Course A7B36DBS: Database Systems

Practice 01:
Conceptual Modeling in ER and UML

Martin Svoboda

Faculty of Electrical Engineering, Czech Technical University in Prague
Conceptual Modeling

- Database modeling layers
 - Conceptual, logical and physical

- ER
 - Entity type (strong / weak)
 - Relationship type (binary / n-ary / recursive, cardinalities)
 - Attribute (ordinary / composite, multivalued)
 - Identifier (full / partial)
 - ISA hierarchy (covering / overlap constraints)

- UML
 - Class, association, attribute, generalization
Assignments
Exercise 1

• Create an ER conceptual schema for a simple student information system...
 ▪ Each person has a name, personal id number, address and one e-mail address
 ▪ Values of personal id are unique for different persons
Exercise 2

• Extend the previous diagram...
 ▪ Each person may have several login names that can be used for accessing the information system
 ▪ Together with each login name we also store hashed value of a corresponding password
Exercise 3

- Modify the previous diagram...
 - We would like to split the unstructured address attribute of a person to separate values of a street, city and post code
 - Each person may have at least one e-mail address from this moment
Exercise 4

• Extend the previous diagram...
 - Two types of persons are now distinguished:
 - Student have at least one phone number
 - Teacher may have a website and is identifiable also using an employee number
Exercise 5

- Extend the previous diagram...
 - Course is identified by its code, it has a unique name and also a number of credits
 - Each course is guaranteed by right one teacher
Exercise 6

• Extend the previous diagram...
 ▪ Two courses may have a mutual dependency
 – We also would like to distinguish between the two following types of such dependencies: co-requisites and pre-requisites
Exercise 7

- Extend the previous diagram...
 - Students work on theses which are lead by teachers
 - Each thesis has its type (bachelor, master, doctoral), unique name and year of assignment
 - Use an entity type for theses
 - Determine all the relationship cardinalities correctly
Exercise 8

• Modify the previous diagram...
 ▪ Can the previous relationship type for assignment / leadership of theses be modeled using a binary relationship type (instead of ternary)?
Exercise 9

- Extend the previous diagram...
 - Model a timetable using a relationship type
 - I.e. describe timetable events of teaching courses by teachers, always in a given day of a week, at a given time and on a given place
 - You can limit yourself on one active semester only
Exercise 10

- Modify the previous diagram...
 - Model timetable events using an entity type
Exercise 11

• Extend the previous diagram...
 - Each thesis may also be associated with several teachers acting as consultants
Exercise 12

• Modify the previous diagram...
 ▪ Thesis name as such is no longer sufficient to identify particular theses
 ▪ However, a pair of a thesis type and name is sufficient for this purpose
 ▪ Finally, an artificially assigned thesis number in a repository may be used for the identification as well
Exercise 13

• Extend the previous diagram...
 ▪ Departments consist of research groups
 ▪ Each department has its name and code, both allowing to be used as independent identifiers
 ▪ Research group can only be identified locally using its abbreviated name within a particular department it belongs to
Exercise 14

- Extend and modify the previous diagram...
 - Timetable events must support different semesters
 - Students can enroll in courses (even repeatedly)
 - For each such enrollment we need to record the final achieved grade (if any)
Exercise 15

- Create a UML schema diagram for the entire student information system as described
 - I.e. model all the following classes and associations:
 - Person, student, teacher, login, course, thesis, timetable event, time slot, room, semester, department, group