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Lecture Outline
Key-value stores
• General introduc on

RiakKV
• Data model
• HTTP interface
• CRUD opera ons
• Link walking
• Data types
• Search 2.0
• Internal details
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Key-Value Stores
Data model
• The most simple NoSQL database type

Works as a simple hash table (mapping)

• Key-value pairs
Key (id, iden fier, primary key)
Value: binary object, black box for the database system

Query pa erns
• Create, update or remove value for a given key
• Get value for a given key

Characteris cs
• Simple model⇒ great performance, easily scaled, …
• Simple model⇒ not for complex queries nor complex data
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Key-Value Stores
Suitable use cases
• Session data, user profiles, user preferences, shopping carts, …

I.e. when values are only accessed via keys

When not to use
• Rela onships among en es
• Queries requiring access to the content of the value part
• Set opera ons involving mul ple key-value pairs

Representa ves
• Redis,MemcachedDB, Riak KV, Hazelcast, Ehcache, Amazon
SimpleDB, Berkeley DB, Oracle NoSQL, Infinispan, LevelDB,
Ignite, Project Voldemort

• Mul -model: OrientDB, ArangoDB
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Key-Value Stores
Representa ves
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Key Management
How the keys should actually be designed?
• Manually assigned keys

Real-world natural iden fiers
E.g. e-mail addresses, login names, …

• Automa cally generated keys
Auto-increment integers

– Not suitable in peer-to-peer architectures!
More complex keys generated by algorithms

– Keys composed from mul ple components such as
me stamps, cluster node iden fiers, …

– Used in prac ce
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Query Pa erns
Basic CRUD opera ons
• Only when a key is provided
• ⇒ knowledge of the keys is essen al

It might even be difficult for a par cular database system
to provide a list of all the available keys!

Accessing the contents of the value part is not possible in general

• But we could instruct the database how to parse the values
• … so that we can fetch the intended search criteria
• … and store the references within index structures

Batch / sequen al processing
• MapReduce

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 7



Other Func onality
Expira on of key-value pairs
• A er a certain interval of me key-value pairs
are automa cally removed from the database

• Useful for user sessions, shopping carts etc.
Collec ons of values
• We can store not only ordinary values, but also their
collec ons such as ordered lists, unordered sets etc.

Links between key-value pairs
• Values can mutually be interconnected via links
• These links can be traversed when querying

Par cular func onality always depends on the store we use!
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Riak Key-Value Store



RiakKV
Key-value store
• h p://basho.com/products/riak-kv/
• Features

Open source, incremental scalability, high availability,
opera onal simplicity, decentralized design, automa c data
distribu on, advanced replica on, fault tolerance, …

• Developed by Basho Technologies
• Implemented in Erlang

General-purpose, concurrent, garbage-collected programming
language and run me system

• Opera ng system: Linux, Mac OS X, … (not Windows)

• Ini al release in 2009
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Data Model
Riak database system structure

Instance (→ bucket types)→ buckets→ objects

• Bucket = collec on of objects (logical, not physical collec on)
Each object must have a unique key
Various proper es are set at the level of buckets

– E.g. default replica on factor, read / write quora, …

• Object = key-value pair
Key is a Unicode string
Value can be anything (text, binary object, image, …)
Each object is also associated with metadata

– E.g. its content type (text/plain, image/jpeg, …),
– and other internal metadata as well
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Data Model
Design Ques ons

How buckets, keys and values should be designed?
• Complex objects containing various kinds of data

E.g. one key-value pair holding informa on about all the actors
and movies at the same me

• Buckets with different kinds of objects
E.g. dis nct objects for actors and movies, but all in one bucket
Structured naming conven on for keysmight help

– E.g. actor_trojan, movie_medvidek

• Separate buckets for different kinds of objects
E.g. one bucket for actors, one for movies
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Riak Usage: Querying
Basic CRUD opera ons
• Create, Read, Update, and Delete
• Based on key look-up

Extended func onality
• Links – rela onships between objects and their traversal
• Search 2.0 – full-text queries accessing values of objects
• MapReduce
• …
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Riak Usage: API
Applica on interfaces
• HTTP API

All the user requests are submi ed as HTTP requests with an
appropriately selectedmethod and specifically constructed
URL, headers, and data

• Protocol Buffers API
• Erlang API

Client libraries for a variety of programming languages
• Official: Java, Ruby, Python, C#, PHP, …
• Community: C, C++, Haskell, Perl, Python, Scala, …
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Riak Usage: HTTP API
cURL tool
• Allows to transfer data from / to a server using HTTP

(or other supported protocols)

Op ons
• -X command, --request command

HTTP request method to be used (GET, …)

• -d data, --data data
Data to be sent to the server (implies the POST method)

• -H header, --header header
Extra headers to be included when sending the request

• -i, --include
Include received headers when prin ng the response
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CRUD Opera ons
Basic opera ons on objects
• Create: POST or PUT methods

Inserts a key-value pair into a given bucket
Key is specified manually, or will be generated automa cally

• Read: GET method
Retrieves a key-value pair from a given bucket

• Update: PUT method
Updates a key-value pair in a given bucket

• Delete: DELETE method
Removes a key-value pair from a given bucket

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 16



CRUD Opera ons
URL pa ern of HTTP requests for all the CRUD opera ons

// bucketsbuckets // bucketbucket // keyskeys // keykey

?? parameterparameter == valuevalue

&&

Op onal parameters (depending on the opera on)

• r, w: read / write quorum to be a ained
• …
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CRUD Opera ons
Create and Update

Inserts / updates a key-value pair in a given bucket
• PUTmethod

Should be used when a key is specified explicitly
Transparently inserts / updates a given object

• POSTmethod
When a key is to be generated automa cally
Always inserts a new object

• Buckets are created transparently whenever needed
Example

curl -i -X PUT
-H 'Content-Type: text/plain'
-d 'Ivan Trojan, 1964'
http://localhost:8098/buckets/actors/keys/trojan
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CRUD Opera ons
Read

Retrieves a key-value pair from a given bucket
• Method: GET

Example
Request

curl -i -X GET
http://localhost:8098/buckets/actors/keys/trojan

Response
...
Content-Type: text/plain
...

Ivan Trojan, 1964

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 19



CRUD Opera ons
Delete

Removes a key-value pair from a given bucket
• Method: DELETE
• If a given object does not exist, it does not ma er

Example
curl -i -X DELETE

http://localhost:8098/buckets/actors/keys/trojan
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Bucket Opera ons
Lists all the buckets (buckets with at least one object)

// bucketsbuckets ?? bucketsbuckets == truetrue

curl -i -X GET http://localhost:8098/buckets?buckets=true

Content-Type: application/json

{
"buckets" : [ "actors", "movies" ]

}
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Bucket Opera ons
Lists all the keys within a given bucket
• Not recommended since it is a very expensive opera on

// bucketsbuckets // bucketbucket // keyskeys ?? keyskeys == truetrue

curl -i -X GET http://localhost:8098/buckets/actors/keys?keys=true

Content-Type: application/json

{
"keys" : [ "trojan", "machacek", "schneiderova", "sverak" ]

}
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Bucket Opera ons
Se ng and retrieval of bucket proper es
• Proper es

n_val: replica on factor
r, w, …: read / write quora and their alterna ves
…

• Requests
GET method: retrieve bucket proper es
PUT method: set bucket proper es

// bucketsbuckets // bucketbucket // propsprops

Example
{

"props" : { "n_val" : 3, "w" : "all", "r" : 1 }
}
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Links and Link Walking
Links
• Links are metadata that establish one-way rela onships
between objects

Act as lightweight pointers between individual key-value pairs
I.e. represent and extension to the pure key-value data model

• Each link…
is defined at the source object
is associated with a tag (sort of link type)

• Mul ple links can lead from / to a given object
• Source and target may not belong to the same bucket
• Mo va on: new way of querying:

Link walking – naviga on between objects
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Links and Link Walking
Links: how are links defined?
• Special Link header is used for this purpose
• Mul ple separate link headers can be provided,
as well as mul ple links within one header

LinkLink :: << targettarget >> ;; riaktagriaktag == "" tagtag ""

,,

Example
curl -i -X PUT

-H 'Content-Type: text/plain'
-H 'Link: </buckets/actors/keys/trojan>; riaktag="tactor"'
-H 'Link: </buckets/actors/keys/machacek>; riaktag="tactor"'
-d 'Medvídek, 2007'
http://localhost:8098/buckets/movies/keys/medvidek
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Links and Link Walking
Link walking: how can links be traversed?
• Standard GET requests with link traversal descrip on

Exactly one object where the traversal is ini ated
Single or mul ple naviga onal steps

// bucketsbuckets // bucketbucket // keyskeys // keykey

// bucketbucket

__

,, tagtag

__

,, 11

00

__

//
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Links and Link Walking
Link walking: parameters
• Bucket

Only objects from (exactly one) target bucket are found
_ when not limited to any par cular bucket

• Tag
Only links of a given tag are considered
_ when not limited

• Keep
1 when the objects should be included in the result
0 otherwise
_means yes for the very last step, no for all the other
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Links and Link Walking
Examples

Find all the actors that appeared inMedvídekmovie

curl -i -X GET
http://localhost:8098/buckets/movies/keys/medvidek

/actors,tactor,1

Content-Type: multipart/mixed; boundary=...

Find all the movies in which appeared actors fromMedvídekmovie
(assuming that the corresponding actor→movie links also exist)

curl -i -X GET
http://localhost:8098/buckets/movies/keys/medvidek

/actors,tactor,0/movies,tmovie,1
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Data Types
Mo va on
• Riak began as a pure key-value store

I.e. was completely agnos c toward the contents of values

• However, if availability is preferred to consistency,
mutually conflic ng replicas might exist

Such conflicts can be resolved at the applica on level,
but this is o en (only too) difficult for the developers

• And so the concept of Riak Data Types was introduced
When used (it is not compulsory),
Riak is able to resolve conflicts automa cally
(and so eventual consistency is achieved)
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Data Types
Available data types
• Register, flag, counter, set, and map
• Based on a generic concept of CRDT
(Convergent Replicated Data Types)

• Cover (just) a few common scenarios
• Each applies specific conflict resolu on rule

Implementa on details
• Beside the current value, necessary history of changes is also
internally stored so that conflicts can be judged
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Data Types
Register
• Allows to store any binary value (e.g. string, …)
• Convergence rule: the most chronologically recent value wins
• Note: registers can only be stored within maps

Flag
• Boolean values: enable (true), and disable (false)
• Convergence rule: enable wins over disable
• Note: flags can also be stored only within maps

Counter
• Opera ons: increment / decrement by a given integer value
• Convergence rule: all increments and decrements
by all actors are eventually applied
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Data Types
Set
• Collec on of unique binary values
• Opera ons: addi on / removal of one / mul ple elements
• Convergence rule: addi on wins over removal of elements

Map
• Collec on of fields with embedded elements of any data type
(including other nested maps)

• Opera ons: addi on / removal of an element
• Convergence rule: addi on / update wins over removal
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Search 2.0
Riak Search 2.0 (Yokozuna)
• Full-text search engine

Allows us to find and query objects using full-text index
structures based on the contents of the value parts

• Based on Apache Solr
Distributed, scalable, failure tolerant, real- me search pla orm

Principles
• Riak object to be indexed is transformed to a Solr document

Various extractors are used for this purpose

• The resul ng Solr document…
contains fields that are actually indexed by and within Solr
its contents must be described by a schema
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Search 2.0: Extractors
Extractor
• Its goal is to parse the value part and produce fields to index
• Extractors are chosen automatically based on MIME types

Available extractors
• Common predefined extractors

Plain text, XML, JSON, noop (unknown content type)

• Built-in extractors for Riak Data Types
Counter, map, set

• User-defined custom extractors
Implemented in Erlang, registered with Riak
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Search 2.0: Extractors
Plain text extractor (text/plain)
• Single field with the whole content is extracted

Example
Input Riak object

Ivan Trojan, 1964

Output Solr document
[

{ text, <<"Ivan Trojan, 1964">> }
]
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Search 2.0: Extractors
XML extractor (text/xml, application/xml)
• One field is created for each element and a ribute
• Dot nota on is used to compose names of nested items

Example
Input Riak object

<?xml version="1.0" encoding="UTF-8" ?>
<actor year="1964">

<name>Ivan Trojan</name>
<actor>

Output Solr document
[

{ <<"actor.name">>, <<"Ivan Trojan">> },
{ <<"actor.@year">>, <<"1964">> }

]
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Search 2.0: Extractors
JSON extractor (application/json)
• Similar principles as for XML documents are applied

Example
Input Riak object

{
name : "Ivan Trojan",
year : 1964

}

Output Solr document
[

{ <<"name">>, <<"Ivan Trojan">> },
{ <<"year">>, <<"1964">> }

]
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Search 2.0
Automa c fields
• A few technical fields are automa cally added as well
• E.g. _yz_rb (containing bucket name), _yz_rk (key), …

Solr index schema
• Describes how fields should be indexed within Solr
• Default schema available (_yz_default)

Suitable for debugging,
but custom schemas should be used in produc on

Field analysis and indexa on
• E.g.:

Values of fields are split into terms
Terms are normalized, stop words removed, …
Triples (token, field, document) are then indexed
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Search 2.0: Index Crea on
How is index created?
• Index must be created and then also associated with a bucket
• Each index servers to a single bucket only

Example
curl -i -X PUT

-H 'Content-Type: application/json'
-d '{ "schema" : "_yz_default" }'
http://localhost:8098/search/index/iactors

curl -i -X PUT
http://localhost:8098/search/index/iactors

curl -i -X PUT
-H 'Content-Type: application/json'
-d '{ "props" : { "search_index" : "iactors" } }'
http://localhost:8098/buckets/actors/props
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Search 2.0: Index Usage
Generic pa ern for search queries
• Parameters

q – search query (correctly encoded)
wt – Solr response writer to be used to compose response
start and rows – pagina on of matching objects
…

// searchsearch // queryquery // indexindex ?? parameterparameter == valuevalue

&&
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Search 2.0: Index Usage
Available search func onality
• Wildcards

E.g. name:Iva*, name:Iva?

• Range queries
E.g. year:[2010 TO *]

• Logical connec ves and parentheses
AND, OR, NOT

• Proximity searches
• …
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Architecture
Sharding + peer-to-peer replica on architecture
• Any node can serve any read or write user request
• Physical nodes run (several) virtual nodes (vnodes)

Nodes can be added and removed from the cluster dynamically

• Gossip protocol
Each node periodically sends its current view of the cluster,
its state and changes, bucket proper es, …

CAP proper es
• AP system: availability + par on tolerance
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Consistency
BASE principles
• Availability is preferred to consistency
• Default proper es of buckets

n_val: replica on factor
r: read quorum
w: write quorum (node par cipa on is sufficient)
dw: write quorum (write to durable storage is required)

• Specific op ons of requests override the bucket proper es
However, strong consistency can be achieved
• When quora set carefully, i.e.:

w > n_val/2 for write quorum
r > n_val− w for read quorum

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 43



Causal Context
Conflic ng replicas are unavoidable (with eventual consistency)
⇒ how are they resolved?
• Causal context = data and mechanisms necessary in order to
resolve the conflicts

• Low-level techniques
Timestamps, vectors clocks, do ed version vectors
They can be used to resolve conflicts automa cally

– Might fail, then we must make the choice by ourselves
Or we can resolve the conflictsmanually

– Siblings then need to be enabled (allow_mult)
= mul ple versions of object values

• User-friendly CRDT data types with built in resolu on
Register, flag, counter, set, map
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Causal Context
Vector clocks
• Mechanism for tracking object update causality
in terms of logical me (not chronological me)

• Each node has its own logical clock (integer counter)
Ini ally equal to 0
Incremented by 1 whenever any event takes place

• Vector clock = vector of logical clocks of all the nodes
Each node maintains its local copy of this vector
Whenever a message is sent, the local vector is sent as well
Whenever a message is received, the local vector is updated

– Maximal value for each individual node clock is taken
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Riak Ring
Replica placement strategy
• Consistent hashing func on

Consistent = does not change when cluster changes
Domain: pairs of a bucket name and object key
Range: 160-bit integer space = Riak Ring

Riak Ring
• The whole ring is split into equally-sized disjoint par ons

Physical nodes are mutually interleaved
⇒ reshuffling when cluster changes is less demanding

• Each virtual node is responsible for exactly one par on
Example
• Cluster with 4 physical nodes, each running 8 virtual nodes
• I.e. 32 par ons altogether
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Riak Ring

Source: h p://docs.basho.com/
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Riak Ring
Replica placement strategy
• The first replica…

Its loca on is directly determined by the hash func on

• All the remaining replicas…
Placed to the consecu ve par ons in a clockwise direc on

What if a virtual node is failing?
• Hinted handoff

Failing nodes are simply skipped,
neighboring nodes temporarily take responsibility
When resolved, replicas are handed off to the proper loca ons

• Mo va on: high availability
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Request Handling
Read and write requests can be submi ed to any node
• This nodes is called a coordina ng node
• Hash func on is calculated, i.e. replica loca ons determined
• Internal requests are sent to all the corresponding nodes
• Then the coordina ng node starts to wait
un l sufficient number of responses is received

• Result / failure is returned to the user

But what if the cluster changes?
• The value of the hash func on does not change,

only the par ons and their mapping to virtual nodes change

• However, the Ring knowledge a given node has might be obsolete!
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Lecture Conclusion
RiakKV
• Highly available distributed key-value store
• Sharding with peer-to-peer replica on architecture
• Riak Ring with consistent hashing for replica placement

Query func onality
• Basic CRUD opera ons
• Link walking
• Search 2.0 full-text based on Apache Solr
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