NDBIO06: Query Languages Il
http://www.ksi.mff.cuni.cz/~svoboda/courses/212-NDBI006/

Lecture 13

Neodj

Martin Svoboda
martin.svoboda@ matfyz.cuni.cz

10. 5. 2021

Charles University, Faculty of Mathematics and Physics

http://www.ksi.mff.cuni.cz/~svoboda/courses/212-NDBI006/
mailto:martin.svoboda@matfyz.cuni.cz

Lecture Outline

Graph databases
* Introduction
Neodj
e Data model: property graphs

¢ Traversal framework
* Cypher query language
= Read, write, and general clauses

Graph Databases

Data model
e Property graphs
= Directed / undirected graphs, i.e. collections of ...

— nodes (vertices) for real-world entities, and
— relationships (edges) among these nodes

= Both the nodes and relationships can be associated
with additional properties

Types of databases
¢ Non-transactional = small number of large graphs

* Transactional = large number of small graphs

Graph Databases

Query patterns
» Create, update or remove a node / relationship in a graph

Graph algorithms (shortest paths, spanning trees, ...)

General graph traversals

Sub-graph queries or super-graph queries

Similarity based queries (approximate matching)

Neodj Graph Database

@yneoy)

Neodj

Graph database
https://neo4j.com/
Features
= Open source, massive scalability (billions of nodes), high
availability, fault-tolerant, master-slave replication, ACID
transactions, embeddable, ...
= Expressive graph query language (Cypher),
traversal framework

Developed by Neo Technology

Implemented in Java

Operating systems: cross-platform
Initial release in 2007

NDBIOO6: Query Languages Il | Lecture 13: Neodj | 10. 5. 2021

https://neo4j.com/

Data Model

Database system structure

| Instance — single graph |

Property graph = directed labeled multigraph
* Collection of vertices (nodes) and edges (relationships)
Graph node
* Has a unique (internal) identifier
* Can be associated with a set of labels
= Allow us to categorize nodes

e Can also be associated with a set of properties
= Allow us to store additional data together with nodes

Data Model

Graph relationship
* Has a unique (internal) identifier
¢ Has a direction

= Relationships are equally well traversed in either direction!
= Directions can even be ignored when querying at all

Always has a start and end node
= Can be recursive (i.e. loops are allowed as well)

* Is associated with exactly one type

Can also be associated with a set of properties

Data Model

Node and relationship property

Key-value pair
= Key is a string
= Value is an atomic value of any primitive data type,
or an array of atomic values of one primitive data type

Primitive data types

boolean — boolean values true and false

byte, short, int, long — integers (1B, 2B, 4B, 8B)
float, double — floating-point numbers (4B, 8B)
char — one Unicode character

String — sequence of Unicode characters

NDBIOO6: Query Languages Il | Lecture 13: Neodj | 10. 5. 2021

Sample Data

Sample graph with movies and actors

(m1:MOVIE { id: "vratnelahve", title: "Vratné lahve", year: 2006 })
(m2:MOVIE { id: "samotari", title: "Samotafi", year: 2000 })
(m3:MOVIE { id: "medvidek", title: "Medvidek", year: 2007 })
(m4:MOVIE { id: "stesti", title: "Stésti", year: 2005 })

(al:ACTOR { id: "trojan", name: "Ivan Trojan", year: 1964 })

(a2:ACTOR { id: "machacek", name: "Ji¥i Machaéek", year: 1966 })
(a3:ACTOR { id: "schneiderova", name: "Jitka Schneiderova", year: 1973 })
(a4:ACTOR { id: "sverak", name: "Zden&k Svérak", year: 1936 1})

(m1)-[c1:PLAY { role: "Robert Landa" }]->(a2)

(m1)-[c2:PLAY { role: "Josef Tkaloun" }]->(a4)
(m2)-[c3:PLAY { role: "Ondfej" }]->(al)

(m2)-[c4:PLAY { role: "Jakub" }]->(a2)

(m2)-[c5:PLAY { role: "Hanka" }]->(a3)

(m3)-[c6:PLAY { role: "Ivan" }]->(al)

(m3)-[c7:PLAY { role: "Jirka", award: "Czech Lion" }]->(a2)

Neodj Interfaces

Database architecture
e Client-server
e Embedded database
= Directly integrated within your application

Neodj drivers
e Official: Java, .NET, JavaScript, Python
e Community: C, C++, PHP, Ruby, Perl, R, ...
Neodj shell
* Interactive command-line tool
Query patterns
e Cypher — declarative graph query language
¢ Traversal framework

Traversal Framework

Traversal Framework

Traversal framework
* Allows us to express and execute graph traversal queries
* Based on callbacks, executed lazily
Traversal description
* Defines rules and other characteristics of a traversal
Traverser

* Initiates and manages a particular graph traversal
according to...

= the provided traversal description, and
= graph node / set of nodes where the traversal starts

* Allows for the iteration over the matching paths, one by one

NDBIOO6: Query Languages Il | Lecture 13: Neodj | 10. 5. 2021

13

Traversal Framework: Example

Find actors who played in Medvidek movie

TraversalDescription td = db.traversalDescription()
.breadthFirst ()
.relationships(Types.PLAY, Direction.0OUTGOING)
.evaluator (Evaluators.atDepth(1));

Node s = db.findNode(Label.label("MOVIE"), "id", "medvidek");
Traverser t = td.traverse(s);

for (Path p : t) {
Node n = p.endNode();
System.out.println(
n.getProperty("name")
)5
}

Ivan Trojan
Jifi Machacek

Traversal Description

Components of a traversal description
e Order
= Which graph traversal algorithm should be used
e Expanders
= What relationships should be considered
¢ Uniqueness
= Whether nodes / relationships can be visited repeatedly
¢ Evaluators

= When the traversal should be terminated
= What should be included in the query result

Traversal Description: Order

Order
Which graph traversal algorithm should be used?
* Standard depth-first or breadth-first methods can be selected

or
specific branch ordering policies can also be implemented

e Usage:
td.breadthFirst ()
td.depthFirst ()

Traversal Description: Expanders

Path expanders

Being at a given node...
what relationships should next be followed?

* Expander specifies one allowed...
= relationship type and direction

— Direction.INCOMING
— Direction.OUTGOING
— Direction.BOTH

* Multiple expanders can be specified at once

= When none is provided,
then all the relationships are permitted

e Usage:
td.relationships(type, direction)

Traversal Description: Uniqueness

Uniqueness
Can particular nodes / relationships be revisited?

* Various uniqueness levels are provided

= Uniqueness.NONE — no filter is applied

= Uniqueness.RELATIONSHIP_PATH
Uniqueness.NODE_PATH

— Nodes / relationships within a current path must be distinct

® Uniqueness.RELATIONSHIP_GLOBAL
Uniqueness.NODE_GLOBAL (default)

— No node / relationship may be visited more than once
e Usage:
td.uniqueness(level)

Traversal Description: Evaluators

Evaluators

Considering a particular path...
should this path be included in the result?
should the traversal further continue?

¢ Available evaluation actions

= Evaluation.INCLUDE_AND_CONTINUE
Evaluation.INCLUDE_AND_PRUNE
Evaluation.EXCLUDE_AND_CONTINUE
Evaluation.EXCLUDE_AND_PRUNE

* Meaning of these actions

= INCLUDE / EXCLUDE = whether to include the path in the result
= CONTINUE / PRUNE = whether to continue the traversal

Traversal Description: Evaluators

Predefined evaluators
e Evaluators.all()
= Never prunes, includes everything
* Evaluators.excludeStartPosition()
= Never prunes, includes everything except the starting nodes

* Evaluators.atDepth(depth)
Evaluators.toDepth(maxDepth)
Evaluators.fromDepth(minDepth)
Evaluators.includingDepths (minDepth, maxDepth)

= Includes only positions within the specified interval of depths

Traversal Description: Evaluators

Evaluators
e Usage:
td.evaluator (evaluator)
* Note that evaluators are applied even for the starting nodes!
* When multiple evaluators are provided...
= then they must all agree on both the questions

* When no evaluator is provided...
= then the traversal never prunes and includes everything

Traverser

Traverser

* Allows us to perform a particular graph traversal
= with respect to a given traversal description
= starting at a given node / nodes
e Usage: t =td.traverse(node,...)
* for (Pathp:t){...}
— lterates over all the paths
= for (Noden:t.nodes()){...}
— lterates over all the paths, returns their end nodes
= for (Relationship r:t.relationships()){ ...}
— lterates over all the paths, returns their last relationships
Path

* Well-formed sequence of interleaved nodes and relationships

Traversal Framework: Example

Find actors who played with Zdenék Svérak

TraversalDescription td = db.traversalDescription()
.depthFirst()
.uniqueness (Uniqueness.NODE_GLOBAL)
.relationships(Types.PLAY)
.evaluator(Evaluators.atDepth(2))
.evaluator (Evaluators.excludeStartPosition());

Node s = db.findNode(Label.label("ACTOR"), "id", "sverak");
Traverser t = td.traverse(s);

for (Node n : t.nodes()) {
System.out.println(
n.getProperty("name")
)5
}

’Jifi Machéacek

Cypher

Cypher
* Declarative graph query language
= Allows for expressive and efficient querying and updates
= Inspired by SQL (query clauses) and SPARQL (pattern matching)

* OpenCypher

= Ongoing project aiming at Cypher standardization
» http://www.opencypher.org/

Clauses
e E.g. MATCH, RETURN, CREATE, ...

* Clauses can be (almost arbitrarily) chained together
= Intermediate result of one clause is passed to a subsequent one

NDBIOO6: Query Languages Il | Lecture 13: Neodj | 10. 5. 2021

25

http://www.opencypher.org/

Sample Query

Find names of actors who played in Medvidek movie

MATCH (m:MOVIE)-[r:PLAY]->(a:ACTOR)
WHERE m.title = "Medvidek"
RETURN a.name, a.year
ORDER BY a.year

Ivan Trojan 1964
Jiti Machacek 1966

Clauses

Read clauses and their sub-clauses
e MATCH - specifies graph patterns to be searched for
= WHERE — adds additional filtering constraints

Write clauses and their sub-clauses
* CREATE — creates new nodes or relationships

DELETE — deletes nodes or relationships

SET — updates labels or properties

REMOVE — removes labels or properties

NDBIOO6: Query Languages Il | Lecture 13: Neodj | 10. 5. 2021 27

Clauses

General clauses and their sub-clauses

e RETURN — defines what the query result should contain

= ORDER BY — describes how the query result should be ordered
= SKIP — excludes certain number of solutions from the result
= LIMIT - limits the number of solutions to be included

e WITH - allows query parts to be chained together

Path Patterns

Path pattern expression
* Sequence of interleaved node and relationship patterns

* Describes a single path (not a general subgraph)

T;_T”

e ASCII-Art inspired syntax

= Circles () for nodes
= Arrows <--, ==, ==> for relationships

Path Patterns

Node pattern
* Matches one data node

O am @ - ®-

* Variable
= Allows us to access a given node later on
* Set of labels
= Data node must have all the specified labels to be matched

* Property map
= Data node must have all the requested properties (including
their values) to be matched (the order is unimportant)

Path Patterns

Property map

@ @~
@»
)
o/

Relationship pattern
* Matches one data relationship

DT:,J "\ o e sear}—— L:.J

Path Patterns

Relationship pattern

v~y \.@fj/ ‘
{

-

e Variable
= Allows us to access a given node later on
* Set of types

= Data relationship must be of one of the enumerated types
to be matched

Path Patterns

Relationship pattern (cont.)
¢ Property map
= Data relationship must have all the requested properties
* Variable path length

= Allows us to match paths of arbitrary lengths
(not just exactly one relationship)

O e

= Examples: *, *4, *x2. .6, . .6, *2. .

Path Patterns

Examples
0
] ©--

’(m:MUVIE)-->(a:ACTUR)

’(:MDVIE)——>(a { name: "Ivan Trojan" })

’(m)—[:PLAY { role: "Ivan" }1->(Q)

’(:ACTDR { name: "Ivan Trojan" })-[:KNOW *2]->(:ACTOR)

|

|

|

|
’()<—[r:PLAY]-()

|

|

’()—[:KNUW *5..1->(f)

Match Clause

MATCH clause

* Allows to search for sub-graphs of the data graph that match
the provided path pattern / patterns (all of them)

= Query result (table) = unordered set of solutions
= One solution (row) = set of variable bindings

e Each variable has to be bound

o ﬂ@»f

o/

(

\ @D [woresen -

Match Clause

WHERE sub-clause may provide additional constraints

* These constraints are evaluated directly during the matching
phase (i.e. not after it)
e Typical usage
= Boolean expressions

= Comparisons
= Path patterns — true if at least one solution is found

Match Clause: Example

Find names of actors who played with Ivan Trojan in any movie

MATCH (i:ACTOR)<-[:PLAY]-(m:MOVIE)-[:PLAY]->(a:ACTOR)
WHERE (i.name = "Ivan Trojan")
RETURN a.name

MATCH (i:ACTOR { name: "Ivan Trojan" 1})
<-[:PLAY]-(m:MOVIE)-[:PLAY]->
(a:ACTOR)
RETURN a.name

i m a
(a1) (m2) (a2) - Jifi Machacek
(a1) (m2) (a3) Jitka Schneiderova
(a1) (m3) (a2) Jifi Machacek

Match Clause

Unigqueness requirement

* One data node may match several query nodes, but one data
relationship may not match several query relationships

OPTIONAL MATCH

* Attempts to find matching data sub-graphs as usual...
e but when no solution is found,

one specific solution with all the variables bound to NULL
is generated

* Note that
either the whole pattern is matched, or nothing is matched

NDBIOO6: Query Languages Il | Lecture 13: Neodj | 10. 5. 2021 38

Match Clause: Example

Find movies filmed in 2005 or earlier and names of their actors
(if any)

MATCH (m:MOVIE)

WHERE (m.year <= 2005)
OPTIONAL MATCH (m)-[:PLAY]->(a:ACTOR)
RETURN m.title, a.name

- m 2
m (m2) (a1) Samotafi Ivan Trojan
(m2) = | (m2) (a2) | = Samotafi Jifi Machacek
(m4) (m2) (a3) Samotafi Jitka Schneiderova
(m4) | NULL Stésti NULL

Return Clause

RETURN clause

* Defines what to include in the query result

= Projection of variables, properties of nodes or relationships
(via dot notation), aggregation functions, ...

e Optional ORDER BY, SKIP and LIMIT sub-clauses

T .

R T BN RN

RETURN DISTINCT
* Duplicate solutions (rows) are removed

Return Clause

Projection
* x = all the variables
= Can only be specified as the very first item
* AS allows to explicitly (re)name output records

\».»-ﬂ
_/

Return Clause

ORDER BY sub-clause

* Defines the order of solutions within the query result

= Multiple criteria can be specified
= Default direction is ASC

e The order is undefined unless explicitly defined
* Nodes and relationships as such cannot be used as criteria

ASCENDING
DESCENDING

)
o/

Return Clause

SKIP sub-clause

e Determines the number of solutions to be skipped
in the query result

t».—» expression [>o

LIMIT sub-clause

¢ Determines the number of solutions to be included
in the query result

H-+ expression [>o

With Clause

WITH clause
¢ Constructs intermediate result

= Analogous behavior to the RETURN clause
= Does not output anything to the user,
just forwards the current result to the subsequent clause

e Optional WHERE sub-clause can also be provided
H-ﬁ
(oisTinet) }
(
\pommevem] - \-[Spamse]- \{iramse] *

\ @R - oo -

(

With Clause: Example

Numbers of movies in which actors born in 1965 or later played

MATCH (a:ACTOR)

WHERE (a.year >= 1965)
WITH a, SIZE((a)<-[:PLAY]-(m:MOVIE)) AS movies
RETURN a.name, movies

ORDER BY movies ASC

(a2) | = | (a2) 3 = | lJitka Schneiderova 1
(a3) (a3) 1 Jifi Machacek 3

Query Structure

Chaining of Cypher clauses (simplified)

{ : UNWINDcIause % MERGE clause

—,

* Read clauses: MATCH, ...
e Write clauses: CREATE, DELETE, SET, REMOVE, ...

Query Structure

Query parts
* WITH clauses split the whole query into query parts
» Certain restrictions apply...

= Read clauses (if any) must precede write clauses (if any)
in every query part
= The last query part must be terminated by a RETURN clause
— Unless this part contains at least one write clause
— l.e. read-only queries must return data

Write Clauses

CREATE clause
* Inserts new nodes or relationships into the data graph

+-(eREnTE) L@I—T
@)

MATCH (m:MOVIE { id: "stesti'"})

CREATE
(a:ACTOR { id: "vilhelmova", name: "Tatiana Vilhelmova", year: 1978}),
(m)-[:PLAY]->(a)

Example

Write Clauses

DELETE clause
* Removes nodes, relationships or paths from the data graph

» Relationships must always be removed before the nodes
they are associated with

= Unless the DETACH modifier is specified

ﬁ expression o

Example

MATCH (:MOVIE { id: "stesti"})-[r:PLAY]->(a:ACTOR)
DELETE r

Write Clauses

SET clause

e Allows to...
= set a value of a particular property
— orremove a property when NULL is assigned
= replace properties (all of them) with new ones
= add new properties to the existing ones
= add labels to nodes

e Cannot be used to set relationship types
@»Cproperty key)—»@—»[expression

Cvariable)—»@*l expression]
(et () (2 [mpressn |

Write Clauses

REMOVE clause
¢ Allows to...

= remove a particular property
= remove labels from nodes

e Cannot be used to remove relationship types

o> variable)—»@»(property key) °
O
()

o/

Expressions

Literal expressions
* Integers: decimal, octal, hexadecimal
* Floating-point numbers
e Strings

= Enclosed in double or single quotes
= Standard escape sequences

e Boolean values: true, false
e NULL value (cannot be stored in data graphs)
Other expressions

» Collections, variables, property accessors, function calls,
path patterns, boolean expressions, arithmetic expressions,
comparisons, regular expressions, predicates, ...

NDBIOO6: Query Languages Il | Lecture 13: Neodj | 10. 5. 2021 52

Lecture Conclusion

Neodj = graph database
* Property graphs
* Traversal framework
= Path expanders, uniqueness, evaluators, traverser

Cypher = graph query language
* Read (sub-)clauses: MATCH, WHERE, ...
e Write (sub-)clauses: CREATE, DELETE, SET, REMOVE, ...
e General (sub-)clauses: RETURN, WITH, ORDER BY, LIMIT, ...

	Outline
	Introduction
	Neo4j
	Data Model
	Sample Data
	Query Interfaces
	Traversal Framework
	Cypher Language
	Path Patterns
	Match Clause
	Return Clause
	With Clause
	Query Structure
	Write Clauses
	Expressions

	Conclusion

