi.mff.cuni.cz/~svoboda/courses/222-NSWI170/
mailto:martin.svoboda@matfyz.cuni.cz

Class 1: Basics of C and C++ Languages

Tools Used
Mattermost

• https://ulita.ms.mff.cuni.cz/mattermost/
.../ar2223ls/channels/nswi170‐compsys‐svoboda

ReCodEx
• https://recodex.mff.cuni.cz/

Coliru
• http://coliru.stacked‐crooked.com/

Arduino IDE
• https://www.arduino.cc/en/software/

NSWI170: Computer Systems | Practical Class 1: Basics of C and C++ Languages | 22. 2. 2023 3

https://ulita.ms.mff.cuni.cz/mattermost/
https://ulita.ms.mff.cuni.cz/mattermost/ar2223ls/channels/nswi170-compsys-svoboda
https://recodex.mff.cuni.cz/
http://coliru.stacked-crooked.com/
https://www.arduino.cc/en/software/

E11: Hello World
Implement a simple Hello World application

• I.e., print Hello World message to the standard output
• Useful hints

#include <stdio.h>
int main(int argc, char** argv) { ... }
int main() { ... }
printf("...");
\n

NSWI170: Computer Systems | Practical Class 1: Basics of C and C++ Languages | 22. 2. 2023 4

E12: Christmas Tree
Print a textual tree to the standard output

• Size of the tree is determined by its height
Print the corresponding number of stars on each level
Align them to the center, i.e., use spaces for indentation

• Sample output for a tree of size 4
*

• Decompose the code appropriately into individual functions
• Another help

printf("%c", '...');
for (int i = 0; i < height; ++i) { ... }

NSWI170: Computer Systems | Practical Class 1: Basics of C and C++ Languages | 22. 2. 2023 5

E13: Integer Average
Calculate the integer average of given natural numbers

• Assume the input in the form of a local variable
int numbers[] = { 6, 10, 12, 8 };

• Calculate the average value at first
• Print it to the output as the corresponding number of stars

E.g.: *********
• Suggested interface

int average(int numbers[], int count) { ... }
int size = sizeof(numbers) / sizeof(numbers[0]);

NSWI170: Computer Systems | Practical Class 1: Basics of C and C++ Languages | 22. 2. 2023 6

E14: Sliding Average
Calculate sliding averages of given natural numbers

• Assume the input in the form of a constant expression
constexpr int numbers[] = { 3, 8, 5, 7, 2, 5 };

• Sample expected output
For the above input numbers and window of size 3

• Help
void averages(
const int numbers[], int count, int window

) { ... }

NSWI170: Computer Systems | Practical Class 1: Basics of C and C++ Languages | 22. 2. 2023 7

Class 2: Arduino: Diodes

Arduino
Arduino platform

• Arduino UNO
Motherboard, 14 digital and 6 analog pins
CPU ATmega328P, 16 MHz, FLASH memory 32 kB

• Funduino
Multifunction shield
Diodes, buttons, segment display, …

• Documentation
https://docs.arduino.cc/
http://kabinet.fyzika.net/dilna/ARDUINO/funduino‐popis.php

NSWI170: Computer Systems | Practical Class 2: Arduino: Diodes | 8. 3. 2023 9

https://docs.arduino.cc/
http://kabinet.fyzika.net/dilna/ARDUINO/funduino-popis.php

Arduino
Arduino IDE

• Basic control
CTRL+S: file save (extension *.ino)
CTRL+R: program compilation
CTRL+U: upload to Arduino

Program structure
• Function void setup();

Executed once at startup
Contains various initializations

– E.g., setting pin modes, initial values, …
• Function void loop();

Contains the actual execution code
Invoked perpetually, approximately 1000x per second

NSWI170: Computer Systems | Practical Class 2: Arduino: Diodes | 8. 3. 2023 10

Arduino: Diodes
Diodes D1 to D4

• Accessible via pins 13 to 10
Pin constants led1_pin, led2_pin, …, led4_pin

• We will use logical numbers 0 to 3 to reference our diodes
In order to achieve a higher level of abstraction

• Program initialization
Setting pin modes
void pinMode(pin, OUTPUT);
Explicit turning off of all diodes

• Diode control
Writing LOW (turn on) / HIGH (turn off) to a given pin
void digitalWrite(pin, value);

NSWI170: Computer Systems | Practical Class 2: Arduino: Diodes | 8. 3. 2023 11

E21: Diode Lighting
Light up a particular selected diode

• Header file with constants needs to be attached first
#include "funshield.h"
https://www.ksi.mff.cuni.cz/teaching/

nswi170‐web/downloads/Funshield.zip
File funshield.hmust be put into the program directory

• Translation array from diode numbers to pin numbers
constexpr int diodePins[] =
{ led1_pin, led2_pin, led3_pin, led4_pin };

• Encapsulate the necessary code into the following functions
void diodeInitialize(int number);
void diodeChange(int number, bool state);

• Test everything by turning on one particular diode

NSWI170: Computer Systems | Practical Class 2: Arduino: Diodes | 8. 3. 2023 12

https://www.ksi.mff.cuni.cz/teaching/nswi170-web/downloads/Funshield.zip
https://www.ksi.mff.cuni.cz/teaching/nswi170-web/downloads/Funshield.zip

E22: Diode Flashing
Flash a particular selected diode

• Timing control
unsigned long currentTime = millis();

– Returns the current system time in milliseconds
Basic idea of detecting the moment of the next event

– if (currentTime >= previousTime + periodLength)
{ ... }

We actually also need to check for time value overflows
– They occur after approximately 50 days
– Trick for finding the maximal value: ~(unsigned long)0

• Store all the necessary information in global variables
Timestamp of the previous event, logical state of the diode

• Test our code by flashing one selected diode
Interval length as a named constant, e.g., 500 ms

NSWI170: Computer Systems | Practical Class 2: Arduino: Diodes | 8. 3. 2023 13

E23: Railway Traffic Lights
Implement the railway traffic lights

• I.e., alternately light up pairs of adjacent diodes
• Refactor the existing code working with diodes

Individual diodes will be represented using objects
I.e., instances of an appropriately designed class

– It will contain not only the necessary data members, …
– … but also encapsulates the required functionality

Instances of all diodes will be kept in a global array
– Diode diodes[diodesCount];
– Their initialization will be performed within setup()

• In an analogous way, propose also a class for our timer

NSWI170: Computer Systems | Practical Class 2: Arduino: Diodes | 8. 3. 2023 14

E23: Railway Traffic Lights
Pattern of a class for diode representation

class Diode {
private:

int diodeNumber_;
bool currentState_;

public:
void initialize(int diodeNumber) {

...
}
void change(bool newState) {

...
}
void change() {

...
}

};

NSWI170: Computer Systems | Practical Class 2: Arduino: Diodes | 8. 3. 2023 15

Class 3: Arduino: Buttons

Arduino: Buttons
Buttons B1 to B3

• Pins button1_pin, button2_pin, and button3_pin
We want to work at a higher level of abstraction again
And so we will use logical numbers 0 to 2 for buttons

• Button initialization
void pinMode(pin, INPUT);

• Press detection
Reading LOW (pressed) / HIGH (released) on a given pin
int digitalRead(pin);

NSWI170: Computer Systems | Practical Class 3: Arduino: Buttons | 22. 3. 2023 17

E31: Button Pressing
Signal pressing of a button by lighting up the corresponding diode

• Translation array for button pin numbers
constexpr int buttonPins[] =
{ button1_pin, button2_pin, button3_pin };

• Entire functionality will be encapsulated into our own class
Similarly as in the case of diodes

NSWI170: Computer Systems | Practical Class 3: Arduino: Buttons | 22. 3. 2023 18

E32: Diodes Control
Change diode state by pressing the corresponding button

• I.e., turn on / off the given diode
It does not matter for how long the button will be pressed

NSWI170: Computer Systems | Practical Class 3: Arduino: Buttons | 22. 3. 2023 19

E33: Button Bouncing
Fix the problem with bad detection of button pressing

• It is caused because of mechanical features of buttons
As well as our buttons in particular are not of high quality
And so they can generate short bounces by themselves

• We therefore simply filter out very short changes of state
I.e., we ignore them
In particular, let us assume an interval of, e.g., 10 ms

• We also refactor the existing code
Function for detection of press / release event occurrences
will be detached and separated from queries on such events

– It will thus be possible to make such queries repeatedly
– I.e., repeatedly within just one execution of the main loop

NSWI170: Computer Systems | Practical Class 3: Arduino: Buttons | 22. 3. 2023 20

E34: Binary Decomposition
Display the value of an incremented counter using diodes

• Counter starts at 0 and increments by 1 every 1 second
Permitted counter values are only within the interval 0 to 15

– On overflow, value is reset back to 0
• Always show the lowest 4 bits of the current number

Bit 1 turns a given diode on, bit 0 turns it off
E.g., for a number 510 = 101 2, display 0101

– I.e., diode number 0 does not light, 1 yes, 2 no, 3 yes
Little help

– Bitwise conjunction x & 1, bitwise shift x << 1

• Encapsulate the entire counter into a separate class
• Pressing button B1 manually resets the current value to 0

NSWI170: Computer Systems | Practical Class 3: Arduino: Buttons | 22. 3. 2023 21

Class 4: Arduino: Display I

Arduino: Serial Line
Serial line

• Initialization of bidirectional connection
Our program: function setup

– Serial.begin(9600);
Arduino IDE: Tools / Serial monitor

– Set the same speed
• Sending text

Function Serial.print(…) or println(…)
– Different variants for numbers, symbols or whole strings

NSWI170: Computer Systems | Practical Class 4: Arduino: Display I | 5. 4. 2023 23

E41: Simple Timer
Print the elapsed time using the serial line

• I.e., send its value regularly from Arduino to the computer
Do that every second
Truncate the value to whole seconds

NSWI170: Computer Systems | Practical Class 4: Arduino: Display I | 5. 4. 2023 24

Arduino: Display
Segment display

• Pins latch_pin, data_pin, and clock_pin
Initialize them in mode OUTPUT

• Process of displaying a specific glyph
Close the latch

– digitalWrite(latch_pin, LOW);
Send the glyph mask

– shiftOut(data_pin, clock_pin, MSBFIRST,
glyphMask);

Send the position mask
– shiftOut(data_pin, clock_pin, MSBFIRST,

positionMask);
Open the latch

– digitalWrite(latch_pin, HIGH);

NSWI170: Computer Systems | Practical Class 4: Arduino: Display I | 5. 4. 2023 25

Arduino: Display
Segment display (cont’d)

• Glyph representation
byte glyphMask = 0bHGFEDCBA;

– State of each segment needs to be described
– Bit 0 (turn on), bit 1 (turn off)
– Mapping of segments: from the upper one (A) in a clockwise

direction, then the middle bar (G), finally the decimal point (H)
• Position representation

byte positionMask = 0b0000LKJI;
– Positions are assigned numbers 0 (L) to 3 (I) from right to left
– Bit 0 (inactive), bit 1 (active)
– Multiple positions can in fact be activated at a time

• Display clearing (during the initialization)
Glyph with a mask 0b11111111 at positions 0b00001111

NSWI170: Computer Systems | Practical Class 4: Arduino: Display I | 5. 4. 2023 26

E42: Display Control
Display a given glyph at a particular display position

• Glyph itself will be specified by its mask
• Position by its logical number

NSWI170: Computer Systems | Practical Class 4: Arduino: Display I | 5. 4. 2023 27

E43: Displaying Digits
Display a given digit at a particular display position

• Construct glyph masks for individual digits first
constexpr byte digitGlyphs[] = {

0b11000000, // 0
...

};
Put them into a translation array from digits to masks

• Test everything experimentally
On a selected position, display a digit corresponding to the
lowest order of the current time in seconds

NSWI170: Computer Systems | Practical Class 4: Arduino: Display I | 5. 4. 2023 28

E44: Single‐Digit Counter
Display the value of a single‐digit keystroke counter

• It can therefore only hold values from 0 to 9
Show the current value at one selected position

– It will be position 0 at the beginning
• Counter is controlled by buttons as follows

Button B1: counter incrementation
Button B3: cyclic position change (moving it by 1 to the left)
Only simple presses without repetitions are assumed

NSWI170: Computer Systems | Practical Class 4: Arduino: Display I | 5. 4. 2023 29

Class 5: Arduino: Display II

E51: Displaying Numbers
Implement a display extension for displaying whole numbers

• Non‐negative integers from 0 to 9999 are assumed
Displayed number will be aligned to the right
For now, we will also preserve leading zeros

– E.g.: 0025 for number 25
• Use the idea of time multiplexing

We activate only one position in each loop iteration
• Implement the extended display using the inheritance

class NumericDisplay : public Display { ... }
• Chain the call of the basic display initialization function

Display::initialize();

NSWI170: Computer Systems | Practical Class 5: Arduino: Display II | 19. 4. 2023 31

E52: Negative Numbers
Extend our numeric display to support also negative numbers

• I.e., we will now consider numbers from ‐999 to 9999
Symbol - is shown immediately before the first significant digit

• We also stop displaying unnecessary leading zeros

NSWI170: Computer Systems | Practical Class 5: Arduino: Display II | 19. 4. 2023 32

E53: Simple Timer
Display the current time on the display

• Show this time in seconds with accuracy to 1 decimal place
E.g.: 0.0 or 12.3
Number of the required decimal places will be configurable

– None or decimal dot at positions 0 to 3
• Displaying decimal dots

Extend our existing function for displaying digits
Multiple masks can mutually be combined using a bitwise &

NSWI170: Computer Systems | Practical Class 5: Arduino: Display II | 19. 4. 2023 33

E54: Extended Counter
Show the current value of an improved counter on the display

• Counter can hold valid values from ‐999 to 999
In the event of an overflow, the counter stops at the specified
min / max value and will no longer decrease / increase

• Counter will be controlled using buttons
Buttons B1 and B2: counter incrementation / decrementation
Button B3: cyclic position change

• Change of value always takes place by +/‐ 1 in a given order
I.e., +/‐ 1, 10 or 100 depending on the currently active position

• Active position will be marked using the decimal dot

NSWI170: Computer Systems | Practical Class 5: Arduino: Display II | 19. 4. 2023 34

Class 6: Arduino: Display III

E61: Displaying Characters
Extend our display to support displaying selected characters

• Specifically, we want to work with the following characters
Letters of the English alphabet (case‐insensitive)

– Glyph masks are in the assignment starter pack in ReCodEx
Digits 0 to 9
Space _ for any white character
Some special distinct glyph for all other unknown characters

• Let us assume, e.g., the following interface
void showChar(char symbol, int position)

• Useful functions and tricks
isAlpha, isDigit, isSpace, isUpperCase
symbol - 'A' and similarly to calculate glyph indices

• Experimentally test the newly added functionality

NSWI170: Computer Systems | Practical Class 6: Arduino: Display III | 3. 5. 2023 36

E62: Displaying Text
Extend our display to support displaying text strings

• We assume strings of (maximal) length 4
Strings will be aligned to the left

– Spaces will hence be added on the right if necessary
Longer strings will be truncated, excessive characters ignored

• Use the inheritance again
class TextDisplay : public Display { ... }

• Tricks for working with strings
char* pointer vs. const char* pointer
*pointer != '\0'
*pointer++

• Use the idea of time multiplexing again
• Experimentally test the newly added functionality

NSWI170: Computer Systems | Practical Class 6: Arduino: Display III | 3. 5. 2023 37

E63: Running Text
Implement a mechanism for displaying running text messages

• Let us assume only a fixed text string for now
Its length can be arbitrary, even zero
We always show a window of its 4 current characters
We start with just the first symbol located on the very right
We then move the window to the left at regular intervals
4 separating spaces will be added beyond the string end
Having finished, we terminate and wait for another string

• Provide the following public interface
void setText(const char* string);
bool finished();

• Experimentally test the newly added functionality

NSWI170: Computer Systems | Practical Class 6: Arduino: Display III | 3. 5. 2023 38

E64: Running Messages
Extend the previous mechanism for displaying multiple messages

• These messages will be defined using a constant array for now
constexpr char* inputMessages[] = {

"Hello World",
...

};
• Display them in a cyclical manner, one after the other

NSWI170: Computer Systems | Practical Class 6: Arduino: Display III | 3. 5. 2023 39

	Class 1: Basics
	Tools
	E11: Hello World
	E12: Christmas Tree
	E13: Integer Average
	E14: Sliding Average

	Class 2: Diodes
	Arduino
	Arduino: Diodes
	E21: Diode Lighting
	E22: Diode Flashing
	E23: Railway Traffic Lights

	Class 3: Buttons
	Arduino: Buttons
	E31: Button Pressing
	E32: Diodes Control
	E33: Button Bouncing
	E34: Binary Decomposition

	Class 4: Display I
	Arduino: Serial Line
	E41: Simple Timer
	Arduino: Display
	E42: Display Control
	E43: Displaying Digits
	E44: Single-Digit Counter

	Class 5: Display II
	E51: Displaying Numbers
	E52: Negative Numbers
	E53: Simple Timer
	E54: Extended Counter

	Class 6: Display III
	E61: Displaying Characters
	E62: Displaying Text
	E63: Running Text
	E64: Running Messages

