Czech Technical University in Prague, Faculty of Information Technology
MIE-PDB: Advanced Database Systems
http://www.ksi.mff.cuni.cz/~svoboda/courses/171-MIE-PDB/

Lecture 10

Graph Databases: Neo4j

Martin Svoboda
martin.svoboda@fit.cvut.cz

5. 12. 2017

{XG Charles University, Faculty of Mathematics and Physics
- waos NDBIO40: Big Data Management and NoSQL Databases

http://www.ksi.mff.cuni.cz/~svoboda/courses/171-MIE-PDB/

Lecture Outline

Graph databases
* Introduction
Neodj
e Data model: property graphs

¢ Traversal framework
* Cypher query language
= Read, write, and general clauses

Graph Databases

Data model
e Property graphs
= Directed / undirected graphs, i.e. collections of ...

— nodes (vertices) for real-world entities, and
— relationships (edges) among these nodes

= Both the nodes and relationships can be associated
with additional properties

Types of databases
¢ Non-transactional = small number of large graphs

* Transactional = large number of small graphs

Graph Databases

Query patterns
» Create, update or remove a node / relationship in a graph

Graph algorithms (shortest paths, spanning trees, ...)

General graph traversals

Sub-graph queries or super-graph queries

Similarity based queries (approximate matching)

Neodj Graph Database

@yneoy)

Neodj

Graph database
https://neo4j.com/
Features
= Open source, massive scalability (billions of nodes), high
availability, fault-tolerant, master-slave replication, ACID
transactions, embeddable, ...
= Expressive graph query language (Cypher),
traversal framework

Developed by Neo Technology

Implemented in Java

Operating systems: cross-platform
Initial release in 2007

MIE-PDB: Advanced Database Systems | Lecture 10: Graph Databases: Neo4j | 5. 12. 2017

https://neo4j.com/

Data Model

Database system structure

| Instance — single graph |

Property graph = directed labeled multigraph
* Collection of vertices (nodes) and edges (relationships)
Graph node
* Has a unique (internal) identifier
* Can be associated with a set of labels
= Allow us to categorize nodes

e Can also be associated with a set of properties
= Allow us to store additional data together with nodes

Data Model

Graph relationship
* Has a unique (internal) identifier
¢ Has a direction

= Relationships are equally well traversed in either direction!
= Directions can even be ignored when querying at all

Always has a start and end node
= Can be recursive (i.e. loops are allowed as well)

* Is associated with exactly one type

Can also be associated with a set of properties

Data Model

Node and relationship property

Key-value pair
= Key is a string
= Value is an atomic value of any primitive data type,
or an array of atomic values of one primitive data type

Primitive data types

boolean — boolean values true and false

byte, short, int, long — integers (1B, 2B, 4B, 8B)
float, double — floating-point numbers (4B, 8B)
char — one Unicode character

String — sequence of Unicode characters

MIE-PDB: Advanced Database Systems | Lecture 10: Graph Databases: Neo4j | 5. 12. 2017

Sample Data

Sample graph with movies and actors

(m1:MOVIE { id: "vratnelahve", title: "Vratné lahve", year: 2006 })
(m2:MOVIE { id: "samotari", title: "Samotafi", year: 2000 })
(m3:MOVIE { id: "medvidek", title: "Medvidek", year: 2007 })
(m4:MOVIE { id: "stesti", title: "Stésti", year: 2005 })

(a1:ACTOR { id: "trojan", name: "Ivan Trojan", year: 1964 })

(a2:ACTOR { id: "machacek", name: "Ji¥i Machaéek", year: 1966 })
(a3:ACTOR { id: "schneiderova", name: "Jitka Schneiderova", year: 1973 })
(a4:ACTOR { id: "sverak", name: "Zden&k Svérak", year: 1936 1})

(m1)-[c1:PLAY
(m1)-[c2:PLAY
(m2)-[c3:PLAY
(m2)-[c4:PLAY

role: "Robert Landa" }]->(a2)

role: "Josef Tkaloun" }]->(a4)

role: "Ondfej" }1->(al)

role: "Jakub" }]1->(a2)

(m2)-[c5:PLAY { role: "Hanka" }]->(a3)

(m3)-[c6:PLAY { role: "Ivan" }]->(al)

(m3)-[c7:PLAY { role: "Jirka", award: "Czech Lion" }]->(a2)

{
{
{
{
{
{

Neodj Interfaces

Database architecture
e Client-server
e Embedded database
= Directly integrated within your application

Neodj drivers
e Official: Java, .NET, JavaScript, Python
e Community: C, C++, PHP, Ruby, Perl, R, ...
Neodj shell
* Interactive command-line tool
Query patterns
e Cypher — declarative graph query language
¢ Traversal framework

Traversal Framework

Traversal Framework

Traversal framework
* Allows us to express and execute graph traversal queries
* Based on callbacks, executed lazily
Traversal description
* Defines rules and other characteristics of a traversal
Traverser

* Initiates and manages a particular graph traversal
according to...

= the provided traversal description, and
= graph node / set of nodes where the traversal starts

* Allows for the iteration over the matching paths, one by one

MIE-PDB: Advanced Database Systems | Lecture 10: Graph Databases: Neodj | 5. 12. 2017

13

Traversal Framework: Example

Find actors who played in Medvidek movie

TraversalDescription td = db.traversalDescription()
.breadthFirst ()
.relationships(Types.PLAY, Direction.0OUTGOING)
.evaluator (Evaluators.atDepth(1));

Node s = db.findNode(Label.label("MOVIE"), "id", "medvidek");
Traverser t = td.traverse(s);

for (Path p : t) {
Node n = p.endNode();
System.out.println(
n.getProperty("name")
)5
}

Ivan Trojan
Jifi Machacek

Traversal Description

Components of a traversal description
e Order
= Which graph traversal algorithm should be used
e Expanders
= What relationships should be considered
¢ Uniqueness
= Whether nodes / relationships can be visited repeatedly
¢ Evaluators

= When the traversal should be terminated
= What should be included in the query result

Traversal Description: Order

Order
Which graph traversal algorithm should be used?
* Standard depth-first or breadth-first methods can be selected

or
specific branch ordering policies can also be implemented

e Usage:
td.breadthFirst ()
td.depthFirst ()

Traversal Description: Expanders

Path expanders

Being at a given node...
what relationships should next be followed?

e Expander specifies one allowed...
= relationship type and direction

— Direction.INCOMING
— Direction.OUTGOING
— Direction.BOTH

* Multiple expanders can be specified at once
= When none is provided,
then all the relationships are permitted

e Usage:
td.relationships(type, direction)

Traversal Description: Uniqueness

Uniqueness
Can particular nodes / relationships be revisited?

¢ Various uniqueness levels are provided

= Uniqueness.NONE — no filter is applied

® Uniqueness.RELATIONSHIP_PATH
Uniqueness.NODE_PATH

— Nodes / relationships within a current path must be distinct

= Uniqueness.RELATIONSHIP_GLOBAL
Uniqueness.NODE_GLOBAL (default)

— No node / relationship may be visited more than once

e Usage:
td.uniqueness(level)

Traversal Description: Evaluators

Evaluators
Considering a particular path...

should this path be included in the result?
should the traversal further continue?

¢ Available evaluation actions

* Evaluation.INCLUDE_AND_CONTINUE
Evaluation.INCLUDE_AND_PRUNE
Evaluation.EXCLUDE_AND_CONTINUE
Evaluation.EXCLUDE_AND_PRUNE

* Meaning of these actions

= INCLUDE / EXCLUDE = whether to include the path in the result
= CONTINUE / PRUNE = whether to continue the traversal

Traversal Description: Evaluators

Predefined evaluators
e Evaluators.all()
= Never prunes, includes everything
* Evaluators.excludeStartPosition()
= Never prunes, includes everything except the starting nodes

* Evaluators.atDepth(depth)
Evaluators.toDepth(maxDepth)
Evaluators.fromDepth(minDepth)
Evaluators.includingDepths (minDepth, maxDepth)

= Includes only positions within the specified interval of depths

Traversal Description: Evaluators

Evaluators
e Usage:
td.evaluator (evaluator)
* Note that evaluators are applied even for the starting nodes!
* When multiple evaluators are provided...
= then they must all agree on both the questions

* When no evaluator is provided...
= then the traversal never prunes and includes everything

Traverser

Traverser

* Allows us to perform a particular graph traversal
= with respect to a given traversal description
= starting at a given node / nodes
e Usage: t=td.traverse()
= for (Pathp:t){...}
— lterates over all the paths
= for (Noden:t.nodes()){...}
— Iterates over all the paths, returns their end nodes
= for (Relationshipr:t.relationships()){...7}
— lterates over all the paths, returns their last relationships
Path

* Well-formed sequence of interleaved nodes and relationships

MIE-PDB: Advanced Database Systems | Lecture 10: Graph Databases: Neodj | 5. 12. 2017 22

Traversal Framework: Example

Find actors who played with Zdenék Svérak

TraversalDescription td = db.traversalDescription()
.depthFirst()
.uniqueness (Uniqueness.NODE_GLOBAL)
.relationships(Types.PLAY)
.evaluator(Evaluators.atDepth(2))
.evaluator (Evaluators.excludeStartPosition());

Node s = db.findNode(Label.label("ACTOR"), "id", "sverak");
Traverser t = td.traverse(s);

for (Node n : t.nodes()) {
System.out.println(
n.getProperty("name")
)5
}

’Jifi Machéacek

Cypher

Cypher
* Declarative graph query language
= Allows for expressive and efficient querying and updates
= Inspired by SQL (query clauses) and SPARQL (pattern matching)

* OpenCypher

= Ongoing project aiming at Cypher standardization
» http://www.opencypher.org/

Clauses
e E.g. MATCH, RETURN, CREATE, ...

* Clauses can be (almost arbitrarily) chained together
= Intermediate result of one clause is passed to a subsequent one

MIE-PDB: Advanced Database Systems | Lecture 10: Graph Databases: Neo4j | 5. 12. 2017

25

http://www.opencypher.org/

Sample Query

Find names of actors who played in Medvidek movie

MATCH (m:MOVIE)-[r:PLAY]->(a:ACTOR)
WHERE m.title = "Medvidek"
RETURN a.name, a.year
ORDER BY a.year

Ivan Trojan 1964
Jiri Machacek 1966

Clauses

Read clauses and their sub-clauses
e MATCH - specifies graph patterns to be searched for
= WHERE — adds additional filtering constraints

Write clauses and their sub-clauses
* CREATE — creates new nodes or relationships

DELETE — deletes nodes or relationships

SET — updates labels or properties

REMOVE — removes labels or properties

MIE-PDB: Advanced Database Systems | Lecture 10: Graph Databases: Neo4j | 5. 12. 2017 27

Clauses

General clauses and their sub-clauses

e RETURN — defines what the query result should contain

= ORDER BY — describes how the query result should be ordered
= SKIP — excludes certain number of solutions from the result
= LIMIT - limits the number of solutions to be included

e WITH - allows query parts to be chained together

Path Patterns

Path pattern expression
* Sequence of interleaved node and relationship patterns
* Describes a single path (not a general subgraph)

.
relationship pattern

e ASCII-Art inspired syntax

= Circles () for nodes
= Arrows <--, -—, ——> for relationships

Path Patterns

Node pattern
* Matches one data node

O O

e Variable
= Allows us to access a given node later on
* Set of labels
= Data node must have all the specified labels to be matched
* Property map
= Data node must have all the requested properties (including
their values) to be matched (the order is unimportant)

Path Patterns

Property map

G @~
@»
)
o/

Relationship pattern
* Matches one data relationship

= ©
oo et Lo).0.)

Path Patterns

Relationship pattern

D

@ O
T

@~
\[uaratngn] -/ \[aperyman]~

{

* Variable
= Allows us to access a given node later on
e Set of types

= Data relationship must be of one of the enumerated types
to be matched

Path Patterns

Relationship pattern (cont.)
¢ Property map
= Data relationship must have all the requested properties
* Variable path length

= Allows us to match paths of arbitrary lengths
(not just exactly one relationship)

O
[C SV wm——

= Examples: *, *4, *x2. .6, . .6, *2. .

Path Patterns

Examples
0
] ©--

’(m:MUVIE)-->(a:ACTUR)

’(:MDVIE)——>(a { name: "Ivan Trojan" })

’(m)—[:PLAY { role: "Ivan" }1->(Q)

’(:ACTDR { name: "Ivan Trojan" })-[:KNOW *2]->(:ACTOR)

|

|

|

|
’()<—[r:PLAY]-()

|

|

’()-[:KNUW *5..1->(f)

Match Clause

MATCH clause

* Allows to search for sub-graphs of the data graph that match
the provided path pattern / patterns (all of them)

= Query result (table) = unordered set of solutions
= One solution (row) = set of variable bindings

e Each variable has to be bound

MATCH path pattern
e OPTIONAL)J T‘\»®J W
~

(

"\ Cere)~ [expresson |-

MIE-PDB: Advanced Database Systems | Lecture 10: Graph Databases: Neo4j | 5. 12. 2017

35

Match Clause

WHERE sub-clause may provide additional constraints

* These constraints are evaluated directly during the matching
phase (i.e. not after it)
e Typical usage
= Boolean expressions

= Comparisons
= Path patterns — true if at least one solution is found

Match Clause: Example

Find names of actors who played with Ivan Trojan in any movie

MATCH (i:ACTOR)<-[:PLAY]-(m:MOVIE)-[:PLAY]->(a:ACTOR)
WHERE (i.name = "Ivan Trojan")
RETURN a.name

MATCH (i:ACTOR { name: "Ivan Trojan" 1})
<-[:PLAY]-(m:MOVIE)-[:PLAY]->
(a:ACTOR)
RETURN a.name

i m a
(a1) (m2) (a2) N Jifi Machacek
(a1) (m2) (a3) Jitka Schneiderova
(a1) (m3) (a2) Jifi Machacek

Match Clause

Unigqueness requirement

* One data node may match several query nodes, but one data
relationship may not match several query relationships

OPTIONAL MATCH

* Attempts to find matching data sub-graphs as usual...
e but when no solution is found,

one specific solution with all the variables bound to NULL
is generated

* Note that
either the whole pattern is matched, or nothing is matched

MIE-PDB: Advanced Database Systems | Lecture 10: Graph Databases: Neo4j | 5. 12. 2017 38

Match Clause: Example

Find movies filmed in 2005 or earlier and names of their actors
(if any)

MATCH (m:MOVIE)

WHERE (m.year <= 2005)
OPTIONAL MATCH (m)-[:PLAY]->(a:ACTOR)
RETURN m.title, a.name

- m 2
m (m2) (a1) Samotari Ilvan Trojan
(m2) | = | (m2) (@2) = Samotafi Jifi Machacek
(m4) (m2) (a3) Samotari Jitka Schneiderova
(m4) | NULL Stésti NULL

Return Clause

RETURN clause

* Defines what to include in the query result

= Projection of variables, properties of nodes or relationships
(via dot notation), aggregation functions, ...

e Optional ORDER BY, SKIP and LIMIT sub-clauses

o>(_ RETURN projection
DISTINCT }
k ORDER BY clause \v SKIP clause L LIMIT clause

RETURN DISTINCT
e Duplicate solutions (rows) are removed

Return Clause

Projection
* x = all the variables
= Can only be specified as the very first item
* AS allows to explicitly (re)name output records

Mo —
T e

expression

\»»ﬂ
-

Return Clause

ORDER BY sub-clause

* Defines the order of solutions within the query result

= Multiple criteria can be specified
= Default direction is ASC

e The order is undefined unless explicitly defined
* Nodes and relationships as such cannot be used as criteria

WCORDER BY) [expression }

ey
=/

Return Clause

SKIP sub-clause

e Determines the number of solutions to be skipped
in the query result

H expression [>o

LIMIT sub-clause

¢ Determines the number of solutions to be included
in the query result

o> LIMIT)| expression >o

With Clause

WITH clause
¢ Constructs intermediate result

= Analogous behavior to the RETURN clause
= Does not output anything to the user,
just forwards the current result to the subsequent clause

e Optional WHERE sub-clause can also be provided

o> WITH projection
DISTINCT

\[oromrevoms |~/ \-[Skpcmme}-’ \[mmromse}-/ f

(

- R)~ [opmamont-

MIE-PDB: Advanced Database Systems | Lecture 10: Graph Databases: Neo4j | 5. 12. 2017 44

With Clause: Example

Numbers of movies in which actors born in 1965 or later played

MATCH (a:ACTOR)

WHERE (a.year >= 1965)
WITH a, SIZE((a)<-[:PLAY]-(m:MOVIE)) AS movies
RETURN a.name, movies

ORDER BY movies ASC

(a2) | = | (a2) 3 = | Jitka Schneiderova 1
(a3) (a3) 1 Jifi Machacdek 3

Query Structure

Chaining of Cypher clauses (simplified)

MATCH clause CREATE clause
UNWIND clause E MERGE clause

DELETE clause
SET clause
REMOVE clause

['WITH clause |

RETURN clause

* Read clauses: MATCH, ...
e Write clauses: CREATE, DELETE, SET, REMOVE, ...

Query Structure

Query parts
* WITH clauses split the whole query into query parts
» Certain restrictions apply...

= Read clauses (if any) must precede write clauses (if any)
in every query part
= The last query part must be terminated by a RETURN clause
— Unless this part contains at least one write clause
— l.e. read-only queries must return data

Write Clauses

CREATE clause
* Inserts new nodes or relationships into the data graph

o>(_CREATE) path pattern

\>(variable H@J
~

Example

MATCH (m:MOVIE { id: "stesti"})

CREATE
(a:ACTOR { id: "vilhelmova", name: "Tatiana Vilhelmova", year: 1978}),
(m)-[:PLAY]->(a)

Write Clauses

DELETE clause
* Removes nodes, relationships or paths from the data graph

» Relationships must always be removed before the nodes
they are associated with

= Unless the DETACH modifier is specified

WCDELETE expression
(DETACH)

Example

MATCH (:MOVIE { id: "stesti"})-[r:PLAY]->(a:ACTOR)
DELETE r

Write Clauses

SET clause

e Allows to...
= set a value of a particular property
— or remove a property when NULL is assigned
= replace properties (all of them) with new ones
= add new properties to the existing ones
= add labels to nodes

e Cannot be used to set relationship types

or (BT) >~ (varabie) ()~ propery key)-~(=)~ expression
Cvariable}»@—»l expression]
(artie) ~(+) (=)~ [exresson]

Write Clauses

REMOVE clause
¢ Allows to...

= remove a particular property
= remove labels from nodes

e Cannot be used to remove relationship types

HC REMOVE variable}»@—»(prupeny key)
)

o/

Expressions

Literal expressions
* Integers: decimal, octal, hexadecimal
* Floating-point numbers
e Strings

= Enclosed in double or single quotes
= Standard escape sequences

e Boolean values: true, false
e NULL value (cannot be stored in data graphs)
Other expressions

» Collections, variables, property accessors, function calls,
path patterns, boolean expressions, arithmetic expressions,
comparisons, regular expressions, predicates, ...

MIE-PDB: Advanced Database Systems | Lecture 10: Graph Databases: Neo4j | 5. 12. 2017 52

Lecture Conclusion

Neodj = graph database
* Property graphs
* Traversal framework
= Path expanders, uniqueness, evaluators, traverser

Cypher = graph query language
* Read (sub-)clauses: MATCH, WHERE, ...
e Write (sub-)clauses: CREATE, DELETE, SET, REMOVE, ...
e General (sub-)clauses: RETURN, WITH, ORDER BY, LIMIT, ...

	Introduction
	Neo4j
	Data Model
	Sample Data
	Query Interfaces
	Traversal Framework
	Cypher Language
	Path Patterns
	Match Clause
	Return Clause
	With Clause
	Query Structure
	Write Clauses
	Expressions

