
NSWI170 – Computer Systems – 2022/23 Summer – Martin Svoboda

Assignment A2: Bead
Binding Instructions | Well-Meant Advice | Ideas for Thought | Common Mistakes

201. [Decomposition into functions and classes] It is expected that the whole code will be decomposed
into appropriately designed global functions, classes and their member functions (methods), at different
levels of abstraction from the user-friendly control of individual diodes to the actual logic of the running
bead itself.

202. [Class for diode representation] Individual diodes will be represented as instances of a class that
will encapsulate all the necessary data items and functionality. This means at least two functions, one
to initialize a given diode and the other to change its lighting state. Using these functions, we will
wrap the respective low-level Arduino system calls, giving users a more user-friendly means to control
diodes at a higher level of abstraction.

203. [Private data members] A good practice when designing classes of our kind is to make all their
data members private. Therefore, manipulating with them will not be possible directly from outside,
only indirectly through public methods that we design for this purpose. Thanks to that, we will be in
control of their content, otherwise they could be changed by anyone and from anywhere without our
knowledge.

204. [Logical diode numbers] In order to really achieve higher abstraction, we will only use logical
numbers 0 to 3 for diodes instead of low-level pins everywhere in the code. These numbers, in this
order, will correspond to diodes labeled D1 to D4, and therefore pins led1_pin to led4_pin. The
only exception where we can work directly with the pins will be the two functions mentioned above,
being the only ones that will internally perform the necessary translation from logical numbers to the
corresponding pins.

205. [Use of pin number values] By looking at the attached header file, we can easily find out that pin
numbers of individual diodes have values 13 to 10, but we certainly cannot work with them, regardless
of directly or indirectly. We cannot even assume that they are potentially ordered or that they form
a continuous interval.

206. [Independence on constant values] We can generalize this idea and extend it to the work with
any other constants that we do not fully control. Unless their author has explicitly promised us some
special guarantees, we simply cannot make any assumptions about their specific values. Thus we have
to be completely independent on them.

207. [Variable number of diodes] The entire application must be implemented in a way that we do not
enforce or assume any specific fixed number of diodes anywhere. In other words, everything must be
universal and work even with a different number of diodes than just 4. We will derive the specific
number of available diodes from the size of the array we created for the purpose of translation of logical
diode numbers to their pins.

208. [Initial turning off of all diodes] As a part of Arduino initialization, in addition to setting modes
of pins, it is also necessary to switch off all the diodes, because we are generally not guaranteed in
which current state they may occur.

209. [Premature system calls] Although we should actually not get into such a situation with resources
we learned, let us emphasize that we must not call any Arduino system functions before the setup
function, i.e., before its initialization. While such calls would usually pass without any effect on a real
Arduino, the emulator in ReCodEx monitors such situations strictly.

210. [Constructors of diode objects] The complication described above could specifically occur in a
situation where we would like to define explicit constructors for our diode objects, within which we
would like to, for example, set modes of pins. Instances of objects in global variables are created at the
beginning of the program, i.e., before the setup function. But since we can easily manage everything
without constructors in our classes, we will not create them. If we do, we need to be aware of this
behavior, though.

211. [Internal state of diodes] If we decide to remember the current internal state of our diodes, it is
definitely necessary to represent it at the logical level, not using the low-level constants LOW and HIGH.

212. [Named constants] All constants having some logical meaning in the relation to our application
must be declared and appropriately named. Moreover, if it is possible regarding to the other already
defined constants, it is also necessary to calculate or otherwise derive their values with the help of such
constants.

213. [Constancy flag] Let us also not forget to include the constancy flag as such for each data item that
has such a character.

214. [Global variables] Considering the programming model offered by Arduino, it is necessary to
remember certain information through global variables. Otherwise, we would not be able to transfer
it between the setup function and the individual calls of the loop function. However, we must keep
the number of such variables to a necessary minimum, we must especially not use global variables in
situations where just ordinary local ones would suffice in fact.

215. [Simple loop content] However we decompose the logic of our running bead, it is necessary to
ensure that the code put directly into the body of the loop function is not too large, complicated or
technical. Ideally, we should only work here with some basic operations at the highest possible level
of abstraction, similarly as was the case with the main function.

216. [Efficient loop implementation] Function loop forms the core of our programming model, therefore
it has a key impact on the efficiency of our entire application. Obviously, it is not only about the
function itself, but also all the other functions we will directly or indirectly call from within it. It is
performed perpetually over and over, approximately 1000× per second. Depending on the program
complexity, this may be an order of magnitude higher as well as lower, though.

217. [Class for timer representation] It is expected we solve the functionality for event timing using
a suitably designed separate class, too. It will become useful in the future, when we will need to use
even more parallel and mutually independent timers at once.

218. [Detection of elapsed time] Checking whether a required time interval elapsed needs to be resolved
carefully. As we have already discussed, one iteration of the loop function can take significantly less
time than 1 ms, but it can also take longer. As a result, we are not guaranteed to be able to detect the
intended moment of the next event with absolute accuracy, i.e., at the level of individual milliseconds.

219. [Time of the previous event] For the purpose of detecting the next event, we will obviously need
to remember the time of the previous one, i.e., the last one performed. But if we are not able to detect
time moments precisely, it would be a mistake to save the actual current time when this event occurred.
If we did that, it could cause systematic and repeated delaying that would gradually accumulate and
disrupt the required overall regularity of events.

220. [Retrieving the current time] Calling the millis function is not overly time-consuming, but it is
also not fast. For this reason, it is advisable to ensure that within one iteration of the loop function,
we call it to get the current time only once. This will also bring us another benefit. Although we do
not need it yet, if we were to get the current time more than once within just a single iteration, it could
happen that we get different values. Depending on our code, this could lead to very uncomfortable
error situations caused by such an inconsistency.

221. [Time value overflow] For the system time representation, data type unsigned long is in particular
used. Although it allows us to store time values in milliseconds corresponding up to almost 50 days,
sooner or later its overflow will inevitably occur. Therefore, we must be able to treat such situations
correctly.

222. [Arithmetic over diode numbers] We should always work with variables in accordance with their
data type, but also with the expectations arising from their logical nature. For example, if we represent
positions of diodes by their logical numbers, we cannot incorporate them in multiplication nor calculate
their absolute value, although such operations would be allowed by integers as such from the technical
point of view.

223. [Prohibition of invalid values] Analogously, we also cannot work with positions like -1, which
are not even valid by themselves. We can then generalize this idea so that we can never reserve and
use any otherwise normal values to represent erroneous, marginal or perhaps unexpected situations,
values, etc. even in other situations.

224. [Execution of initial actions] Various initialization actions are expected within the setup function,
hence it is not appropriate here to start executing operations that are part of the standard running
logic of our application as such. In other words, we cannot yet turn on the diode corresponding to the
initial position of the running bead.

225. [Zombie actions in loop] Following our efficiency requirement on the loop function, it is always
necessary to think very carefully about what actions we want to carry out within it. It would be
completely unacceptable, for example, if we put some conditional action in it while knowing in advance
that it would actually be executed only once in the very first iteration and then never again.

226. [Meaning of the current position] In order to manage the logic of the running bead, we will
probably need to deal with its current position somehow. We should therefore think about what
exactly the word current actually means in this context. In other words, we should make sure that
the current position actually does not reference, for example, the previous position or the following
one, on the contrary.

227. [Template of bead positions] Although it would actually be a nice idea, we certainly do not want
to solve our bead movement problem by creating kind of a template for the sequence of expected bead
positions, which we would subsequently iterate through. It does not correspond to the logic of our
assignment, which we must of course always respect.

228. [Logical order of actions] When realizing the actual bead movement, it is more than appropriate
to respect the intuitive order of individual actions, i.e., first turning off the current diode, then moving
to the next position, and only then turning on the new diode. Different orderings would be misleading.

229. [Disallowed system functions] Our entire application must be programmed in a way that we do
not need to use delay or delayMicroseconds functions, just as we must not block the progress of
the loop function in any other way. Simply because such attempts would go directly against the very
logic of our entire programming model.

