
NDBI040: Big Data Management and NoSQL Databases
h p://www.ksi.mff.cuni.cz/˜svoboda/courses/2016-1-NDBI040/

Lecture 4

Key-Value Stores: RiakKV
Mar n Svoboda
svoboda@ksi.mff.cuni.cz

25. 10. 2016

Charles University in Prague, Faculty of Mathema cs and Physics
Czech Technical University in Prague, Faculty of Electrical Engineering

http://www.ksi.mff.cuni.cz/~svoboda/courses/2016-1-NDBI040/

Lecture Outline
Key-value stores
• General introduc on

RiakKV
• Data model
• HTTP interface
• CRUD opera ons
• Link walking
• Data types
• Search 2.0
• Internal details

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 2

Key-Value Stores
Data model
• The most simple NoSQL database type

Works as a simple hash table (mapping)

• Key-value pairs
Key (id, iden fier, primary key)
Value: binary object, black box for the database system

Query pa erns
• Create, update or remove value for a given key
• Get value for a given key

Characteris cs
• Simple model⇒ great performance, easily scaled, …
• Simple model⇒ not for complex queries nor complex data

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 3

Key-Value Stores
Suitable use cases
• Session data, user profiles, user preferences, shopping carts, …

I.e. when values are only accessed via keys

When not to use
• Rela onships among en es
• Queries requiring access to the content of the value part
• Set opera ons involving mul ple key-value pairs

Representa ves
• Redis,MemcachedDB, Riak KV, Hazelcast, Ehcache, Amazon
SimpleDB, Berkeley DB, Oracle NoSQL, Infinispan, LevelDB,
Ignite, Project Voldemort

• Mul -model: OrientDB, ArangoDB

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 4

Key-Value Stores
Representa ves

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 5

Key Management
How the keys should actually be designed?
• Manually assigned keys

Real-world natural iden fiers
E.g. e-mail addresses, login names, …

• Automa cally generated keys
Auto-increment integers

– Not suitable in peer-to-peer architectures!
More complex keys generated by algorithms

– Keys composed from mul ple components such as
me stamps, cluster node iden fiers, …

– Used in prac ce

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 6

Query Pa erns
Basic CRUD opera ons
• Only when a key is provided
• ⇒ knowledge of the keys is essen al

It might even be difficult for a par cular database system
to provide a list of all the available keys!

Accessing the contents of the value part is not possible in general

• But we could instruct the database how to parse the values
• … so that we can fetch the intended search criteria
• … and store the references within index structures

Batch / sequen al processing
• MapReduce

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 7

Other Func onality
Expira on of key-value pairs
• A er a certain interval of me key-value pairs
are automa cally removed from the database

• Useful for user sessions, shopping carts etc.
Collec ons of values
• We can store not only ordinary values, but also their
collec ons such as ordered lists, unordered sets etc.

Links between key-value pairs
• Values can mutually be interconnected via links
• These links can be traversed when querying

Par cular func onality always depends on the store we use!

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 8

Riak Key-Value Store

RiakKV
Key-value store
• h p://basho.com/products/riak-kv/
• Features

Open source, incremental scalability, high availability,
opera onal simplicity, decentralized design, automa c data
distribu on, advanced replica on, fault tolerance, …

• Developed by Basho Technologies
• Implemented in Erlang

General-purpose, concurrent, garbage-collected programming
language and run me system

• Opera ng system: Linux, Mac OS X, … (not Windows)

• Ini al release in 2009

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 10

http://basho.com/products/riak-kv/

Data Model
Riak database system structure

Instance (→ bucket types)→ buckets→ objects

• Bucket = collec on of objects (logical, not physical collec on)
Each object must have a unique key
Various proper es are set at the level of buckets

– E.g. default replica on factor, read / write quora, …

• Object = key-value pair
Key is a Unicode string
Value can be anything (text, binary object, image, …)
Each object is also associated with metadata

– E.g. its content type (text/plain, image/jpeg, …),
– and other internal metadata as well

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 11

Data Model
Design Ques ons

How buckets, keys and values should be designed?
• Complex objects containing various kinds of data

E.g. one key-value pair holding informa on about all the actors
and movies at the same me

• Buckets with different kinds of objects
E.g. dis nct objects for actors and movies, but all in one bucket
Structured naming conven on for keysmight help

– E.g. actor_trojan, movie_medvidek

• Separate buckets for different kinds of objects
E.g. one bucket for actors, one for movies

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 12

Riak Usage: Querying
Basic CRUD opera ons
• Create, Read, Update, and Delete
• Based on key look-up

Extended func onality
• Links – rela onships between objects and their traversal
• Search 2.0 – full-text queries accessing values of objects
• MapReduce
• …

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 13

Riak Usage: API
Applica on interfaces
• HTTP API

All the user requests are submi ed as HTTP requests with an
appropriately selectedmethod and specifically constructed
URL, headers, and data

• Protocol Buffers API
• Erlang API

Client libraries for a variety of programming languages
• Official: Java, Ruby, Python, C#, PHP, …
• Community: C, C++, Haskell, Perl, Python, Scala, …

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 14

Riak Usage: HTTP API
cURL tool
• Allows to transfer data from / to a server using HTTP

(or other supported protocols)

Op ons
• -X command, --request command

HTTP request method to be used (GET, …)

• -d data, --data data
Data to be sent to the server (implies the POST method)

• -H header, --header header
Extra headers to be included when sending the request

• -i, --include
Include received headers when prin ng the response

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 15

CRUD Opera ons
Basic opera ons on objects
• Create: POST or PUT methods

Inserts a key-value pair into a given bucket
Key is specified manually, or will be generated automa cally

• Read: GET method
Retrieves a key-value pair from a given bucket

• Update: PUT method
Updates a key-value pair in a given bucket

• Delete: DELETE method
Removes a key-value pair from a given bucket

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 16

CRUD Opera ons
URL pa ern of HTTP requests for all the CRUD opera ons

// bucketsbuckets // bucketbucket // keyskeys // keykey

?? parameterparameter == valuevalue

&&

Op onal parameters (depending on the opera on)

• r, w: read / write quorum to be a ained
• …

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 17

CRUD Opera ons
Create and Update

Inserts / updates a key-value pair in a given bucket
• PUTmethod

Should be used when a key is specified explicitly
Transparently inserts / updates a given object

• POSTmethod
When a key is to be generated automa cally
Always inserts a new object

• Buckets are created transparently whenever needed
Example

curl -i -X PUT
-H 'Content-Type: text/plain'
-d 'Ivan Trojan, 1964'
http://localhost:8098/buckets/actors/keys/trojan

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 18

CRUD Opera ons
Read

Retrieves a key-value pair from a given bucket
• Method: GET

Example
Request

curl -i -X GET
http://localhost:8098/buckets/actors/keys/trojan

Response
...
Content-Type: text/plain
...

Ivan Trojan, 1964

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 19

CRUD Opera ons
Delete

Removes a key-value pair from a given bucket
• Method: DELETE
• If a given object does not exist, it does not ma er

Example
curl -i -X DELETE

http://localhost:8098/buckets/actors/keys/trojan

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 20

Bucket Opera ons
Lists all the buckets (buckets with at least one object)

// bucketsbuckets ?? bucketsbuckets == truetrue

curl -i -X GET http://localhost:8098/buckets?buckets=true

Content-Type: application/json

{
"buckets" : ["actors", "movies"]

}

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 21

Bucket Opera ons
Lists all the keys within a given bucket
• Not recommended since it is a very expensive opera on

// bucketsbuckets // bucketbucket // keyskeys ?? keyskeys == truetrue

curl -i -X GET http://localhost:8098/buckets/actors/keys?keys=true

Content-Type: application/json

{
"keys" : ["trojan", "machacek", "schneiderova", "sverak"]

}

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 22

Bucket Opera ons
Se ng and retrieval of bucket proper es
• Proper es

n_val: replica on factor
r, w, …: read / write quora and their alterna ves
…

• Requests
GET method: retrieve bucket proper es
PUT method: set bucket proper es

// bucketsbuckets // bucketbucket // propsprops

Example
{

"props" : { "n_val" : 3, "w" : "all", "r" : 1 }
}

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 23

Links and Link Walking
Links
• Links are metadata that establish one-way rela onships
between objects

Act as lightweight pointers between individual key-value pairs
I.e. represent and extension to the pure key-value data model

• Each link…
is defined at the source object
is associated with a tag (sort of link type)

• Mul ple links can lead from / to a given object
• Source and target may not belong to the same bucket
• Mo va on: new way of querying:

Link walking – naviga on between objects

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 24

Links and Link Walking
Links: how are links defined?
• Special Link header is used for this purpose
• Mul ple separate link headers can be provided,
as well as mul ple links within one header

LinkLink :: << targettarget >> ;; riaktagriaktag == "" tagtag ""

,,

Example
curl -i -X PUT

-H 'Content-Type: text/plain'
-H 'Link: </buckets/actors/keys/trojan>; riaktag="tactor"'
-H 'Link: </buckets/actors/keys/machacek>; riaktag="tactor"'
-d 'Medvídek, 2007'
http://localhost:8098/buckets/movies/keys/medvidek

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 25

Links and Link Walking
Link walking: how can links be traversed?
• Standard GET requests with link traversal descrip on

Exactly one object where the traversal is ini ated
Single or mul ple naviga onal steps

// bucketsbuckets // bucketbucket // keyskeys // keykey

// bucketbucket

__

,, tagtag

__

,, 11

00

__

//

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 26

Links and Link Walking
Link walking: parameters
• Bucket

Only objects from (exactly one) target bucket are found
_ when not limited to any par cular bucket

• Tag
Only links of a given tag are considered
_ when not limited

• Keep
1 when the objects should be included in the result
0 otherwise
_means yes for the very last step, no for all the other

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 27

Links and Link Walking
Examples

Find all the actors that appeared inMedvídekmovie

curl -i -X GET
http://localhost:8098/buckets/movies/keys/medvidek

/actors,tactor,1

Content-Type: multipart/mixed; boundary=...

Find all the movies in which appeared actors fromMedvídekmovie
(assuming that the corresponding actor→movie links also exist)

curl -i -X GET
http://localhost:8098/buckets/movies/keys/medvidek

/actors,tactor,0/movies,tmovie,1

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 28

Data Types
Mo va on
• Riak began as a pure key-value store

I.e. was completely agnos c toward the contents of values

• However, if availability is preferred to consistency,
mutually conflic ng replicas might exist

Such conflicts can be resolved at the applica on level,
but this is o en (only too) difficult for the developers

• And so the concept of Riak Data Types was introduced
When used (it is not compulsory),
Riak is able to resolve conflicts automa cally
(and so eventual consistency is achieved)

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 29

Data Types
Available data types
• Register, flag, counter, set, and map
• Based on a generic concept of CRDT
(Convergent Replicated Data Types)

• Cover (just) a few common scenarios
• Each applies specific conflict resolu on rule

Implementa on details
• Beside the current value, necessary history of changes is also
internally stored so that conflicts can be judged

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 30

Data Types
Register
• Allows to store any binary value (e.g. string, …)
• Convergence rule: the most chronologically recent value wins
• Note: registers can only be stored within maps

Flag
• Boolean values: enable (true), and disable (false)
• Convergence rule: enable wins over disable
• Note: flags can also be stored only within maps

Counter
• Opera ons: increment / decrement by a given integer value
• Convergence rule: all increments and decrements
by all actors are eventually applied

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 31

Data Types
Set
• Collec on of unique binary values
• Opera ons: addi on / removal of one / mul ple elements
• Convergence rule: addi on wins over removal of elements

Map
• Collec on of fields with embedded elements of any data type
(including other nested maps)

• Opera ons: addi on / removal of an element
• Convergence rule: addi on / update wins over removal

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 32

Search 2.0
Riak Search 2.0 (Yokozuna)
• Full-text search engine

Allows us to find and query objects using full-text index
structures based on the contents of the value parts

• Based on Apache Solr
Distributed, scalable, failure tolerant, real- me search pla orm

Principles
• Riak object to be indexed is transformed to a Solr document

Various extractors are used for this purpose

• The resul ng Solr document…
contains fields that are actually indexed by and within Solr
its contents must be described by a schema

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 33

Search 2.0: Extractors
Extractor
• Its goal is to parse the value part and produce fields to index
• Extractors are chosen automatically based on MIME types

Available extractors
• Common predefined extractors

Plain text, XML, JSON, noop (unknown content type)

• Built-in extractors for Riak Data Types
Counter, map, set

• User-defined custom extractors
Implemented in Erlang, registered with Riak

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 34

Search 2.0: Extractors
Plain text extractor (text/plain)
• Single field with the whole content is extracted

Example
Input Riak object

Ivan Trojan, 1964

Output Solr document
[

{ text, <<"Ivan Trojan, 1964">> }
]

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 35

Search 2.0: Extractors
XML extractor (text/xml, application/xml)
• One field is created for each element and a ribute
• Dot nota on is used to compose names of nested items

Example
Input Riak object

<?xml version="1.0" encoding="UTF-8" ?>
<actor year="1964">

<name>Ivan Trojan</name>
<actor>

Output Solr document
[

{ <<"actor.name">>, <<"Ivan Trojan">> },
{ <<"actor.@year">>, <<"1964">> }

]

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 36

Search 2.0: Extractors
JSON extractor (application/json)
• Similar principles as for XML documents are applied

Example
Input Riak object

{
name : "Ivan Trojan",
year : 1964

}

Output Solr document
[

{ <<"name">>, <<"Ivan Trojan">> },
{ <<"year">>, <<"1964">> }

]

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 37

Search 2.0
Automa c fields
• A few technical fields are automa cally added as well
• E.g. _yz_rb (containing bucket name), _yz_rk (key), …

Solr index schema
• Describes how fields should be indexed within Solr
• Default schema available (_yz_default)

Suitable for debugging,
but custom schemas should be used in produc on

Field analysis and indexa on
• E.g.:

Values of fields are split into terms
Terms are normalized, stop words removed, …
Triples (token, field, document) are then indexed

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 38

Search 2.0: Index Crea on
How is index created?
• Index must be created and then also associated with a bucket
• Each index servers to a single bucket only

Example
curl -i -X PUT

-H 'Content-Type: application/json'
-d '{ "schema" : "_yz_default" }'
http://localhost:8098/search/index/iactors

curl -i -X PUT
http://localhost:8098/search/index/iactors

curl -i -X PUT
-H 'Content-Type: application/json'
-d '{ "props" : { "search_index" : "iactors" } }'
http://localhost:8098/buckets/actors/props

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 39

Search 2.0: Index Usage
Generic pa ern for search queries
• Parameters

q – search query (correctly encoded)
wt – Solr response writer to be used to compose response
start and rows – pagina on of matching objects
…

// searchsearch // queryquery // indexindex ?? parameterparameter == valuevalue

&&

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 40

Search 2.0: Index Usage
Available search func onality
• Wildcards

E.g. name:Iva*, name:Iva?

• Range queries
E.g. year:[2010 TO *]

• Logical connec ves and parentheses
AND, OR, NOT

• Proximity searches
• …

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 41

Architecture
Sharding + peer-to-peer replica on architecture
• Any node can serve any read or write user request
• Physical nodes run (several) virtual nodes (vnodes)

Nodes can be added and removed from the cluster dynamically

• Gossip protocol
Each node periodically sends its current view of the cluster,
its state and changes, bucket proper es, …

CAP proper es
• AP system: availability + par on tolerance

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 42

Consistency
BASE principles
• Availability is preferred to consistency
• Default proper es of buckets

n_val: replica on factor
r: read quorum
w: write quorum (node par cipa on is sufficient)
dw: write quorum (write to durable storage is required)

• Specific op ons of requests override the bucket proper es
However, strong consistency can be achieved
• When quora set carefully, i.e.:

w > n_val/2 for write quorum
r > n_val− w for read quorum

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 43

Causal Context
Conflic ng replicas are unavoidable (with eventual consistency)
⇒ how are they resolved?
• Causal context = data and mechanisms necessary in order to
resolve the conflicts

• Low-level techniques
Timestamps, vectors clocks, do ed version vectors
They can be used to resolve conflicts automa cally

– Might fail, then we must make the choice by ourselves
Or we can resolve the conflictsmanually

– Siblings then need to be enabled (allow_mult)
= mul ple versions of object values

• User-friendly CRDT data types with built in resolu on
Register, flag, counter, set, map

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 44

Causal Context
Vector clocks
• Mechanism for tracking object update causality
in terms of logical me (not chronological me)

• Each node has its own logical clock (integer counter)
Ini ally equal to 0
Incremented by 1 whenever any event takes place

• Vector clock = vector of logical clocks of all the nodes
Each node maintains its local copy of this vector
Whenever a message is sent, the local vector is sent as well
Whenever a message is received, the local vector is updated

– Maximal value for each individual node clock is taken

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 45

Riak Ring
Replica placement strategy
• Consistent hashing func on

Consistent = does not change when cluster changes
Domain: pairs of a bucket name and object key
Range: 160-bit integer space = Riak Ring

Riak Ring
• The whole ring is split into equally-sized disjoint par ons

Physical nodes are mutually interleaved
⇒ reshuffling when cluster changes is less demanding

• Each virtual node is responsible for exactly one par on
Example
• Cluster with 4 physical nodes, each running 8 virtual nodes
• I.e. 32 par ons altogether

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 46

Riak Ring

Source: h p://docs.basho.com/

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 47

Riak Ring
Replica placement strategy
• The first replica…

Its loca on is directly determined by the hash func on

• All the remaining replicas…
Placed to the consecu ve par ons in a clockwise direc on

What if a virtual node is failing?
• Hinted handoff

Failing nodes are simply skipped,
neighboring nodes temporarily take responsibility
When resolved, replicas are handed off to the proper loca ons

• Mo va on: high availability

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 48

Request Handling
Read and write requests can be submi ed to any node
• This nodes is called a coordina ng node
• Hash func on is calculated, i.e. replica loca ons determined
• Internal requests are sent to all the corresponding nodes
• Then the coordina ng node starts to wait
un l sufficient number of responses is received

• Result / failure is returned to the user

But what if the cluster changes?
• The value of the hash func on does not change,

only the par ons and their mapping to virtual nodes change

• However, the Ring knowledge a given node has might be obsolete!

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 49

Lecture Conclusion
RiakKV
• Highly available distributed key-value store
• Sharding with peer-to-peer replica on architecture
• Riak Ring with consistent hashing for replica placement

Query func onality
• Basic CRUD opera ons
• Link walking
• Search 2.0 full-text based on Apache Solr

NDBI040: Big Data Management and NoSQL Databases | Lecture 4: Key-Value Stores: RiakKV | 25. 10. 2016 50

	Introduction
	Common Aspects

	Riak
	Data Model
	Interfaces
	CRUD Operations
	Bucket Operations
	Link Walking
	Data Types
	Search 2.0
	Internal Details

	Conclusion

