
NSWI170 – Computer Systems – 2022/23 Summer – Martin Svoboda

Assignment A1: Celmomether
Binding Instructions | Well-Meant Advice | Ideas for Thought | Common Mistakes

101. [Code decomposition] In general, it is necessary to decompose any non-trivial problem to be solved
into appropriately designed smaller and simpler units, each of which should solve one partial and
logically well defined and bounded task. It is one of the key aspects of writing good code, therefore
we will strictly abide by it from the very beginning.

102. [Decomposition using functions] Within this particular task, we will suffice with decomposition
based only on the design of individual functions. If we were to solve more complex tasks, we would
proceed similarly for larger units at the level of entire files, modules, etc.

103. [Indicator of a good design] Initial indicator of a good design often is the ability of finding suitable
names, in our case, names of functions and also their parameters. On the contrary, weird, unspecific
or excessively long names should be a warning.

104. [Importance of quality names] This brings us to the general principle that names of all functions,
their parameters, local and global variables, constants, and in fact anything else should be reasonably
brief, yet concise and describing in terms of their meaning and expected use.

105. [Naming convention] It is not that important what particular naming convention we use, but we
must always be consistent throughout our code. However, functions, variables, and parameters are
usually written with lowercase initial letters. We also need to think about the way how to write
multi-word names.

106. [Usage of English] Since we nowadays often work in teams, especially international ones, when
developing our applications, it is more than appropriate to write all the code automatically in English.
And it is not just about the already discussed names, but also comments.

107. [Structure of the source file] At the beginning of our source file, we provide all the necessary
declarations for including required header files, followed by any constants. We then continue with
individual functions in such an order that we always need to have all the functions we want to actively
use already defined earlier. Therefore, function main will be at the very end.

108. [Content of the main function] Function main as such should generally not contain any complex
or too low-level or technical code from the point of view of the application logic. In our case, we can
basically limit ourselves just to calling a single function that will represent and encapsulate all the
functionality of our unreliable thermometer.

109. [Global variables] We will do without any global variables in this particular assignment, we do not
need them. In other words, we will design the interface of all functions and their return values in such
a way that we have full control over the data flow and all changes.

110. [Alternative inputs] In order to technically simplify our situation, we assume the input temperatures
are provided in the form of a global constant array. It is obvious, however, that we could get them in
other ways as well, for example via the arguments passed when starting the program, from the standard
input, or even input files on a disk. So it is expected that our thermometer will be implemented in a
way that we can eventually use it over other inputs, even repeatedly. In other words, it is not possible
to hardwire our temperature input array in any way in our executive code.

111. [Modification of the input array] We will only work with the array of specified temperatures in
a read-only mode, therefore we will certainly not solve our task by making a copy of the input array
first and somehow modifying the individual values within it. In other words, we do not want to change
the content and meaning of the input data, we just want to use and process it in the expected way.

112. [Array size] Let us also not forget that any array as such cannot know its size, so we need to pass
this information appropriately together with the array itself. At the same time, both of these pieces
of data logically belong to each other by their very nature, so one without the other makes no sense
at all. Hence we should approach them similarly even from the technical point of view.

113. [Minimal temperature] When searching for the minimal temperature to align the temperature
graph, it is advisable to think carefully about what default (or in other words worst possible) value
is assumed by the assignment as such. In any case, it is not possible to just make up some constants
that are not assumed in the assignment, no matter how appropriate they may seem to us, especially
large or small.

114. [Uniform processing of temperatures] It is also reasonable to approach each element in the
temperature array in the same way, none of the valid temperatures has any special status. Specifically,
for example, just because it would be provided as the first element. Therefore, processing of all values
should be equivalent from the code point of view.

115. [Minimal vs. smallest temperature] Finally, note that the minimal value is mathematically
different from the smallest value, so we should keep this in mind when naming.

116. [Printing symbols] It is obvious that we will often need to print various numbers of certain symbols
when outputting the temperature graph. It is therefore apparent that we should prepare some auxiliary,
sufficiently universal function for this purpose and then just use it repeatedly.

117. [Repetition of similar code] The previous idea is basically about nothing more than that we should
always try to avoid unnecessary repetition of similar or even the same fragments of code. At least
unless there would be special reasons for doing so, which is not the case for us now.

118. [Excessive code branching and nesting] When printing one particular temperature, it is advisable
to avoid excessive overuse of conditional expressions, let alone complicated or nested ones. Especially
since it is not needed in our situation. Instead of branching the main code, it is thus better to try to
calculate the expected numbers of symbols using various operations or even the ternary operator.

119. [Calling a function with different parameters] If we want to call a function with different values
of one or even more parameters depending on the situation, we will certainly not do it by branching
the main code and calling this function in each branch. In other words, we preserve only one call of
this function in total, and with the help of branching or perhaps the ternary operator, we figure out
only the parameters themselves.

120. [Remembering the last valid temperature] When printing the graph of temperatures, it will
obviously be necessary to deal with the situation when the current value will not be valid (i.e., we
come across no_value). In such a case, it would definitely not be a good idea to try to traverse the
array in the opposite direction and somehow try to find the last previous valid temperature. Moreover,
especially not using some recursive function.

121. [Transferring temperatures across loop iterations] If we need to preserve certain values through
individual iterations of the loop, we limit ourselves to only the absolutely necessary information
corresponding to the logical nature of the problem solved. We will therefore not transfer any calculated,
technical or auxiliary data, but really only the temperature as such.

122. [General quality principles] More complicated parts of the code will be supplemented with brief
comments. Adherence to all general principles of code quality is a matter of course. This means, for
example, that we should not write the code for ourselves, but for someone else. That is, to create
such a code that will be comprehensible to others. Including ourselves in a few years, when we will
undoubtedly not remember anything.

123. [Disallowed language resources] We will avoid using of any advanced constructs we have not
learned as a part of this assignment. In particular, we will not use std::string, library iostream, etc.
The reason is that we do not want to stray from our intention of low-level programming. Additionally,
in the following assignments, our hardware resources will be limited when working with Arduino, and
we will also always strive for the most efficient code possible.

