Courses B0B36DBS, A7B36DBS: Database Systems

Practical Classes 10 and 11:

Functional Dependencies

Martin Svoboda

25. 4. and 9. 5. 2017

Faculty of Electrical Engineering, Czech Technical University in Prague

- Let us have the following relational schema
 - \blacksquare A = {A, B, C} is a set of attributes
 - $F = \{A \rightarrow B\}$ is a set of functional dependencies
- Calculate the closure of F

 Let us have a relational schema with attributes {A, B, C, D, E} and two different sets of functional dependencies

- $F = \{A \rightarrow C, BC \rightarrow D, C \rightarrow E, E \rightarrow A\}$
- $G = \{A \rightarrow CE, C \rightarrow A, E \rightarrow AE, AB \rightarrow D\}$
- Is *F* a **cover** of *G*?
 - Use Armstrong's axioms only (not attribute closures)

- Assume we have a relational schema
 - A = {A, B, C, D, E}
 - $F = \{AC \rightarrow B, E \rightarrow B, D \rightarrow C, AC \rightarrow E, E \rightarrow AC\}$
- Are the following dependencies redundant?
 - AC → B
 - \blacksquare E \rightarrow B
 - Use Armstrong's axioms only (not attribute closures)

- Let us have a relational schema
 - A = {A, B, C, D, E, F}
 - $F = \{AB \rightarrow D, A \rightarrow CE, F \rightarrow F, C \rightarrow A, E \rightarrow AE\}$
- Compute the following attribute closures
 - {A}+
 - {F}+
 - {B, C}+
 - {A, B, F}+

- Let us have two sets of functional dependencies for a schema with attributes {A, B, C, D, E, F}
 - $F = \{A \rightarrow BEF, BC \rightarrow DE, BDE \rightarrow F, ADF \rightarrow CE, E \rightarrow CBD\}$
 - $G = \{A \rightarrow B, AB \rightarrow E, AD \rightarrow C, BC \rightarrow E, BCE \rightarrow FD, E \rightarrow C, CE \rightarrow B\}$
- Is F a cover of G?

- Let us have a relational schema
 - A = {A, B, C, D}
 - $F = \{A \rightarrow C, B \rightarrow A, D \rightarrow AB, B \rightarrow C, D \rightarrow C\}$
- Find all redundant dependencies

- Let us have a relational schema
 - A = {A, B, C, D, E, F}
 - $F = \{AB \rightarrow D, A \rightarrow CE, C \rightarrow A, E \rightarrow AE, F \rightarrow B, BCEF \rightarrow A\}$
- Find redundant attributes within the following functional dependencies
 - \blacksquare AB \rightarrow D
 - BCEF \rightarrow A

- Let us have a relational schema
 - A = {A, B, C, D, E, F, G, H}
 - $F = \{AB \rightarrow H, EB \rightarrow C, CB \rightarrow A, C \rightarrow F, F \rightarrow G, A \rightarrow EC, E \rightarrow D\}$
- Find a minimal cover

- Let us have a relational schema
 - A = {A, B, C, D, E}
 - $F = \{ABC \rightarrow DE, BC \rightarrow A, DE \rightarrow B, CE \rightarrow AB\}$
- Find a minimal cover

- Let us have a relational schema
 - A = {A, B, C, D, E, F, G}
 - $F = \{AB \rightarrow C, C \rightarrow A, BC \rightarrow D, ACD \rightarrow B, D \rightarrow EG, BE \rightarrow C, CG \rightarrow BD, CE \rightarrow AG\}$
- Find a minimal cover

- Let us have a relational schema
 - A = {A, B, C, D, E}
 - $F = \{BC \rightarrow DE, DE \rightarrow B, CE \rightarrow B\}$
- Find any key

- Find all keys for the previous schema,
 i.e. for a schema
 - A = {A, B, C, D, E}
 - $F = \{BC \rightarrow DE, DE \rightarrow B, CE \rightarrow B\}$

- Let us have a relational schema
 - A = {A, B, C, D, E, F}
 - $F = \{AB \rightarrow C, C \rightarrow D, DEF \rightarrow B, DA \rightarrow EB\}$
- Find all keys

- Let us have a relational schema
 - A = {B, C, D, E}
 - $F = \{BC \rightarrow DE, DE \rightarrow B, CE \rightarrow B\}$
 - Keys are CE and BC
- Determine a normal form of this schema