NDBI040: Big Data Management and NoSQL Databases

http://www.ksi.mff.cuni.cz/~svoboda/courses/2016-1-NDBI040/

Lecture 2

MapReduce, Apache Hadoop

Martin Svoboda svoboda@ksi.mff.cuni.cz

11. 10. 2016

Charles University in Prague, Faculty of Mathematics and Physics **Czech Technical University in Prague**, Faculty of Electrical Engineering

Lecture Outline

MapReduce

- Programming model and implementation
- Motivation, principles, details, ...

Apache Hadoop

- HDFS Hadoop Distributed File System
- MapReduce

Programming Models

What is a programming model?

- Abstraction of an underlying computer system
 - Describes a logical view of the provided functionality
 - Offers a public interface, resources or other constructs
 - Allows for the expression of algorithms and data structures
 - Conceals physical reality of the internal implementation
 - Allows us to work at a (much) higher level of abstraction
- The point is how the intended user thinks in order to solve their tasks and not necessarily how the system actually works

Programming Models

Examples

- Traditional von Neumann model
 - Architecture of a physical computer with several components such as a central processing unit (CPU), arithmetic-logic unit (ALU), processor registers, program counter, memory unit, etc.
 - Execution of a stream of instructions
- Java Virtual Machine (JVM)
- ..

Do not confuse programming models with

- Programming paradigms (procedural, functional, logic, modular, object-oriented, recursive, generic, data-driven, parallel, ...)
- Programming languages (Java, C++, ...)

Programming Models

Parallel Programming Models

Process interaction

Mechanisms of mutual communication of parallel processes

- Shared memory shared global address space, asynchronous read and write access, synchronization primitives
- Message passing
- Implicit interaction

Problem decomposition

Ways of problem decomposition into tasks executed in parallel

- Task parallelism
- Data parallelism independent tasks on <u>disjoint partitions of data</u>
- Implicit parallelism

MapReduce Framework

What is MapReduce?

- Programming model + implementation
- Developed by Google in 2008

Google:

A simple and powerful interface that enables automatic parallelization and distribution of large-scale computations, combined with an implementation of this interface that achieves high performance on large clusters of commodity PCs.

MapReduce Framework

MapReduce programming model

- Cluster of commodity personal computers (nodes)
 - Each running a host operating system, mutually interconnected within a network, communication based on IP addresses, ...
- Data is distributed among the nodes
- Computation tasks executed in parallel across the nodes

Classification

- Process interaction: message passing
- Problem decomposition: data parallelism

MapReduce Framework

A bit of history and motivation

Google PageRank problem (2003)

- How to rank tens of billions of web pages by their importance
 - ... efficiently in a reasonable amount of time
 - ... when data is scattered across thousands of computers
 - ... data files can be enormous (terabytes or more)
 - ... data files are updated only occasionally (just appended)
 - ... sending the data between compute nodes is expensive
 - ... hardware failures are rule rather than exception
- Centralized index structure was no longer sufficient
- Solution
 - Google File System a distributed file system
 - MapReduce a programming model

MapReduce Model

Basic Idea

Divide-and-conquer paradigm

- Map function
 - Breaks down a problem into sub-problems
 - Processes input data in order to generate a set of intermediate key-value pairs
- Reduce function
 - Receives and combines sub-solutions to solve the problem
 - Processes and possibly reduces intermediate values associated with the same intermediate key

And that's all!

MapReduce Model

Basic Idea

And that's all!

- We only need to implement Map and Reduce functions
- Everything else such as
 - input data distribution,
 - scheduling of execution tasks,
 - monitoring of computation progress,
 - inter-machine communication,
 - handling of machine failures,
 - ...

is managed automatically by the framework!

MapReduce Model

A bit more formally...

Map function

- Input: a key-value pair
- Output: a set of intermediate key-value pairs
 - Usually from a different domain
 - Keys do not have to be unique
- $(k_1, v_1) \rightarrow \mathtt{list}(k_2, v_2)$

Reduce function

- Input: an intermediate key + a set of values for this key
- Output: a possibly smaller set of values for this key
 - From the same domain
- $(k_2, \mathtt{list}(v_2)) \rightarrow (k_2, \mathtt{list}(v_2))$

Example: Word Frequency

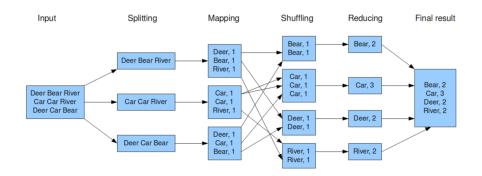
Implementation

```
/**
 * Map function
 * @param key Document name
 * @param value Document contents
 */
map(String key, String value) {
 foreach word w in value: emit(w, 1);
}
```

```
/**
  * Reduce function
  * @param key    Particular word
  * @param values List of count values associated with the word
  */
reduce(String key, Iterator values) {
  int result = 0;
  foreach v in values: result += v;
  emit(key, result);
}
```

Example: Word Frequency

Execution Phases



Execution: Phases

Splitting

Input key-value pairs (documents) are parsed and prepared

Mapping

- Map function is executed for each input document
- Intermediate key-value pairs are emitted

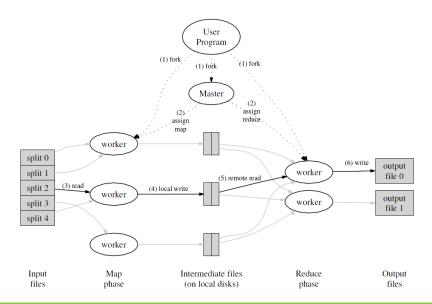
Shuffling

 Intermediate key-value pairs are grouped and sorted according to the keys

Reducing

- Reduce function is executed for each intermediate key
- Final output is generated

Execution: Schema



Execution: Components

Input reader

- Reads data from a stable storage (e.g. a distributed file system)
- Splits the data into appropriate size blocks (splits)
- Parses these blocks and prepares input key-value pairs

Map function

Partition function

- Determines Reduce task for an intermediate key-value pair
 - E.g. hash of the key modulo the overall number of reducers

Compare function

Compares two intermediate keys, used during the shuffling

Reduce function

Output writer

Writes the output of the Reduce function to stable storage

Combine function

- Analogous purpose and implementation to the Reduce function
- Objective
 - Decrease the amount of intermediate data ⇒
 - i.e. decrease the amount of data transferred to the reducer
- <u>Executed locally by the mapper</u> before the shuffling phase
- Only works for commutative and associative functions!

Counters

- Allow to track the progress of a MapReduce job in real time
 - Predefined counters
 - E.g. numbers of launched Map / Reduce tasks, parsed input key-value pairs
 - Custom counters (user-defined)
 - Can be associated with any action that a Map or Reduce function does

Fault tolerance

When a large number of nodes process a large number of data
 ⇒ fault tolerance is necessary

Worker failure

- Master periodically pings every worker; if no response is received in a certain amount of time, master marks the worker as failed
- All its tasks are reset back to their initial idle state and become eligible for rescheduling on other workers

Master failure

- Strategy A periodic checkpoints are created; if master fails, a new copy can then be started
- Strategy B master failure is considered to be highly unlikely; users simply resubmit unsuccessful jobs

Stragglers

- Straggler = node that takes unusually long time to complete a task it was assigned
- Solution
 - When a MapReduce job is close to completion, the master schedules backup executions of the remaining in-progress tasks
 - A given task is considered to be completed whenever either the primary or the backup execution completes

Task granularity

- Intended numbers of Map and Reduce tasks
- Practical recommendation (Google)
 - Map tasks
 - Choose the number so that each individual Map task has roughly 16 – 64 MB of input data
 - Reduce tasks
 - Small multiple of the number of worker nodes we expect to use
 - Note also that the output of each Reduce task ends up in a separate output file

Further Examples

URL access frequency

- Input: HTTP server access logs
- Map: parses a log, emits (accessed URL, 1) pairs
- Reduce: computes and emits the sum of the associated values
- Output: overall number of accesses to a given URL

Inverted index

- Input: text documents containing words
- Map: parses a document, emits (word, document ID) pairs
- Reduce: emits all the associated document IDs sorted
- Output: list of documents containing a given word

Further Examples

Distributed sort

- Input: records to be sorted according to a specific key
- Map: extracts the sorting key, emits (key, record) pairs
- Reduce: emits the associated records unchanged

Reverse web-link graph

- Input: web pages with ... tags
- Map: emits (target URL, this URL) pairs
- Reduce: emits the associated source URLs unchanged
- Output: list of URLs of web pages targeting a given one

Further Examples

Sources of links between web pages

```
/**
 * Map function
 * @param key Source web page URL
 * @param value HTML contents of this web page
 */
map(String key, String value) {
  foreach <a> tag t in value: emit(t.href, key);
}
```

```
/**
 * Reduce function
 * @param key URL of a particular web page
 * @param values List of URLs of web pages targeting this one
 */
reduce(String key, Iterator values) {
  emit(key, values);
}
```

Use Cases: General Patterns

Counting, summing, aggregation

 When the overall number of occurrences of certain items or a different aggregate function should be calculated

Collating, grouping

 When all items belonging to a certain group should be found, collected together or processed in another way

Filtering, querying, parsing, validation

 When all items satisfying a certain condition should be found, transformed or processed in another way

Sorting

 When items should be processed in a particular order with respect to a certain ordering criterion

Use Cases: Real-World Problems

Just a few real-world examples...

- Risk modeling, customer churn
- Recommendation engine, customer preferences
- Advertisement targeting, trade surveillance
- Fraudulent activity threats, security breaches detection
- Hardware or sensor network failure prediction
- Search quality analysis
- ..

Open-source software framework

- http://hadoop.apache.org/
- Distributed storage and distributed processing of very large data sets on clusters built from commodity hardware
 - Implements a distributed file system
 - Implements MapReduce
- Derived from the original Google MapReduce and GFS
- Developed by Apache Software Foundation
- Implemented in Java
- Operating system: cross-platform
- Initial release in 2011

Modules

- Hadoop Common
 - Common utilities and support for other modules
- Hadoop Distributed File System (HDFS)
 - High-throughput distributed file system
- Hadoop Yet Another Resource Negotiator (YARN)
 - Cluster resource management
 - Job scheduling framework
- Hadoop MapReduce
 - YARN-based implementation of the MapReduce model

Hadoop-related projects

- Apache Cassandra wide column store
- Apache HBase wide column store
- Apache Hive data warehouse infrastructure
- Apache Avro data serialization system
- Apache Chukwa data collection system
- Apache Mahout machine learning and data mining library
- Apache Pig framework for parallel computation and analysis
- Apache ZooKeeper coordination of distributed applications
- ..

Real-world Hadoop users

- Facebook internal logs, analytics, machine learning, 2 clusters: 1100 nodes (8 cores, 12 TB storage), 12 PB 300 nodes (8 cores, 12 TB storage), 3 PB
- LinkedIn 3 clusters: 800 nodes (2×4 cores, 24 GB RAM, 6×2 TB SATA), 9 PB 1900 nodes (2×6 cores, 24 GB RAM, 6×2 TB SATA), 22 PB 1400 nodes (2×6 cores, 32 GB RAM, 6×2 TB SATA), 16 PB
- **Spotify** content generation, data aggregation, reporting, analysis: 1650 nodes, 43000 cores, 70 TB RAM, 65 PB, 20000 daily jobs
- Yahoo! 40000 nodes with Hadoop, biggest cluster:
 4500 nodes (2×4 cores, 16 GB RAM, 4×1 TB storage), 17 PB

HDFS

Hadoop Distributed File System

- Open-source, high quality, cross-platform, pure Java
- Highly scalable, high-throughput, fault-tolerant
- Master-slave architecture
- Optimal applications
 - MapReduce, web crawlers, data warehouses, ...

HDFS: Assumptions

Data characteristics

- Large data sets and files
- Streaming data access
- Batch processing rather than interactive users
- Write-once, read-many

Fault tolerance

- HDFS cluster may consist of thousands of nodes
 - Each component has a non-trivial probability of failure
- \Rightarrow there is always some component that is non-functional
 - I.e. failure is the norm rather than exception, and so
 - automatic failure detection and recovery is essential

HDFS: File System

Logical view: Linux-based hierarchical file system

- Directories and files
- Contents of files is divided into blocks
 - Usually 64 MB, configurable per file level
- User and group permissions
- Standard operations are provided
 - Create, remove, move, rename, copy, ...

Namespace

- Contains names of all directories, files, and other metadata
 - I.e. all data to capture the whole logical view of the file system
- Just a single namespace for the entire cluster

HDFS: Cluster Architecture

Master-slave architecture

- Master: NameNode
 - Manages the file system namespace
 - Provides the user interface for all the operations
 - Create, remove, move, rename, copy, ... file or directory
 - Open and close file
 - Regulates access to files by users
 - Manages file blocks (mapping of logical to physical blocks)
- Slave: DataNode
 - Physically stores file blocks within the underlying file system
 - Serves read/write requests from users
 - I.e. user data never flows through the NameNode
 - Has no knowledge about the file system

HDFS: Replication

Replication = maintaining of multiple copies of each file block

- Increases read throughput, increases fault tolerance
- Replication factor (number of copies)
 - Configurable per file level, usually 3

Replica placement

- Critical to reliability and performance
- Rack-aware strategy
 - Takes the physical location of nodes into account
 - Network bandwidth between the nodes on the same rack is greater than between those in different racks
- Common case (replication factor 3):
 - Two replicas on two different nodes in a local rack
 - Third replica on a node in a different rack

HDFS: NameNode

How the NameNode Works?

- FsImage data structure describing the whole file system
 - Contains: namespace + mapping of blocks + system properties
 - Loaded into the system memory (4 GB RAM is sufficient)
 - Stored in the local file system, periodical checkpoints created
- EditLog transaction log for all the metadata changes
 - E.g. when a new file is created, replication factor is changed, ...
 - Stored in the local file system
- Failures
 - When the NameNode starts up
 - FsImage and EditLog are read from the disk, transactions from EditLog are applied, new version of FsImage is flushed on the disk, EditLog is truncated

HDFS: DataNode

How each **DataNode** Works?

- Stores physical file blocks
 - Each block (replica) is stored as a separate local file
 - Heuristics are used to place these files in local directories
- Periodically sends HeartBeat messages to the NameNode
- Failures
 - When a DataNode fails or in case of network partition, i.e. when the NameNode does not receive a HeartBeat message within a given time limit
 - The NameNode no longer sends read/write requests to this node, re-replication might be initiated
 - When a DataNode starts up
 - Generates a list of all its blocks and sends a BlockReport message to the NameNode

HDFS: API

Available application interfaces

- Java API
 - Python access or C wrapper also available
- HTTP interface
 - Browsing the namespace and downloading the contents of files
- FS Shell command line interface
 - Intended for the user interaction
 - Bash-inspired commands
 - E.g.:
 - hadoop fs -ls /
 - hadoop fs -mkdir /mydir

Hadoop MapReduce

Hadoop MapReduce

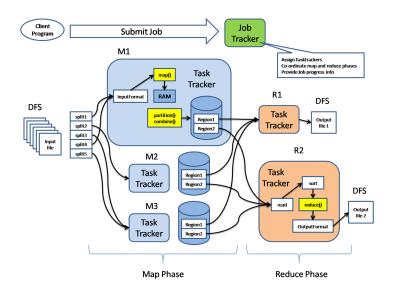
- MapReduce programming model implementation
- Requirements
 - HDFS
 - Input and output files for MapReduce jobs
 - YARN
 - Underlying distribution, coordination, monitoring and gathering of the results

Cluster Architecture

Master-slave architecture

- Master: JobTracker
 - Provides the user interface for MapReduce jobs
 - Fetches input file data locations from the NameNode
 - Manages the entire execution of jobs
 - Provides the progress information
 - Schedules individual tasks to idle TaskTrackers
 - Map, Reduce, ... tasks
 - Nodes close to the data are preferred
 - Failed tasks or stragglers can be rescheduled
- Slave: TaskTracker
 - Accepts tasks from the JobTracker
 - Spawns a separate JVM for each task execution
 - Indicates the available task slots via HearBeat messages

Execution Schema



Java Interface

Mapper class

- Implementation of the map function
- Template parameters
 - KEYIN, VALUEIN types of input key-value pairs
 - KEYOUT, VALUEOUT types of intermediate key-value pairs
- Intermediate pairs are emitted via context.write(k, v)

Java Interface

Reducer class

- Implementation of the reduce function
- Template parameters
 - KEYIN, VALUEIN types of intermediate key-value pairs
 - KEYOUT, VALUEOUT types of output key-value pairs
- Output pairs are emitted via context.write(k, v)

```
class MyReducer extends Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
    @Override
    public void reduce(KEYIN key, Iterable<VALUEIN> values, Context context)
        throws IOException, InterruptedException
    {
            // Implementation
     }
}
```

Example

Word Frequency

- Input: Documents with words
 - Files located at /user/martin/input HDFS directory
- Map: parses a document, emits (word, 1) pairs
- Reduce: computes and emits the sum of the associated values
- Output: overall number of occurrences of a given word
 - Output will be written to /user/martin/output

MapReduce job execution

hadoop jar wc.jar WordCount /user/martin/input /user/martin/output

Example: Mapper Class

```
public class WordCount {
 public static class MyMapper
   extends Mapper<Object, Text, Text, IntWritable>
    private final static IntWritable one = new IntWritable(1):
   private Text word = new Text();
   @Override
   public void map(Object key, Text value, Context context)
     throws IOException, InterruptedException
     StringTokenizer itr = new StringTokenizer(value.toString());
     while (itr.hasMoreTokens()) {
        word.set(itr.nextToken()):
        context.write(word, one);
```

Example: Reducer Class

```
public class WordCount {
 public static class MyReducer
   extends Reducer < Text. IntWritable. Text. IntWritable>
    private IntWritable result = new IntWritable():
   @Override
   public void reduce(Text key, Iterable<IntWritable> values,
     Context context) throws IOException, InterruptedException
     int sum = 0:
     for (IntWritable val : values) {
        sum += val.get();
     result.set(sum):
     context.write(key, result);
```

Conslusion

MapReduce criticism

- MapReduce is a step backwards
 - Does not use database schema
 - Does not use index structures
 - Does not support advanced query languages
 - Does not support transactions, integrity constraints, views, ...
 - Does not support data mining, business intelligence, ...
- MapReduce is not novel
 - Ideas more than 20 years old and overcome
 - Message Passing Interface (MPI), Reduce-Scatter

The end of MapReduce?