601.

602.

603.

604.

605.

606.

607.

608.

609.

610.

611.

NSWI170 — Computer Systems — 2022/23 Summer — Martin Svoboda

Assignment A6: Messages

Binding Instructions | Well-Meant Advice | Ideas for Thought | Common Mistakes

[Extension of the basic display| We will preserve the existing functions of the basic display
unchanged, and extended them especially by displaying individual letters of the English alphabet,
with their size suppressed. Finally, we add a wrapping function that will accept a single arbitrary
character and via branching determine correct glyphs to be displayed for all of the following situations:
letter, digit, space for any white character, and a special glyph for any unsupported character.

[Interface of member functions| Interface of a function for displaying particular digits as well
as a function for displaying particular letters must be designed in such a way that we can use them
independently, and thus be full-fledged and user-friendly.

[Type of character parameter]| Specifically as for the function for displaying letters, we will
technically expect a parameter of data type char and not a pointer to char, whether it would be
a standalone character or just a part of some array or string. The function will thus be more universal
and, moreover, faster.

[Temporary debugging glyphs] For debugging purposes, it will be convenient for us to temporarily
use other than empty and especially distinct special glyphs for spaces and the already mentioned
unsupported characters. Thanks to that, we can correctly distinguish between these two situations,
and we will therefore be sure that we have implemented their processing correctly. Only before the
assignment submission do we adjust both constants accordingly.

[Preserving position numbering| Although it makes sense to align letters on our display to the
left as opposed to numbers, we will still preserve the convention of numbering display positions from
0 to 3 from right to left.

[Text display representation] Similarly to the numerical display in the previous task, this time too
we will program our text display using the inheritance, i.e., by deriving it from the basic display. It
will then be able to display the intended string of characters, naturally using time multiplexing again.

[Text display functions] Text display driver will remember and thus can only display four specific
symbols. In other words, it will be able to display strings with length exactly corresponding to the
number of positions we have on the display. Never longer.

[Setting a requested string] Inside the function for setting a new string to be displayed, we copy all
the requested characters into our own internal data member. In other words, it would not be enough
to store just a pointer to that string, because we do not want to force the callers to ensure that such
a string would be guaranteed to exist for as long as we want to use it.

[String constancy | Interface of this function will expect a pointer to a constant string, i.e., const
char*. With the constancy flag, we not only say that we are not interested in changing this input
string, which the compiler will then help us to ensure, but, at the same time, it is also necessary to
allow calling this function with such constant strings at all. E.g., strings provided directly as literals.

[Input string length | Even though we expect the length of a provided string to correspond exactly
to the size of our display, we still have to implement the entire function in a way that we can correctly
handle even strings that are shorter or longer. In the former case, we append them from the right
with spaces, in the latter case, we cut them off and simply ignore the rest.

[Array bounds checking| At the same time, it is necessary to realize that the correct treatment of
both the previous situations is necessary even to prevent potential reading or even writing beyond the

612.

613.

614.

615.

616.

617.

618.

619.

620.

621.

622.

623.

array end. In the best case, these errors will lead to an immediate fall of our program when accessing
unallocated memory, in the worst case, we will overwrite some of our other data. The problem can
then manifest itself at any time later and, above all, it will be very difficult to debug it.

[Usage of pointer arithmetic| In order to achieve a more efficient implementation and at the same
time learn how to work with pointers, we will use them manually when working with our strings
instead of the square bracket operator. This means any code where we will iterate over the individual
characters of a string. So, instead of a loop over the position numbers and accessing the elements
using the string[i] construct, we will use a gradually incremented pointer and * for dereferencing.
Accessing a single particular position outside of a cycle will be an exception, we can still use square
brackets there. Simply because nothing would be gained.

[Complicated string modifications| Since we perceive the text display class as an output device
driver, it is not possible for its function for setting the strings to solve any more complex application
logic, such as appending some number of spaces before the beginning, etc.

[Filling the internal array from outside] Finally, let us add that the data member of the internal
array for the current characters is owned by the text display, so we really need to fill the content of
this array using the discussed function, it is not possible to provide a pointer to this array to someone
else in order to fill it from the outside.

[Display turning off] As with the numeric display, we will also implement the text display so that
we have an option to turn it off. I.e., do that explicitly, not using a trick where we would, e.g., request
to display a string containing spaces only.

[Class for running messages| We consider the whole task of scrolling and setting individual text
messages to be an application problem. Therefore we have to solve it via a separate class, which will
be completely separated from the text display driver.

[Prohibited display extension] Likewise, this new class cannot be understood as just another
derived and extended version of our display driver. To achieve the necessary functionality of scrolling
longer strings, we will therefore use the text display and give it instructions, but we cannot inherit
from it by ourselves.

[Completion of message scrolling| Having displayed the entire current message, the display
terminates in a state where spaces are displayed on all positions. We will then not turn the display off
nor explicitly display empty glyphs on all positions, we will simply refrain from any further actions.

[Function for completion testing] It is because we expect that the logic of setting new messages
will be figured out from the outside. Beside the function for setting a new message, our class must
also offer a function with which it will be possible to find out whether scrolling of the last message has
already completely finished or, on the contrary, is still in progress.

[Setting up a new message| Although it would be preferable to make our own copy of a message
string requested for displaying, we will be content here with just saving the provided pointer. In other
words, this time, on the contrary, we can rely on the fact that this pointer will be valid and the original
string available all the time.

[Dynamic allocation mechanism|] The reason is that our message can have an arbitrary and
therefore beforehand unknown length. If we really wanted to make a copy of it, it would lead to the
need of using the so called dynamic memory allocation. However, we want to avoid that in this course,
because its use requires a certain circumspection and discipline. Without it, we could uncontrollably
and irreversibly lose available memory in a running program.

[Arbitrary message length] Length of a message requested to be displayed can be completely
arbitrary, including zero. However, we will never get an invalid pointer.

[Redundant display changes] It goes without saying that we give instructions to the text display
only when a change occurs, i.e., at the moment the current message is scrolled to the next position.

624. [Disallowed system functions| We avoid dynamic allocation, it is not necessary, and we did not
learn it anyway. Likewise, we will not use any resources offered by the cstring library.

