
B4M36DS2, BE4M36DS2: Database Systems 2
hƩp://www.ksi.mī.cuni.cz/~svoboda/courses/181-B4M36DS2/

Lecture 12

Advanced Aspects
Lecturer: MarƟn Svoboda, author: Irena Holubová
marƟn.svoboda@fel.cvut.cz

17. 12. 2018

Charles University, Faculty of MathemaƟcs and Physics
Czech Technical University in Prague, Faculty of Electrical Engineering

http://www.ksi.mff.cuni.cz/~svoboda/courses/181-B4M36DS2/
mailto:martin.svoboda@fel.cvut.cz

Managing Transactions

 Critics of NoSQL databases focus on the lack of support
for transactions

 Business transaction
 e.g., browsing a product catalogue, choosing a bottle of Talisker

at a good price, filling in credit card information, and confirming
the order

 System transaction
 At the end of the interaction with the user

 Locks are only held for a short period of time

 Business transaction = a series of system transactions

Managing Transactions

 Offline concurrency involves manipulating data for a business
transaction that spans multiple data requests
 Having a system transaction open for the whole business transaction is

not usually possible
 Long system transactions are not supported

 Problems:
 Overwriting uncommitted data

 More transactions select the same row and then update the row based on
the value originally selected unaware of the other

 Reading uncommitted data
 A transaction accesses the same row several times and reads different data

each time

 i.e., calculations and decisions may be made based on data that is
changed
 e.g., price list may be updated, someone may update the customer’s

address, changing the shipping charges, …

overwriting uncommitted data

(blind write)

reading uncommitted data

(dirty read)

Managing Transactions
Optimistic Offline Lock

 Assumes that the chance of conflict is low

 A form of conditional update
 Ensures that changes about to be committed by one session do

not conflict with the changes of another session

 Pre-commit validation
1. Client operation re-reads any information that the business

transaction relies on

2. It checks that it has not changed since it was originally read and
displayed to the user

 Obtaining a lock indicating that it is okay to go ahead
with the changes to the record data

Managing Transactions
Pessimistic Offline Lock

 Problems of optimistic approach:
 There might be many conflicts

 The conflict can be detected at the end of a lengthy business transaction

 Pessimistic solution: allows only one business transaction at a time to
access data

 Forces a business transaction to acquire a lock on each piece of data
before it starts to use it
 Once a business transaction begins, it surely completes

 Lock manager
 Simple, single (for all business transactions), centralized (or based on the

database in the distributed system)

 Standard issue: deadlock
 Timeout for an application

 Automatically rolled-back after a period of time of non responding

 Timestamp attribute for a lock
 Automatically released after a period of time

Managing Transactions
Coarse-grained Lock

 When objects are edited as a
group
 Logically related objects

 e.g., a customer and its set of
addresses
 We want to lock any one of them

 A separate lock for individual
objects presents a number of
challenges
 We need to find them all in order

to lock them
 Gets tricky as we get more

locking groups

 When the groups get complicated
 Nested groups

 Idea: a single lock that covers
many objects
 A sophisticated lock manager

Managing Transactions
Implicit Lock

 Problem: forgetting to write a single line of code that
acquires a lock  entire offline locking scheme is
useless
 Failing to retrieve a read lock  other transactions use write

locks  not getting up-to-date session data

 Failing to use a version count  unknowingly writing over
someone's changes

 Not releasing locks  bring productivity to a halt

 Fact: If an item might be locked anywhere it must be
locked everywhere

 Idea: locks are automatically acquired
 Not explicitly by developers but implicitly by the application

Performance Tuning
Goals

 MapReduce creates a bottleneck-free way of scaling out

 To reduce latency
 Latency:

 Non-parallel systems: time taken to execute the entire program

 Parallel systems: time taken to execute the smallest atomic sub-task

 Strategies:
 Reducing the execution time of a program

 Choosing the most optimal algorithms for producing the output

 Parallelizing the execution of sub-tasks

 To increase throughput
 Throughput = the amount of input that can be manipulated to generate

output within a process

 Non-parallel systems:
 Constrained by the available resources (amount of RAM, number of CPUs)

 Parallel systems:
 “No” constraints

 Parallelization allows for any amount of commodity hardware

Example from 2010: Tweets

add up to 12 Terabytes per day.

This amount of data needs

around 48 hours to be written to

a disk at a speed of about 80

Mbps.

Performance Tuning
Linear Scalability

 Typical horizontally scaled MapReduce-based model:
linear scalability
 “One node of a cluster can process x MBs of data every second
 n nodes can process x  n amounts of data every second.”

 Time taken to process y amounts of data on a single node = t
seconds

 Time taken to process y amounts of data on n nodes = t / n seconds

 Assumption: tasks can be parallelized into equally
balanced units

Performance Tuning
Amdahl’s Law

 Formula for finding the maximum improvement in performance of a
system when a part is improved
 P = the proportion of the program that is parallelized

 1 – P = the proportion of the program that cannot be parallelized

 N = the times the parallelized part performs as compared to the non-
parallelized one
 i.e., how many times faster it is

 e.g., the number of processors

 Tends to infinity in the limit

 Example: a process that runs for 5 hours (300 minutes); all but a
small part of the program that takes 25 minutes to run can be
parallelized
 Percentage of the overall program that can be parallelized: 91.6%

 Percentage that cannot be parallelized: 8.4%

 Maximum increase in speed: 1 / (1 – 0.916) = ~11.9 times faster
 N tends to infinity

Performance Tuning
Little’s Law

 Origins in economics and queuing theory (mathematics)

 Analyzing the load on stable systems
 Customer joins the queue and is served (in a finite time)

 “The average number of customers (L) in a stable system is the
product of the average arrival rate (k) and the time each customer
spends in the system (W).”
 Intuitive but remarkable result

 i.e., the relationship is not influenced by the arrival process distribution,
the service distribution, the service order, or practically anything else

 Example: a gas station with cash-only payments over a single
counter
 4 customers arrive every hour

 Each customer spends about 15 minutes (0.25 hours) at the gas station

 There should be on average 1 customer at any point in time

 If more than 4 customers arrive at the same station, it would lead to a
bottleneck

L = kW

Performance Tuning
Message Cost Model

 Breaks down the cost of sending a message from one end to the
other in terms of its fixed and variable costs
 C = cost of sending the message from one end to the other

 a = the upfront cost for sending the message

 b = the cost per byte of the message

 N = number of bytes of the message

 Example: gigabit Ethernet
 a is about 300 microseconds = 0.3 milliseconds

 b is 1 second per 125 MB
 Implies a transmission rate of 125 MBps.

 100 messages of 10 KB => take 100  (0.3 + 10/125) ms = 38 ms

 10 messages of 100 KB => take 10  (0.3 + 100/125) ms = 11 ms

 A way to optimize message cost is to send as big

 packet as possible each time

C = a + bN

0,08

0,8

initialization

linear dependence

on size

Motivation for (Big) Data

Visualization
 Data visualization = creation and studying of visual

 representation of data
 Information abstracted in some schematic form

 Including attributes, variables, …

 Purpose:
 To communicate information clearly and effectively through graphical

means

 To help find the information needed more effectively and intuitively

 Both aesthetic form and functionality are required

 Even when data volumes are large, the patterns can be spotted
quite easily (with the right data processing and visualization)
 Simplification of Big Data management

 Picking up things with the naked eye that would otherwise be hidden

Motivation

Four data sets with nearly identical

linear model (mean, variance, linear

regression line, …)

Source: Tufte, Edward R (1983), The Visual Display of Quantitative Information,

Graphics Press

Similar motivation as for statistics but visualization can

reveal/distinguish data/trends/patters, … which

statistics can not

Motivation

Find an outlier….

Data Visualization

 Information visualization has two equally
important aspects
 Structural modeling

 Detection, extraction and simplification of the underlying
information

 Graphical representation
 Transform initial representation into a graphical one which

provides visualization of the structure

 Different types of structures require different type of
visualization

 e.g., time series vs. hierarchical information

Big Data Visualization

 Decision about what technique to use became more
difficult with Big Data
 Visualization is needed to decide which portion of data to explore

further

 Visualization algorithms (i.e., graph drawing) should scale well to
billions of entities (nodes)

 The first application was probably the visualization of web-related
data

 i.e., pages, relations, traffic, …

 New techniques may be needed

 Trends might not be clear

 Noise reduction might be even more necessary

Visualization Types
Data Relationships

 Scatter plot
 Classical statistical diagram that lets

us visualize relationships between
numeric variables

 Can carry additional information

 Matrix chart
 Summarizes a multidimensional data

set in a grid

 Network diagram
 A set of objects (vertices) connected

by edges

 Visualization of the network is
optimized to keep strongly related
items in close proximity to each other

Visualization Types
Data Relationships

 Correlation matrix

(heat map)

 Combines data to

quickly identify which

variables are related

 Shows how strong the

relationship is between

the variables

Visualization Types
Data Relationships

 Heat map is often combined with a dendrogram
 Aggregates rows or columns based on their overall

similarity into a tree structure

Visualization Types
Comparison of a Set of Values

 Bar Chart
 Classical method for numerical

comparisons

 Histograms

 Box plot (box-and-whisker plots)

 Five statistics (minimum, lower
quartile, median, upper quartile
and maximum) summarizing the
distribution of a set of data

 Bubble chart
 Circles in a bubble chart

represent different data values

 The area of a circle
corresponding to the value

 The positions of the bubbles do
not mean anything

 Designed to pack the circles
together with relatively little
wasted space

Visualization Types
Trends over Time

 Line graph
 Classical method for

visualizing continuous
change

 Stack graph
 Visualizing change in a

set of items

 The sum of the values is
as important as the
individual items

Visualization Types
Parts of a Whole

 Pie Chart

 Percentages are encoded as
"slices" of a pie, with the area
corresponding to the
percentage

 Treemap

 Visualization of hierarchical
structures

 Effective in showing attributes
of leaf nodes using size and
color coding

 Enable to compare nodes and
sub-trees at varying depth

Economy of Australia

Visualization Types
Text Analysis

 Tag cloud

Visualization of word

frequencies

 i.e., how frequently words

appear in a given text

Which Visualization Technique to

Use?

 New visualization software is capable of
“guessing” the correct visualization based on the
characteristics of the data
 One-dimensional data  bar chart

 Two-dimensional data  scatter plot

 N-dimensional data  multiple scatter plots, matrix
chart, …

 Data with coordinates  map-based charts

 Offers options

 Trend: to simplify the process for common users

Big Data Visualization

 The goal of visualizing Big Data is usually to make sense
of a large amount of interlinked information

 In interconnected data the connections between objects
are difficult to organize on a linear layout
 Circular representations

 Network diagrams

 Typical “topologies” one can encounter (a bit confusing
term based on Manuel Lima’s “Visual Complexity” – see
references) include arc diagrams, centralized burst,
centralized ring, globe, circular ties or radial
convergence
 And many more…

Arc Diagram

 Vertices are placed on a line and edges are drawn as semicircles

 Arcs represent relationships
 Colors can encode, e.g., distance

A map of 63,799 cross-

references found in the

Bible. The bottom bars

represent number of

verses in the given

chapter. Color of arcs

represents the distance

between the two chapters.

http://www.chrisharrison.net/index.

php/Visualizations/BibleViz

grey/white = book

Arc Diagram  Visualization of IRC
communication behavior:
Who is talking to whom?

 Arcs are directional and
drawn clockwise:
 In the upper half of a

graph they point from left
to right, in the bottom
half from right to left

 Arc strength corresponds
to the number of
references from the
source to the target

 This visualization favors
strong social connections
over sociability: Frequent
references between the
same two users feature
more prominently than
combined references from
several sources to a
single target.

 http://datavis.dekstop.de/ir
c_arcs/

Sorted by the

amount of incoming

references

Sorted by the

amount of outgoing

references

Sorted by rate of

incoming/outgoing

references

Sorted by user name Unsorted

users

references

Centralized Burst

 Visualization with strong
central tendency

 Can reveal highly
connected objects
(hubs) which usually
correspond to objects
with high importance
 e.g., in a gene network,

hubs are interesting points
for targeting new drugs
 Disabling a central gene

probably will not allow the
organism to adapt

A map of protein-to-protein interactions of a yeast
source: H. Jeong. et al. “Lethality and Centrality in Protein Networks”,

Nature, no. 411, 2011: 41-42

Centralized Ring

 Topology suitable for situations where we inspect a relation of
multiple objects to one object

 Not very suitable for Big Data

A sociogram of individual donations in

Asheville, North Carolina, to Barack Obama’s

2008 presidential campaign.
http://www.visualcomplexity.com/vc/project.cfm?id=613

A map of genetic overlap between migraine

and about 60 other diseases. Each of the

circles represents a different disease, and the

size of the circle corresponds to the size of

patient samples, ranging from 46 to 136,000,

of those suffering from the disease.

Globe

 Globe visualizations are basically projections of other

topologies on a globe

• The global exchange of information in real

time by visualizing volumes of long

distance telephone and IP data flowing

between New York and cities around the

world.

• How does the city of New York connect to

other cities? With which cities does New

York have the strongest ties and how do

these relationships shift with time? How

does the rest of the world reach into the

neighborhoods of New York? The size of

the glow on a particular city location

corresponds to the amount of IP traffic

flowing between that place and New York

City. A greater glow implies a greater IP

flow.
http://www.aaronkoblin.com/work/NYTE/index.html

Radial Convergence

 Also known as radial chart

 Actually a 360 arc diagram

Tracking the commercial ties between

most countries across the globe.
http://cephea.de/gde/

Money flow from private donators to

parties in the German Bundestag (house

of the parliament).
http://labs.vis4.net/parteispenden/

parties

donators

Polyglot Persistence

 Different databases are designed to solve different
kinds of problems

 Using a single database engine for all of the
requirements usually leads to partially non-performant
solutions

 Example: e-commerce
 Many types of data

 Business transactions,

 session management data,

 reporting, data warehousing,

 logging information, …

 Do not need the same

 properties of availability,

 consistency, or backup

 requirements

Polyglot Persistence

 Polyglot programming (2006)
 Applications should be written in a mix of languages

 Different languages are suitable for tackling different problems

 Polyglot persistence
 Hybrid approach to

 persistence

 e.g., a data store for the

 shopping cart which is

 highly available vs.

 finding products bought

 by the customers’ friends

Polyglot Persistence

 There may be other applications in the enterprise
 e.g., the graph data store can serve data to applications that

need to understand which products are being bought by a
certain segment of the customer base

 Instead of each application talking independently to the
graph database, we can wrap the graph database into a
service
 Assumption:

 Nodes can be saved in one place

 Queried by all the applications

 Allows for the databases inside the services to evolve without
having to change the dependent applications

