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Abstract. The retrieval problem is one of the main reasoning problems for ontology
based systems. The retrieval problem for con€@gonsists in finding all individ-

ualsa which satisfyC'(a). We present ontology transformation which can help to
improve evaluating queries over (sublanguage of) OWL ontologies. Our solution is
based on translating retrieval concepts into relational algebra expressions and con-
sequently to SQL queries over a database constructed from the original ontology.
Ontology transformation into database is ontology-dependent but fully automatic
and it is provided by system TORQue.
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Introduction

Ontologyis a knowledge base that can describe concepts, their instances and relations
between them. Definitions of concepts and relations are formulated in an ontology lan-
guage, for more detail see Section 1.2. One of the main kinds of inferencing for knowl-
edge based systems is so-calieieval probleni2]. The retrieval problem in ontologies

is equivalent to querying in relational databases.

In present there are lot of methods and tools for creating, designing and reasoning
the ontologies. Some of them have been influenced by techniques of relational databases,
e.g. [8]. However the problem is an effective maintenance and reusing them through the
running queries. There exist some open source systems that can handle ontology with
large amount of the data. We have an experience with Sesame [23] within the projects
described in [7,10]. But we have found out that query evaluation is very expensive. How-
ever the problem is not just problem of Sesame but also of other systems. To speed up
the evaluation of some specific queries (those known in advance) the transformation to
optimized indexes is very effective [11].

In this work we would like to present a model of ontology storage based on rela-
tional databases without loosing any ontological advantage. Combination of ontologies
and relational databases has the advantage that all query optimization techniques pro-
vided by relational database systems can be used. This makes possible to work with huge
datasets. We also present test results and compare them with other systems to consider
contributions and disadvantages of our approach.

There are some research groups interested in storing ontologies into databases. One
of the prominent projects is realized by the system HAWK [19] and its predecessor
project DLDB [12]. These systems work similarly to ours, i.e. they recompute 1S-A hi-



erarchy of concepts and store it into a database. Ontology queridsedhen translated

into standard SQL queries. After that the queries are evaluated by the relational database
system. Unfortunately, the problem of these systems is that the query answers are not
complete [9].

Another remarkable approach working with OWL-QL language and a relational
database is described in [13]. The translation process of OWL-QL queries to SQL queries
for the class-based relations can be found in [14].

For RDF [22] data, the simplest variant of relational approach to ontology engineer-
ing is to load all RDF triples into one table with three columns as it is in the case of
Sesame version 1 in some kinds of its repositories or in the system called DataPile [3].
Sesame upgrade — Sesame version 2 has some other improvements. Instances names are
stored out of the mentioned triple-table to speed up join-queries. This system also stores
triples into more than one table to spread out large amount of triples.

Other approaches have a small number of tables, each to store concepts names, role
names, individuals, and assertions about concepts, respectively. This systems are similar
to the previous ones because all instances are stored into single table, for more details
see [9,18].

There exist other experiments to improve ontology querying based on reasoning with
logic databases [5,4]. They combine description logic expressions with logic programs
(LP) and create the description logic programs (DLP). They adapt LP reasoners to run
DLP. But this approaches need to find efficient means for implementing the approach as
a whole.

The rest of the report is organized as follows. In Section 1 we present a short in-
troduction to relational databases and the description logic we deal with, n&ely
description logic [1]. In Section 2 we present the framework for mapping an ontology
expressed i€ L-description logic into a relational database. As a result we obtain a re-
lational database scheme and extensions of relations. In Section 3 we provide a mapping
transforming such abstract database into SQL language. The resulted SQL database will
be composed from tables and views. Observations about ontology vs. conceptual mod-
elling are presented in Section 4. Section 5 is devoted to experiments with our imple-
mentation called TORQue (@nslation of Mtology into_Relational Queies) and com-
parisons withsystem Sesame. Finally, Section 6 concludes the paper.

1. Ontologies and Relational Databases

Since our appraoch extends relational databases with ontologies we first remind termi-
nology of relational databases and ontologies.

1.1. Relational Databases

First, we remind database notationrelational scheme?(£2) describes a relation named
R with a set of attribute§) = {4, As,..., A, },n > 1. Alternatively, R(Q2) can be
expressed directly aB(A;, Ao, ..., A,,). Every attributeA; is associated with a set of
values calleddomain D;. A relation associated withR(f2) is a subset ofD; x Dy x

. x D, . We denote itR*. If it is evident whetherR* is a relation or its scheme, we
can omit the symbol *. A relation consiststoiples. A relation scheme can be associated



with severalcandidate kysfrom which oneprimary keyis chosen. Each key is a subset
of Q. In our approach we will suppose only the primary key of relation. The primary key
attributes will be underlined.

A relation database schenf@is a pair(R, I), whereR is a set of relational schemes
andI is a set of integrity constraints ov®. A relational databaseD* associated with
D consists of the relations associated with the relational schenis Dfie database is
consistent iff it satisfies the constraintsIof

Now we will present a few operations enabling to build new relations. Such a set of
operations is callecelational algebra. Its most important set operations includén,
intersection, andlifference. For database querying we need mainétural, 6, equi)
join, projection, andelection. These operations (except difference) are specified in rows
3-7 of Table 1. Row 8 — 10 explain some usual predicates over relations.

Table 1. Relational algebra syntax and semantics.

Name RA syntax RA Semantics
1 | Extensional relation| R(A1,...,An) | R* CII?_ Dy,
S(B1,...,Bm) | S* CII", Dp,

2 Actual domain Adom; Adom; C D;
3 Intersection RNS R* N S*, where

n=mandVi € [1,n]: Dy, = Dp,
4 Union RUS R* U S*, where

n=mandV: € [1,n]: Da, = Dp,
5 Natural Join RxS (z,y,2) € (R X S)*

if (z,y) € R* and(y, z) € S*
5a 0-Join R[0]S (z,y,z,w) € (R[0]S)*

if (z,y) € R* and(z,w) € S* andyfz

Projection R[A] z € (R[A)* if Jy, (z,y) € R
Selection R(0) x € (R(0))*
if o(z) = TRUE andz € R*
8 Inclusion RCS R* C §*
9 Equality R=S R* = S*
’ 10 ‘ tuple in relation ‘ R(a,b) ‘ (a,b) € R* ‘

In practice, relational databases are stored and maintainedddgiteonal database
management systems (RDBMS).

1.2. Description Logic vs. OWL

We describe an ontology through the Description Logic (DL), for more details see [2].
In this work we deal only withkf £-description logic without role constructors and role
assertion constructions (see [1]).

In Table 2 we list some constructors and possible assertions, their syntax and se-
mantics in the columns DL Syntax and DL Semantics, respectively. In practice we depict
an ontology as OWL[20] (Web Ontology Language) document, therefore in the Table
2 there is a column to describe constructors and assertions in OWL language with its
DL equivalent in the same line. Note also, we do not deal here with concrete domains



Table 2. A part of OWL 2£ L and€ L-DL Syntax and Semantics.

’ # \ Name OWL Syntax DL Syntax | DL Semantics
Atomic concept | ow : Ol ass A AT C AT
Atomic role Property R RT C AT x AT
3 | Functional role | owl : Funct i onal R RT . AT — AT
Property
4 | Top concept ow : Thi ng T T =T
5 | Conjunction ow :intersectionCf cnbD (cnD)yr =cTnD?
6 | Full existential | ow : someVal uesFrom 3R.C (3R.C)T = {a e AT
quantification 3b.(a,b) € RT Abe C}
7 | atmost number | owl : maxCardi nality (£ nR) (£nR)T ={ac AT
restriction |b.(a,b) € RT| <n}
8 | atleastnumber | owl : mi nCardinality (> nR) (>nR)T ={ac AT
restriction |b.(a,b) € RT| >n}
9 | Definition ow : equi val ent O ass A=C | AT=C"
10 | Inclusion ow : subd assOf ACB AT C BT
11 | Atomic Concept| rdf:type A(a) a? ¢ AT
assertation
12 | Role assertation| Property R(a,b) (a,bT) € R

and do not distinguish among object-data variants of syntax (e.g. ObjectMaxCardinality
ObjectMinCardinality, ObjectSomeValuesFrom) in OWL2 ([21]) ontology.

Basic elements of DL areonceptsandroles. Elementary descriptions aagomic
conceptydenotedA, B) and atomic roles(denotedR). Concept constructions can be
built from them inductively according to the syntax rules denoted in Table 2 (rows 4 — 8).
Concept constructions are denotédD, which we consider to be nonterminal symbols,
these are not names of concepts.

We divide names of concepts, roles and instances into categories as follows:

Label  Setof all Condition

NC atomic concepts

NFR atomic functionatoles

NNR atomic non-functional roles NNR N NFR = ()
NR atomic roles NR = NNRUNFR
NI instances

In this work we use the word concept instead of concept names for short.

In order to define formal semantics of concepts and roles, we consider an interpre-
tationZ that consist of a non-empty satf (the domain of the interpretation) and an in-
terpretation function, which assigns to every atomic coneeatsetd? C AZ, to every
atomic roleR € NNR a binary relationR? C A% x AT and to every functional role
R € NFR afunctionR” : AT — AT (Table 2, rows 1 — 3). The interpretation func-
tion is extended to concept descriptions by the inductive definitions shown in the Table
2,inrows 4 — 8.

A DL knowledge basesually consists of a set @aérminological axiomgcalled
TBoX and a set ohssertional axiomer assertiongoften calledABoX. TBox axioms are
shown in Table 2, rows 9 and 10, and axioms of ABox are described in rows 11 and 12.
InterpretationZ satisfies axiomu if it satisfies the condition in column DL Semantics.



ThenZ is called amodelof «. We write 7 = « (or A = «) wherea is terminological
(assertional) axiom.We denote the set of terminological axionis, lilge set of assertions
we write asA. Then a knowledge bas® is specified a®) = (7, A).

In DL equivalence (equality) of concepts (concept constructions) is usually denoted
by =. In our DL we consider only special type of equivalence. The equality whose left-
hand side is atomic concepgtis called a definition ofd. In this report we denote defini-
tion equality as the symbek. We assume, there are no cycles in definitions.

We emphasize that, all important concepts have a name, i.e. all of them are atomic.
Non-atomic concepts — concept constructions — can only help to define some of the
atomic. For example atomic conceftudent can be defined a®erson who takes
Course. The situation is also the same in OWL. All atomic concepts have an URI. Non-
atomic ones are in OWL called blank nodes and do not have any URI. They can have
only internal unique name. Non-atomic concepts would be denoted by non-terminals in
a formal grammar.

Let us note that we understand both ABdxand TBox7, as sets of assertions
about concepts or individuals, respectively. The set of assertions can be divided into two
categories. One, denoted by subscéipincludesextensional assertions, the second one
comprehends as set of additionadlgduced assertiorend it is denoted by subscript.

The set7p is derived with respect to (symmetric, transitive) properties of the assertions
:= andL. For all7 sets the following holds:

o« T=T:UTp,
o T NTp = 0.

Also mention thatd = Az U AL, The setdZ depends on the TBoX, because we
derive assertions on basis df and TBox assertions. If it is evident whi¢h inducted
AZ, we omit superscripf . We note the set of TBox subsumptionsZasand the set of
equalities a9’ —.

Example 1.1 Let us have a knowledge ba&ewith the following sets

NC = {Org, Univ, Faculty, Person, Employee, F'Stuf f, Student, Dean}
NFR = {hasName, hasEmail}, andNNR = {headOf}.

Employee)d—(FacultyStuff)d—( Dean )
(Organizatiode—(UniversitM Faculty )

Figure 1. 1S-A hierarchy with respect t@p.

Org, Univ and F'Stuf f are abbreviations of Organization, University, and Facul-
tyStuff, respectively.
Assume that we have following assertiong(see Figure 1):

Univ C  Org, Student C  Person,
Employee T Person, FStuff T Employee,
Dean T FStuff, Univ C  Faculty,
Dean := Person M 3dheadOf.Faculty



Assume that we have following assertions4g:
hasName(Py, Namey), headOf(Py, Fy), Employee(Ps),

hasName(Py, Names), headOf(Dy,Fy), Person(Py),
hasName(Ps, Names), headOf(Ps, F3), Person(Ps),
hasName(S1, Namey),  Student(Sy), Faculty(F1),
hasName(Uy, Names),  Dean(Dy), Faculty(Fy),
hasEmail(Sy, Emaily), Univ(Uy), Faculty(Fs),
hasEmail( D1, Emails),

........................

Person

Figure 2. 1S-A hierarchy with respect to the whole.

The TBoxassertions that belongs g are shown in Figure 2 as dotted arrows. All
concepts are also subsumed by top concept also. We can derive the following assertions
of theAgE from the subsumptions:

Org(Uy), Org(Fs), Univ(Fy), Person(Ps),

Org(F1), Employee(Dy), Univ(Fy), Person(Sy),

Org(Fs), FStuff(Dy), Univ(F3), Person(Dy).
If we take definition of the concept equalities (in our example Pisin definition) into
account, we receive the following:

A£= = {Dean(Ps3)}

Finally, if we take all assertions @F into account, the% contains:

Org(Uy),  Univ(Fy), Employee(Ps), FStuff(Dy),
Org(F1), Univ(Fs), Person(S1), FStuf f(Ps),
Org(Fs), Univ(F3), Person(Dy), FStuf f(P3),
Org(Fs), Employee(Dy), Person(Pa), Dean(Ps),
Dean(Py).

Also assertions of the typ& (/) are omitted.

2. Mapping From O To D

The ontology translation creates database of relations that satisfy integrity constraints.
Nevertheless for optimization task we need to define so called potential domains and
potential ranges of roles.

Definition 2.1 Let M C A. A conceptd € NC is said to be gotential domairfor role
R € NR with respect to the seV¥/ if there isR(a,b) € M such thatd(a) € M. The
set of potential domains for rolB with respect toVf is denotecPDf‘.{. If it is evident
which M induces potential domains, we omit supersciipand denote them 8D .



Note, that definition of potential domains depends4n
Algorithms 1,2 use potential domains with respect to thetherefore the following
example takes into account onlie assertions.

Example 2.2 According to Example 1.1 and the Definition 2.1 the set of potential do-
mains for rolesias N ame (grey soft-boxes in Figure 3hasEmail (depicted as rectan-
gles around the soft-boxes representing concepts in Figure Fecadd f are:

PDﬁfsName = {Univ, Person, Employee, Student},
PD;% . = {Student, Dean},
PD; a0 = {Person,Dean}.

Employee)<—( Dean )

COrganizatiorD<—(University

Figure 3. Potential and valid domains.

Person

Example 2.3 Accordingto Example 1.1 and the Definition 2.1 the set of potential do-
mains for rolesias N ame, hasEmail andheadO f are:

Tc
PDfazsyame = {07‘97 Univ, Person, Employee, Student},
PD;iZName = {Univ, Person, Employee, Student},

T
PD@ENW = {Org,Univ, Person, Employee, F'Stuf f, Dean, Student},
PD;igEmail = {Person, Student, Employee, FStuf f, Dean},
PD;?a:‘zEmail = {StUdent, Dean},
PD;LAJ)SEmail = {Person, Student, Employee, FStuf f, Dean}.

We divided concepts and roles into various categories. The reason is that we will
translate them from different categories into relations (attributes) in different ways.
Searching for the domains of functional properties helps us to translate this properties
in the attributes of relations representing domains instead of translating them into new
relations. But we decided to do experiments also with reducing a number of the relations
with the attribute representing functional role. We used two observations. First, if there
exist assertion§' C D andC(a), thenD(a) can be deduced as well. Second, if knowl-
edge base includes the assertidh®), R(a, c¢) andR(b, d), then it is not necessary en-
code the functional rol& into an attribute of both, relational scheme represerdiramd
relational scheme representiny We choose so called valid domain to encétlén our
case it is only relational scheme representing the conbefut if the knowledge base
does not consider any assertion of the ty§{é, d), then the functional rol& is encoded
as attribute of the relational scheme representing the coitept



Definition 2.4 Let M C A. A valid domainfor role R € NFR with respect to the set
M is a potential domaiml € PD? with property that does not exist$, B € PD}
sothatAC Be 7 andA =B ¢ 7,aswellasB C A ¢ 7. The set of valid domains
for role R is denoted anD%’T. If we are interesting in valid domains with respect to
whole 7", we can omit the superscrift.

Example 2.5 According to the facts from Examples 1.1, 2.2 and the Definition 2.4 we
obtain the valid domains of the functional roles:
VD7e {Univ, Person}, VD¢

hasName hasEmail

{Student, Dean}.

According to Example 1.1 and the Definition 2.4 the sets of valid domains with

respect tad=, A7= and A are:
Tc TC

VDfagName = {Org, Person}, VDfagEmail = {Person},

VDhAai]_Vame = {Univ, Person}, VD?&;mail = {Student, Dean},
AL AL

VD, oiName = 10rg,Person}, VD, Sp .. = {Person}.

The mechanism of choosing valid domains of the l®l&om the potential ones is
simple. The potential domains of the rafeare divided into maximal groups linearly
ordered by subsumption. For each pair of the potential dom4ijis of such a group,
eitherAC B e 7 orBC A € 7. ltis possible that the intersection of these groups is
not empty. The reason is that a concept can be subsumed by two other concepts.

Then for each such a group we choose the most general concept with respect to
subsumption hierarchy. This ideas are validated by the following claim.

Claim 2.6 For eachR € NFR and for each maximal groupA;, A,,..., A,} C
PD%* sothatd, C A, C ... C A, only for 4,

A, € VD3e

holds.
Moreover, forevery < nsothatd; C A, C...C A,

A, € VD7#
holds.

Definition 2.7 The role R € NFR is said to be aole defined on the concept with
respect to the set of assertions if A € VD)7 . We denote the set of all roles defined
onthe concept asisInVDﬁ([’T‘ Similarly as in Definition 2.4 if we use all assertions of
T, we can omitl and denote the set of all roles defined under condegeisIn VD' .

Example 2.8 In the running example of this paper an interesting point is to compute e.g.
isInVDAE

Person”

isInVDAz

Person

= {hasName}



Definition 2.9 A potential mngefor role R € NR (with respect taA) is a conceptd
for which there exist®(a,b) € A andA(b) € A. We denote the set of potential ranges
of role R asPRi.

Let us illustrate how to find out potential range for roles supposing situation shown
in Example 1.1.

Example 2.10For rolehasName the set

PRasName = {String},
similarly for has E'mail the set

PRposEmail = {String}.
For roleheadO f it is the set

PRycwdor = {Faculty}.

Now we will show how to create a relational database scheme from the ontology. By
resource We denote the attribute whose domain contains some identifiers, e.g. OIDs,
URI, etc.

Algorithm 1 Let O be a knowledge base with TBdk and ABox.A. 7, A, concept’s
names, and role’s name are translated into relational datdbaséR,I). HereR de-
notes a relational database scheme consisting of basic relational schemes and view defi-
nitions using relational algebra expressions (RA expressibagnotes a set of integrity
constraints. The translation is done by induction as described below.

First part of translation depends only on the language, the second part depends also
on ABox and the last depends on the TBox, too.

Note that names of attributes are motivated by RBUbject, predicate, objecénd
resourceterminology.

The construction is based on the following steps:

First translation steps are based solely on the description logic language.
. ForallA € NC we add toR new relation’s with schemel'4 (resource).
2. Forall R € NNR we add toR a relation schem&p (subject, object).

=

Following translation steps depend on the ABox (and deduced valid domains)

3. For allR € NFR for which VD3¢ = (), we add taR a new relational scheme
Tr(subject,object).
4. For all A € NC for which z’sInVDﬁg ={R1,Rs,...,R,},n > 1 we modify
Ta(resource) € R to relationT7*°? € R with scheme
T4 (resource, Ry.object, . .., Ry.object)

Thefollowing translations depend on the TBox. First we deal with definitions:



5. For all A € NC such thatthere is a concept constructiagn with A := C €
7 we add toR a new relatiorl7’§*** with schemel'y*“ (resource) and view
definitions sahat (Sp andSg are defined in step 6):

o If C:=Dn Ethen
Tyew = T, U (Sp N Sg)
e If C:=3R.DandR € NNR or VD#* = () then
Tyiew =Ty U (Tr(subject, object)
[Tr.object = Sp.resource]
Sp(resource))[Tr.subject].
e If C =3R.DandR € NFR andVD%* # 0,n > 0 then
Tyiew =Ty U (S5¢(subject, object)
[STc.object = Sp.resource]
Sp(resource))[SFc.subject]
whereS%“ is the RA expression for reconstruction of the rélérom appro-
priate columns of %3¢ tables

Sk “(subject, object) = U (Tg4[resource, R.object))

BeVDRE

were D and E are concept constructions. Each atomic concept is also a con-
cept construction by definition. Here we assume that this is a lossless encoding
of all ABox information aboutR.

6. A concept construction can be an atomic concepn this caseS, = T4. For
a non-atomic concept constructighsuch that there is iif no definition with
right hand sideC’ andC is a subconstruction of a concept definitionZin then
we create a new RA expressidg with the only attributeesourceso that:

o If C=DnEthen
Sc = (Sp N Sg)
e If C =3R.DandR € NNR or VD#¢ = () then
Sc = (Tr(subject, object)[Tr.object = Sp.resource|Sp(resource))
[Tr.subject]
e If C =3R.DandR € NFR andVD7* # 0 then
Sc = (SF°(subject, object)[Spc.object = Sp.resource]lSp(resource))
[ST°.subject]

7. To transform axioms ifi , we add the following integrity constraint o

e if C =D €7 andC, D are non-atomic concepts constructions, then
SC = SD cl,
e fCC DeTthenScs C Sp el

Note that for a functional role the attribuRobjectcan be added to more than one rela-
tion of the typeT°¢. Then dataR(a,b), R(c,d) of such a roleR can be split up into
several relations with the attribuk.object, e.g. it can happen, tlﬂa@;"d(a, cey b))

and Tgl;’d(c, ...,d,...). If VDg (and equivalentlyPDp) is empty (typically when
there are no concepts with ABox axioms witnessing non-empty intersection with the
subject attribute of the rol&), data inR is handled in same way as for non-functional
roles.

10



Example 2.11According tothe previous examples and Algorithm 1 we acquire database
with this relations (we omit in the table th&in theT',, Tzw‘j/m“’, Tr, notation) created
by the Step 1:
Org(resource), Person(resource), Dean(resource),
Univ(resource), Employee(resource), Student(resource),
Faculty(resource), FStuf f(resource).
The Ste creates following scheme:

headO f(subject, object)

There areno results of the Step 3. However the results of the Step 4 are:
Person™*?  (resource, hasName.object),
Univ (resource, hasName.object),
Student™®?  (resource, has Email.object),
Dean™°?  (resource, hasEmail.object).
Step 5creates relation schemBean“ (resource) for which the following holds:
Dean?** = Dean U (Person U (headO f (subject, object)
[headO f.object = Faculty.resource]
(Faculty)[headO f.subject]))
The right-hand side of the equality is a construction created in Step 6. Finally, Step 7
defines the following:
I = {Faculty C Univ,Univ C Org, Dean C FStuff, FStuff C Employee,
Emplyee C Person, Student C Person}

mod

In our work the computation of valid domain is done with respecttoWe use nei-
therAgE, Ag= nor AZ for it. Supposing computation of valid domains were done with
respect todZ, top concept would be only one valid domain per each role. It means that
the table representing top concept would have as many columns as the number of func-
tional role is. Or without considering top concept as a valid domain for every role, each
functional role would be transformed into database as attribute of all direct successors
whose at least one instance (with respect to whoQl@articipates on the role.

Suppose computation of valid domains were done with respe(‘/lga, there
would be one or more tables to transfer only one role assertion. This situation seems
to cause redundancy. Imaginedfwas the instance offi known as extensional fact
and B known as deducted fact and instanceok part in roleR as assertiork(a, b).

Both A and B would be valid domains of the rol& what would mean that either
{a,b) € T7°YTs.resource, R.object] or {a,b) € Tm°Tg.resource, R.object] or
both.

Lemma 2.12 For all T7°%(Q4), T (Qp) € RsothatAC B € T andA = B ¢
Te,aswell asB C A & T¢, the following equality holds:

(Qa \ {resource}) N (Qp \ {resource}) =0

We created a relation scheme. Finally we can handle the data e. g. assertions from
ABox A. In fact, this data is translated into tuples of the associated database relations.

11



Algorithm 2 Suppose tha, NC and NR. are translated into database scheffe
ABox A is transferred int@® by induction as follows:

1. If B(a) € Ag U A;E and alsaB € NC, then(a) € T.
2. If R(a,b) € AandR € NNR, then(a,b) € Tk.
3. If R(a,b) € AandR € NFR, then one of the following items:

(a) if VD3® = 0 then
(a,b) € Tg,
(b) if there existA € VD;‘%S so thatA(a) € Ag, then
{a,b) € T Ta.resource, R.object],

(c) if there existsA € PDpg \VDﬁf so thatA(a) € Ag, then there exists a
maximal sequencel = By, Bs,...,B, € NC so thatB,, € VDﬁ5 and
B, C By e€Tpfori=1,...,n—1Then

(a,by € Tg’nOd[TB.resource, R.object].

In fact, according to the rule 2 in Algorithm 1 we obtain in step 3b in Algorithm
2 atuple{(a,z1, 9, ...,x,), Wwhere somer; are possibly empty. This is expressed in
databases by introducing a speciall value. Similarly, we can consider result of 3c.

Note also, that in order to have loss less transport of data from ontology into a
relational database we have to deal with the case VWiBXf;* = (. This can cause
problems in querying, when one tuple of relatiBiris in T another are iz

One possibility is to assume that for &l NFR

{a: (3b)R(a,b) € Ae} C | J{a: B(a) € A & B € PD3¢} (1)

Assumption 1 guaranties that steps 3b and 3c of algorithm 2 suffice to cover all data
from a functional roleR. We do not discuss this further in this paper.

Example 2.13 According to all facts mentioned in previous examples and steps 1 and 2
of the Algorithm 2 we obtain the following relational database storing our ontology:

Oryg :{<F1>7<F2>7<F3>7<U1>}7 Employee :{P%Dl}’

Univ = {(F1), (F2), (F3), (U1)}, FStuff ={(D1)},
Faculty = {(F1), (F2), (F3)}, Dean = {(D1)},
Person = {(P1),(Ps),{Ps),{(D1),{S1)}, Student = {(S1)},

headOf :{<D1,F1>,<P2,F2>,<P3,F3>}
Using step 3b we modify just the following relations:
Univ™?(resource, hasName.object) = {{Uy, Names)},
Person resource, hasName.object) = {(P1, Namey), (P3, Names)},
Student™(resource, hasEmail.object) = {(S1, Emaily)}
Dean™°¢(resource, hasEmail.object) = {(D1, Emails)}
Finally we apply step 3c with the following changes:
Person(resource, hasName.object) = {(Py, Namey), (P2, Names),
(Ps, Names), (S1, Namey)}.

mod(
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Let us mention that the relatiaBean’¢® looksas follows:
Dean”"*" = {(D1), (P2), (P3)}.

ABox assertions correspond to relational algebra constructions given by the Table 3.

Table 3. Translation of DL Syntax to relational algebra.

’ # \ Name \ DL Syntax\ RA construction‘
1 | Conceptassertation  C(a) (a) € Te
2 | Role assertation R(a,b) (a,b) € Tr

Theorem 2.14Let O be afinite knowledge basel is a concept and be an individual.
We have that

(a) € Th[resource] = O = A(a).

Proof.

Assume(a) € T} [resource] butO = A(a). It means there exists interpretati@rfor

which a? ¢ AZ. It is necessary to find out why individualshould be in relatiorT™;.
Inserting the tuples into relations representing concepts is done in Algorithm 2 either
in steps 1, 3b or 3c. Hence there is only one potential insert where it could arise an
unsoundness, namely insert in the step 3c. Other cases contradict because in 1 and 3b
there is assumptior(a) € A and this is true if and only if for any interpretatidh

a’ € AT holds.

Let us assume that statement of Theorem fails due to a data record obtained
in the step 3c of the algorithm 2. Led be a concept such that = B, and
3B1,By,...,By1 € PD3¢ : By C By C ... C B, and(a) € T%[resource]. Then
in all interpretatiorZ which are model o® we havea” ¢ AZ.

]

3. Relational to SQL mapping

A relational databasexpressed in SQL consists usually of definitions of basic relations
and views. Each relational scheme and its associated integrity constraints are represented
by a standalon€REATE TABLE statement. One possibility how to approach the con-
structions obtained by Algorithm 1 in SQL is based on the strategy to assigPREATE
TABLE for each schem@&, (resource) andTr (subject, object), respectively. The same

will be hold for T7°4(resource, Ri*.object, ..., R .object). NULL values in its rows

for thoseR#.object attributes for whichA(a) holds andh ¢ R [subject]. The relations
coming from defined concepts will be modeled by views in the SQL database. We re-
mind that views in SQL are virtual relations defined bSELECT statement irCREATE

VI EWdefinition. Sometimes views can be materialized, i.e. they look like basic tables in
the database. Obviously t8ELECT in a CREATE VI EWdefinition can contain other
views, etc.
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We will use here a little different approach to express the 8tECT in CREATE
VI EWdirectly with nestedSELECTs andl NTERSECT operations.

A decision which method to use in practice depends on real data used in the ontology
and performance considerations.

For purposes of this report we will call the set of operations projection, equi-join,
intersection and union asralational DL-algebra. Our next steps are directed to find-
ing rules for translation of expressions of this algebra to SQL language. Particularly for
each expressiofl which has been generated by Algorithm 1 we show that there is one
SELECT- FROMt WHERE statement implementing. To do this process as straightfor-
ward as possible we start with two lemmas that let us to modify the original expression
into expressions with more convenient properties. First we will propagate allinnter
highernsin E.

Lemma 3.1 Every expression of relational DL-algeb¥a is equivalent to a set expres-
sion composed afi and operators and operands containing no occurrence) @nd
U.

Proof.
We prove the claim by induction on the number of intersectiorns.imhe basis, zerois
or U, is trivial. The only one place whereandu are nested in a relational subexpression
of E is Tp(resource) in the right-side of an equi-join.

LetTp = Tp, <& Tp, , whered is N or U. SinceTp, have fewerps thanTp, we
can suppose that they fulfill the statement. Then, due to the additivity of opegators

Tr(subject, object)[Tr.object = Tp.resource]Tp(resource)

can be replaced by equivalent expression

Tr(subject,object)[Tr.object = Tp, .resource|Tp, (resource)
Tr(subject,object)[Tr.object = Tp,.resource]Tp, (resource).

We have omitted projection in our consideration since it does not influence these set
transformations.
O

The second case concerns nested expressions givER (bysource) looking like
(Tr, (subject, object)[Tr, .object = Tc, .resource]Tc, (resource))|[Tr, .subject]
for C € NC andR; € NR. We show how to replace the whole expressiory a
sequence of equi-joins of all participated relations followed by a projection. Such ex-

pressions can be easily transformed to the SQL language.

Lemma3.2LetD = (Ry(A, B)[Ry.B = T1.C]T1(C))[R1.4]. Then
C))[A] =

(R(A, B)[R.B = D.C|D(C))[4]
((R(A, B)[R.B = Ry.AJR1(A, B))[R,.B = T,.C]T1(C))[R.A]

14



Proof.

After asubstitution forD we obtain

(R(A,B)[R.B = D.C|(R1(A,B)[R,.B =T1.C]T1(C))[R1.4])[R.4]
(R(A,B)[R.B = R1.A|(R1(A, B)[R1.B =T1.C]T1(C))[R1.A])[R.A]
((R(A,B)[R.B = R1.A|R1(A, B))[R1.B =T,.CT1(C))[R.A]

Remark: the distributive laws for union and intersection

i. AU(BNC)=(AUB)N(AUC)
i. AN(BUC)=(ANnB)U(ANC)

We can adjust the our relational expressions into a standard form, i.e. either intersection
of unions or union of intersections of atomic relational expressiBnseach of them
being composed from equi-joins and projections.

O

Theorem 3.3 (relational DL-algebra— SQL transformation). LeE' be an expression
of relational DL-algebra. Then there is an SQL-expresstodefining under the same
interpretationZ the same relation.

Proof.
By Lemma 3.1 and 3.2 we can assume thais an intersection of unions. Théh is
translated to SQL as an SQL-expression composed FINERSECT operators, simple
SELECTS, union ofSELECTs andTABLE R, whereR is a relation associated with an
atomic concept.

Each simpleéSELECT arises from relational expressions considered in Lemma 3.2.
We will construct them as follows. Suppose the expresdipn= (R(A, B)[R.B =
D.C|D(C))[A]whereD = (Ry(A, B)[R,.B = T1.C|T1(C))[R;.A]. The resulted SQL
expression is obtained easily from the expression equivalefit taccording to Lemma
3.2as
SELECT R A
FROM R, R1,T1
WHERE R B=R1. A AND R1.B=T1l.C

Obviously, the relational expression with equi-join can be further nested. By induc-
tion it is possible to prove that it means to add other equalities to\HidRE clause.

O

Example 3.4 Let tables PERSON( RESOURCE) , HEAD OF( SUBJECT, OBJECT),
andCLLG RESOURCE) be defined by associat€REATE TABLE statements. Abbre-
viating the respective esour ce, obj ect, andsubj ect , we will to transform the
construction (here we assume tiaf.q, = 0)
TB’:;‘;L = Tperson N (Theado f(headO f.subject, headO f.object)
[headO f.object = Cllg.resource]
Teug(Cllg.resource))
[headO f.subject],
for the concepDeanas follows:
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CREATE VI EW DEAN ( RESOURCE) AS
(TABLE PERSON
| NTERSECT
SELECT HEAD_OF. SUBJ
FROM HEAD OF, CLLG
WHERE HEAD OF. OBJ = CLLG RES)

To do the database scheme complete we need to transform integrity constraints into
SQL CONSTRAI NT statements included iIGREATE TABLE expression. Subset con-
tainment and equality of two sets and D can be expressed by referential integrities
between two tables, i and D are inNC.

4. Ontologies vs. Conceptual Modelling

Now we mention some observations on different approaches to database modelling.
The approach to build a database dependent only on existence of a knowledge base is
completely different from that one in the world of usual transactional databases. Such
databases arise mostly from a conceptual scheme that says, e.g., that gniifiest

and Course participate in the relationshipakesCourse. In any conceptual model
takesCourse(Sy, Cy) implies Student(S;) and Course(Cy). In the world of ontolo-

gies the assertioStudent(S;) holds if Sy is a person, i.ePerson(S;) should hold.
According to definition of theStudent concept, forStudent(S;) we can deduce that
Person(Sy). But such a student need not be enrolled in any course. The same is usual
in transactional databases. On the other hand, we canchikweCourse(Sy, C1) in the

same ontology without assertion th#yt is a student or even a person. AlSg need not

be in the list of courses.

Consequently, any similarity of ontology construction to conceptual modeling is
only partial. Often we define new concepts representing an entity type via other con-
cepts and roles, i.e., via other entity types and relationship types (se&tedrnt via
takesCourse). It reminds so called reverse engineering in which from relationship types
participating entity types are recognized and defined. In fact, this knowledge is partial,
since the notiorCourse only belongs tdPR;:, . o.rsc- Maybe yet something else can
be characterized by the rolekesCourse. These phenomena can be explained with the
help of notions of close world assumption (CWA) and open world assumption (OWA).
The close world assumptiomplies that everything we do not know is false, while the
open world assumptiostates that everything we do not know is undefined. The pres-
ence of OWA in our considerations results also in situation that usual principles known
from ISA-hierarchies do not work here. For example, attribute inheritance is generally
not guaranteed. The reason is that the existence of an entity attribute can be not deduced
only from extensional assertions using roles.
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5. Experiments
5.1. SystenSetup

To verify the real query evaluation cost we have designed and implemented the system
TORQue — Tanslation of Mtology into_Relational Quées. The TORQue is an imple-
mentation otheoretical ideas described in previous chapters.

In experiments we wanted to evaluate scalability of our system and compare it with
non-commercial system. As it was said we have had an experience with the system
Sesame, therefore we have chosen it. For this propose we used the TORQue in version
1.0 and the Sesame in version 2.2.1. We used MySQL version 5.0 as the underlying
RDBMS.

We have done the tests on desktop computer WiB GHz Intel Core2 CPU2 GB
of RAM, 80 GB hard disk, Windows XP Professional OS, and Java 6.

5.1.1. OWL Datasets

Test data is extensional data created over Univ-Bench ontology [6]. The data, that is
generated by UBA generator, has synthetic origin. Each dataset can consist of one or
more OWL files. The datasets are callddBM. To identify the datasets LUBM we use
notation LUBM,,, wheren is a number of universities contained in the dataset. In our
experiments we created 3 sets of the test data: LYBMUBM 5 and LUBM;, which
include OWL files for 1, 5 and 10 universities, respectively. The largest one has over 100
MB size of the OWL files with instances saved on hard disk.

5.2. Loading Time and Repositories

In this section we want discuss loading time of the different storages. In Table 4 we listed
data loading time for both systems, Torque as well as Sesame. For each dataset we show
number of files that belong to the dataset and their total size on disk. Also we present
number of triples of every dataset, loading time of the repository and repository size on
disk.

Table 4. Data loading parameters

Dataset | Number Total Number of | Load Time | Repository
data of Files | Size (MB) Triples (hh:mm:ss) | Size (MB)
Sesame LUBM 15 81 103 397 00:02:20 19.1
TORQue 00:33:18 18.7
S 149:37 117
_OeSame | M, | 93 50.5 646 128 | 00493
TORQue 10:07:35 82.1
S 03:07:02 240
_>°%8Me | UBMye | 189 103 | 1316993
TORQue 40:26:11 185.5

The TORQue system seems to be economical considering databasa #izedisk
that it takes. On the other hand, the loading time is much more worse than the loading
the Sesame repositories. We should notice that loading time of the database created by
TORQue consists of the time spent on computing things like potential domains and valid
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domains, time spent on communication with the database and time @peammu-
nication with the Sesame. Communication with Sesame cost us a lot of time. For now
we ask the system Sesame everything about the ontology (names of the concepts, roles,
subsumption and equality assertions, concepts assertion, and role assertions).

Let us mention that Sesame offers repository based on an RDBMS but we decided
not to use this kind of repository. The reason is, that this repository does not provide
any reasoning tasks. We remind also that Sesame does not find answers to almost all test
queries. Even the memory repository is not usable in practice. So, our experiments use
only native Sesame repository.

5.3. Test Queries

Our set of test queries consists of tHequeries,10 becomes from LUBM benchmark

set, namely queries 1 — 8, 12 and 14. We preserve the numbering of the selected bench-
mark queries. The rest of queries are constructed by us (numbers 15 and 16). We have
decided to add these queries to our sample because this queries use functional proper-
ties. The LUBM queries are presented in SPARQL language [25], what is a standard
language recommended by W3C Consortium. However, we want to provide the tests of
Sesame also with language SeRQL [24], what was, for Sesame, the first supported query
language.

5.4. Query Response Time

The test system receives the test set of the queries (in SPARQL languagd)adride
repository that should be tested. It runs query by query from the test sample and repeats
themm times. The numbem is in this case 0. For each query, each system, and each
dataset we compute average response time. Figure 4 shows the graphs with test results
for all datasets.

Each figure consists of two graphs. The graph on the left-hand side informs about
all our test queries. The right-hand side one concerns the queries with complete answer.
Order of the queries presented in all graphs is defined by the number of tuples in the
guery answers.

To verify completeness of query answers we used results presented in [6]. The really
important feature of the system TORQue is that it computes the complete answers in all
cases. However, the system Sesame returns (independently of the query language) only
91% answer in case of the query 7, 83% for queries 6 and 8. Even for the query 12 it
does not find any answer though it should return some answer.

6. Conclusion

We have proposed a model of translation of the ontology to relational database and de-
veloped the system TORQue.

DBMSs with their wide scale of query optimization techniques offer us a lot of abil-
ities to improve our system. One of them is a technique which speeds up query evalu-
ation through indexing of some columns. It helps with relational joins. To further im-
prove the indexes there is an idea inspired with Sesame 2. All names of concepts, roles
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Figure 4. Test results for LUBM, LUBM 5, LUBM 1¢.

and instances refer to numeric indexes instead of to their origin names of string type. In
databases it is more effective to join tables through numerical columns.

In the introduction we mentioned projects (described in [7,10]) which we are partic-
ipated in. As we mentioned, required information in the systems was static. There was
finite number of query types over the ontology. Therefore we could store ontology in-
formation into fixed index structure and the rest of application could work just with the
indexes, what is really fast. But if we want to modify object of our interest we have to
modify a configuration file (add or modify query that creates index). In future work we
would like to supersede this ontology information retrieval with the system described in
this work, i.e. the system TORQue.

To increase usability of our system, we want to implement SPARQL-compiler as
well. Hence the query language SPARQL is a standard ontology query language based
on RDF triples. Finally, we remind that relational databases offer additional operators to
operators mentioned in Table 1. Therefore we also plan to go behir&Xidescription
logic and to develop algorithms for translations of these extended constructions. Conse-
quently, providing experiments with a wider class of description logics will be possible.
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