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Abstract. The retrieval problem is one of the main reasoning problems for ontology
based systems. The retrieval problem for conceptC consists in finding all individ-
ualsa which satisfyC(a). We present ontology transformation which can help to
improve evaluating queries over (sublanguage of) OWL ontologies. Our solution is
based on translating retrieval concepts into relational algebra expressions and con-
sequently to SQL queries over a database constructed from the original ontology.
Ontology transformation into database is ontology-dependent but fully automatic
and it is provided by system TORQue.

Keywords. Knowledge base, Ontology, Relational database, Query,
Query evaluation

Introduction

Ontologyis a knowledge base that can describe concepts, their instances and relations
between them. Definitions of concepts and relations are formulated in an ontology lan-
guage, for more detail see Section 1.2. One of the main kinds of inferencing for knowl-
edge based systems is so-calledretrieval problem[2]. The retrieval problem in ontologies
is equivalent to querying in relational databases.

In present there are lot of methods and tools for creating, designing and reasoning
the ontologies. Some of them have been influenced by techniques of relational databases,
e.g. [8]. However the problem is an effective maintenance and reusing them through the
running queries. There exist some open source systems that can handle ontology with
large amount of the data. We have an experience with Sesame [23] within the projects
described in [7,10]. But we have found out that query evaluation is very expensive. How-
ever the problem is not just problem of Sesame but also of other systems. To speed up
the evaluation of some specific queries (those known in advance) the transformation to
optimized indexes is very effective [11].

In this work we would like to present a model of ontology storage based on rela-
tional databases without loosing any ontological advantage. Combination of ontologies
and relational databases has the advantage that all query optimization techniques pro-
vided by relational database systems can be used. This makes possible to work with huge
datasets. We also present test results and compare them with other systems to consider
contributions and disadvantages of our approach.

There are some research groups interested in storing ontologies into databases. One
of the prominent projects is realized by the system HAWK [19] and its predecessor
project DLDB [12]. These systems work similarly to ours, i.e. they recompute IS-A hi-
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erarchy of concepts and store it into a database. Ontology queries canbe then translated
into standard SQL queries. After that the queries are evaluated by the relational database
system. Unfortunately, the problem of these systems is that the query answers are not
complete [9].

Another remarkable approach working with OWL-QL language and a relational
database is described in [13]. The translation process of OWL-QL queries to SQL queries
for the class-based relations can be found in [14].

For RDF [22] data, the simplest variant of relational approach to ontology engineer-
ing is to load all RDF triples into one table with three columns as it is in the case of
Sesame version 1 in some kinds of its repositories or in the system called DataPile [3].
Sesame upgrade – Sesame version 2 has some other improvements. Instances names are
stored out of the mentioned triple-table to speed up join-queries. This system also stores
triples into more than one table to spread out large amount of triples.

Other approaches have a small number of tables, each to store concepts names, role
names, individuals, and assertions about concepts, respectively. This systems are similar
to the previous ones because all instances are stored into single table, for more details
see [9,18].

There exist other experiments to improve ontology querying based on reasoning with
logic databases [5,4]. They combine description logic expressions with logic programs
(LP) and create the description logic programs (DLP). They adapt LP reasoners to run
DLP. But this approaches need to find efficient means for implementing the approach as
a whole.

The rest of the report is organized as follows. In Section 1 we present a short in-
troduction to relational databases and the description logic we deal with, namelyEL-
description logic [1]. In Section 2 we present the framework for mapping an ontology
expressed inEL-description logic into a relational database. As a result we obtain a re-
lational database scheme and extensions of relations. In Section 3 we provide a mapping
transforming such abstract database into SQL language. The resulted SQL database will
be composed from tables and views. Observations about ontology vs. conceptual mod-
elling are presented in Section 4. Section 5 is devoted to experiments with our imple-
mentation called TORQue (Translation of Ontology into Relational Queries) and com-
parisons withsystem Sesame. Finally, Section 6 concludes the paper.

1. Ontologies and Relational Databases

Since our appraoch extends relational databases with ontologies we first remind termi-
nology of relational databases and ontologies.

1.1. Relational Databases

First, we remind database notation. Arelational schemeR(Ω) describes a relation named
R with a set of attributesΩ = {A1, A2, . . . , An}, n ≥ 1. Alternatively,R(Ω) can be
expressed directly asR(A1, A2, . . . , An). Every attributeAi is associated with a set of
values calleddomainDi. A relation associated withR(Ω) is a subset ofD1 × D2 ×
. . . × Dn. We denote itR∗. If it is evident whetherR∗ is a relation or its scheme, we
can omit the symbol *. A relation consists oftuples. A relation scheme can be associated
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with severalcandidate keysfrom which oneprimary keyis chosen. Each key is a subset
of Ω. In our approach we will suppose only the primary key of relation. The primary key
attributes will be underlined.

A relation database schemeD is a pair(R, I), whereR is a set of relational schemes
andI is a set of integrity constraints overR. A relational databaseD∗ associated with
D consists of the relations associated with the relational schemes ofR. The database is
consistent iff it satisfies the constraints ofI.

Now we will present a few operations enabling to build new relations. Such a set of
operations is calledrelational algebra. Its most important set operations includeunion,
intersection, anddifference. For database querying we need mainly(natural, θ, equi)
join, projection, andselection. These operations (except difference) are specified in rows
3–7 of Table 1. Row 8 – 10 explain some usual predicates over relations.

Table 1. Relational algebra syntax and semantics.

# Name RA syntax RA Semantics

1 Extensional relation R(A1, . . . , An) R∗ ⊆ Πn
i=1

DAi

S(B1, . . . , Bm) S∗ ⊆ Πm
i=1

DBi

2 Actual domain Adomi Adomi ⊆ Di

3 Intersection R ∩ S R∗ ∩ S∗, where

n = m and∀i ∈ [1, n] : DAi
= DBi

4 Union R ∪ S R∗ ∪ S∗, where

n = m and∀i ∈ [1, n] : DAi
= DBi

5 Natural Join R ⋊⋉ S (x, y, z) ∈ (R ⋊⋉ S)∗

if (x, y) ∈ R∗ and(y, z) ∈ S∗

5a θ-Join R[θ]S (x, y, z, w) ∈ (R[θ]S)∗

if (x, y) ∈ R∗ and(z, w) ∈ S∗ andyθz

6 Projection R[A] x ∈ (R[A])∗ if ∃y, (x, y) ∈ R

7 Selection R(σ) x ∈ (R(σ))∗

if σ(x) = TRUE andx ∈ R∗

8 Inclusion R ⊆ S R∗ ⊆ S∗

9 Equality R = S R∗ = S∗

10 tuple in relation R(a, b) (a, b) ∈ R∗

In practice, relational databases are stored and maintained by arelational database
management systems (RDBMS).

1.2. Description Logic vs. OWL

We describe an ontology through the Description Logic (DL), for more details see [2].
In this work we deal only withEL-description logic without role constructors and role
assertion constructions (see [1]).

In Table 2 we list some constructors and possible assertions, their syntax and se-
mantics in the columns DL Syntax and DL Semantics, respectively. In practice we depict
an ontology as OWL[20] (Web Ontology Language) document, therefore in the Table
2 there is a column to describe constructors and assertions in OWL language with its
DL equivalent in the same line. Note also, we do not deal here with concrete domains
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Table 2. A part of OWL 2EL andEL-DL Syntax and Semantics.

# Name OWL Syntax DL Syntax DL Semantics

1 Atomic concept owl:Class A AI ⊆ ∆I

2 Atomic role Property R RI ⊆ ∆I × ∆I

3 Functional role owl:Functional R RI : ∆I −→ ∆I

Property

4 Top concept owl:Thing ⊤ ⊤I = ∆I

5 Conjunction owl:intersectionOf C ⊓ D (C ⊓ D)I = CI ∩ DI

6 Full existential owl:someValuesFrom ∃R.C (∃R.C)I = {a ∈ ∆I |

quantification ∃b.(a, b) ∈ RI ∧ b ∈ C}

7 at most number owl:maxCardinality (≤ nR) (≤ nR)I = {a ∈ ∆I |

restriction |b.(a, b) ∈ RI | ≤ n}

8 at least number owl:minCardinality (≥ nR) (≥ nR)I = {a ∈ ∆I |

restriction |b.(a, b) ∈ RI | ≥ n}

9 Definition owl:equivalentClass A := C AI = CI

10 Inclusion owl:subClassOf A ⊑ B AI ⊆ BI

11 Atomic Concept rdf:type A(a) aI ∈ AI

assertation

12 Role assertation Property R(a, b) (aI , bI) ∈ RI

and do not distinguish among object-data variants of syntax (e.g. ObjectMaxCardinality,
ObjectMinCardinality, ObjectSomeValuesFrom) in OWL2 ([21]) ontology.

Basic elements of DL areconceptsand roles. Elementary descriptions areatomic
concepts(denotedA,B) andatomic roles(denotedR). Concept constructions can be
built from them inductively according to the syntax rules denoted in Table 2 (rows 4 – 8).
Concept constructions are denotedC,D, which we consider to be nonterminal symbols,
these are not names of concepts.

We divide names of concepts, roles and instances into categories as follows:
Label Set of all Condition
NC atomic concepts
NFR atomic functionalroles
NNR atomic non-functional roles NNR ∩ NFR = ∅
NR atomic roles NR = NNR ∪ NFR

NI instances

In this work we use the word concept instead of concept names for short.
In order to define formal semantics of concepts and roles, we consider an interpre-

tationI that consist of a non-empty set∆I (the domain of the interpretation) and an in-
terpretation function, which assigns to every atomic conceptA a setAI ⊆ ∆I , to every
atomic roleR ∈ NNR a binary relationRI ⊆ ∆I × ∆I and to every functional role
R ∈ NFR a functionRI : ∆I −→ ∆I (Table 2, rows 1 – 3). The interpretation func-
tion is extended to concept descriptions by the inductive definitions shown in the Table
2, in rows 4 – 8.

A DL knowledge baseusually consists of a set ofterminological axioms(called
TBox) and a set ofassertional axiomsor assertions(often calledABox). TBox axioms are
shown in Table 2, rows 9 and 10, and axioms of ABox are described in rows 11 and 12.
InterpretationI satisfies axiomα if it satisfies the condition in column DL Semantics.
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ThenI is called amodelof α. We writeT |= α (or A |= α) whereα is terminological
(assertional) axiom.We denote the set of terminological axioms byT , the set of assertions
we write asA. Then a knowledge baseO is specified asO = (T ,A).

In DL equivalence (equality) of concepts (concept constructions) is usually denoted
by ≡. In our DL we consider only special type of equivalence. The equality whose left-
hand side is atomic conceptA is called a definition ofA. In this report we denote defini-
tion equality as the symbol:=. We assume, there are no cycles in definitions.

We emphasize that, all important concepts have a name, i.e. all of them are atomic.
Non-atomic concepts – concept constructions – can only help to define some of the
atomic. For example atomic conceptStudent can be defined asPerson who takes
Course. The situation is also the same in OWL. All atomic concepts have an URI. Non-
atomic ones are in OWL called blank nodes and do not have any URI. They can have
only internal unique name. Non-atomic concepts would be denoted by non-terminals in
a formal grammar.

Let us note that we understand both ABoxA and TBoxT , as sets of assertions
about concepts or individuals, respectively. The set of assertions can be divided into two
categories. One, denoted by subscriptE , includesextensional assertions, the second one
comprehends as set of additionallydeduced assertionsand it is denoted by subscriptD.
The setTD is derived with respect to (symmetric, transitive) properties of the assertions
:= and⊑. For allT sets the following holds:

• T = TE ∪ TD,

• TE ∩ TD = ∅.

Also mention thatA = AE ∪AT
D. The setAT

D depends on the TBoxT , because we
derive assertions on basis ofAE and TBox assertions. If it is evident whichT inducted
AT

D, we omit superscriptT . We note the set of TBox subsumptions asT⊑ and the set of
equalities asT:=.

Example 1.1 Let us have a knowledge baseO with the following sets
NC = {Org, Univ, Faculty, Person,Employee, FStuff, Student,Dean}
NFR = {hasName, hasEmail}, andNNR = {headOf}.

Figure 1. IS-A hierarchy with respect toTD .

Org, Univ andFStuff are abbreviations of Organization, University, and Facul-
tyStuff, respectively.

Assume that we have following assertions inTE (see Figure 1):
Univ ⊑ Org, Student ⊑ Person,

Employee ⊑ Person, FStuff ⊑ Employee,

Dean ⊑ FStuff, Univ ⊑ Faculty,

Dean := Person ⊓ ∃headOf.Faculty
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Assume that we have following assertions inAE :
hasName(P1, Name1), headOf(P2, F2), Employee(P2),
hasName(P2, Name2), headOf(D1, F1), Person(P1),
hasName(P3, Name3), headOf(P3, F3), Person(P3),
hasName(S1, Name4), Student(S1), Faculty(F1),
hasName(U1, Name5), Dean(D1), Faculty(F2),
hasEmail(S1, Email1) , Univ(U1), Faculty(F3),
hasEmail(D1, Email2),

Figure 2. IS-A hierarchy with respect to the wholeT .

The TBoxassertions that belongs toTD are shown in Figure 2 as dotted arrows. All
concepts are also subsumed by top concept also. We can derive the following assertions
of theA

T⊑

D from the subsumptions:
Org(U1), Org(F3), Univ(F1), Person(P2),
Org(F1), Employee(D1), Univ(F2), Person(S1),
Org(F2), FStuff(D1), Univ(F3), Person(D1).

If we take definition of the concept equalities (in our example it isDean definition) into
account, we receive the following:

AT:=

D = {Dean(P3)}

Finally, if we take all assertions ofT into account, thenAT
D contains:

Org(U1), Univ(F1), Employee(P3), FStuff(D1),
Org(F1), Univ(F2), Person(S1), FStuff(P2),
Org(F2), Univ(F3), Person(D1), FStuff(P3),
Org(F3), Employee(D1), Person(P2), Dean(P3),
Dean(P2).

Also assertions of the type⊤(I) are omitted.

2. Mapping From O To D

The ontology translation creates database of relations that satisfy integrity constraints.
Nevertheless for optimization task we need to define so called potential domains and
potential ranges of roles.

Definition 2.1 Let M ⊆ A. A conceptA ∈ NC is said to be apotential domainfor role
R ∈ NR with respect to the setM if there isR(a, b) ∈ M such thatA(a) ∈ M. The
set of potential domains for roleR with respect toM is denotedPD

M
R . If it is evident

whichM induces potential domains, we omit superscriptM and denote them asPDR.
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Note, that definition of potential domains depends onA.
Algorithms 1,2 use potential domains with respect to theAE therefore the following

example takes into account onlyAE assertions.

Example 2.2 According to Example 1.1 and the Definition 2.1 the set of potential do-
mains for roleshasName (grey soft-boxes in Figure 3),hasEmail (depicted as rectan-
gles around the soft-boxes representing concepts in Figure 3) andheadOf are:
PD

AE

hasName = {Univ, Person,Employee, Student},

PD
AE

hasEmail = {Student,Dean},

PD
AE

headOf = {Person,Dean}.

Figure 3. Potential and valid domains.

Example 2.3 Accordingto Example 1.1 and the Definition 2.1 the set of potential do-
mains for roleshasName, hasEmail andheadOf are:

PD
A

T⊑
D

hasName = {Org, Univ, Person,Employee, Student},

PD
A

T:=

D

hasName = {Univ, Person,Employee, Student},

PD
AT

D

hasName = {Org, Univ, Person,Employee, FStuff,Dean, Student},

PD
A

T⊑
D

hasEmail = {Person, Student, Employee, FStuff,Dean},

PD
A

T:=

D

hasEmail = {Student,Dean},

PD
AT

D

hasEmail = {Person, Student, Employee, FStuff,Dean}.

We divided concepts and roles into various categories. The reason is that we will
translate them from different categories into relations (attributes) in different ways.
Searching for the domains of functional properties helps us to translate this properties
in the attributes of relations representing domains instead of translating them into new
relations. But we decided to do experiments also with reducing a number of the relations
with the attribute representing functional role. We used two observations. First, if there
exist assertionsC ⊑ D andC(a), thenD(a) can be deduced as well. Second, if knowl-
edge base includes the assertionsD(b), R(a, c) andR(b, d), then it is not necessary en-
code the functional roleR into an attribute of both, relational scheme representingC and
relational scheme representingD. We choose so called valid domain to encodeR. In our
case it is only relational scheme representing the conceptD. But if the knowledge base
does not consider any assertion of the typeR(b, d), then the functional roleR is encoded
as attribute of the relational scheme representing the conceptC.
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Definition 2.4 Let M ⊆ A. A valid domainfor role R ∈ NFR with respect to the set
M is a potential domainA ∈ PD

M
R with property that does not existsB, B ∈ PD

M
R

so thatA ⊑ B ∈ T andA ≡ B 6∈ T , as well asB ⊑ A 6∈ T . The set of valid domains
for role R is denoted asVD

M,T
R . If we are interesting in valid domains with respect to

wholeT , we can omit the superscriptT .

Example 2.5 According to the facts from Examples 1.1, 2.2 and the Definition 2.4 we
obtain the valid domains of the functional roles:
VD

AE

hasName = {Univ, Person}, VD
AE

hasEmail = {Student,Dean}.

According to Example 1.1 and the Definition 2.4 the sets of valid domains with
respect toAT:=

D , A
T⊑

D andAT
D are:

VD
A

T⊑
D

hasName = {Org, Person}, VD
A

T⊑
D

hasEmail = {Person},

VD
A

T:=

D

hasName = {Univ, Person}, VD
A

T:=

D

hasEmail = {Student,Dean},

VD
AT

D

hasName = {Org, Person}, VD
AT

D

hasEmail = {Person}.

The mechanism of choosing valid domains of the roleR from the potential ones is
simple. The potential domains of the roleR are divided into maximal groups linearly
ordered by subsumption. For each pair of the potential domainsA,B of such a group,
eitherA ⊑ B ∈ T or B ⊑ A ∈ T . It is possible that the intersection of these groups is
not empty. The reason is that a concept can be subsumed by two other concepts.

Then for each such a group we choose the most general concept with respect to
subsumption hierarchy. This ideas are validated by the following claim.

Claim 2.6 For eachR ∈ NFR and for each maximal group{A1, A2, . . . , An} ⊆
PD

AE

R so thatA1 ⊑ A2 ⊑ . . . ⊑ An, only for An

An ∈ VD
AE

R

holds.
Moreover, for everyi < n so thatAi ⊑ Ai+1 ⊑ . . . ⊑ An

An ∈ VD
AE

R

holds.

Definition 2.7 The roleR ∈ NFR is said to be arole defined on the conceptA with
respect to the set of assertionsM if A ∈ VD

M,T
R . We denote the set of all roles defined

on the conceptA asisInVD
M,T
A . Similarly as in Definition 2.4 if we use all assertions of

T , we can omitT and denote the set of all roles defined under conceptA asisInVD
M
A .

Example 2.8 In the running example of this paper an interesting point is to compute e.g.
isInVD

AE

Person:

isInVD
AE

Person = {hasName}
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Definition 2.9 A potential rangefor role R ∈ NR (with respect toA) is a conceptA
for which there existsR(a, b) ∈ A andA(b) ∈ A. We denote the set of potential ranges
of roleR asPRR.

Let us illustrate how to find out potential range for roles supposing situation shown
in Example 1.1.

Example 2.10For rolehasName the set

PRhasName = {String},

similarly for hasEmail the set

PRhasEmail = {String}.

For roleheadOf it is the set

PRheadOf = {Faculty}.

Now we will show how to create a relational database scheme from the ontology. By
resource we denote the attribute whose domain contains some identifiers, e.g. OIDs,
URI, etc.

Algorithm 1 Let O be a knowledge base with TBoxT and ABoxA. T , A, concept’s
names, and role’s name are translated into relational databaseD = (R, I). HereR de-
notes a relational database scheme consisting of basic relational schemes and view defi-
nitions using relational algebra expressions (RA expressions).I denotes a set of integrity
constraints. The translation is done by induction as described below.

First part of translation depends only on the language, the second part depends also
on ABox and the last depends on the TBox, too.

Note that names of attributes are motivated by RDF(subject, predicate, object)and
resourceterminology.

The construction is based on the following steps:

First translation steps are based solely on the description logic language.
1. For allA ∈ NC we add toR new relationTA with schemeTA(resource).
2. For all R ∈ NNR we add toR a relation schemeTR(subject, object).

Following translation steps depend on the ABox (and deduced valid domains)

3. For allR ∈ NFR for whichVD
AE

R = ∅, we add toR a new relational scheme
TR(subject, object).

4. For all A ∈ NC for which isInVD
AE

A = {R1, R2, . . . , Rn}, n ≥ 1 we modify
TA(resource) ∈ R to relationTmod

A ∈ R with scheme
Tmod

A (resource,R1.object, . . . , Rn.object)

Thefollowing translations depend on the TBox. First we deal with definitions:
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5. For allA ∈ NC such thatthere is a concept constructionC with A := C ∈
T we add toR a new relationT view

A with schemeT view
A (resource) and view

definitions sothat (SD andSE are defined in step 6):

• If C := D ⊓ E then
T view

A = TA ∪ (SD ∩ SE)
• If C := ∃R.D andR ∈ NNR or VD

AE

R = ∅ then
T view

A = TA ∪ (TR(subject, object)
[TR.object = SD.resource]

SD(resource))[TR.subject].
• If C = ∃R.D andR ∈ NFR andVD

AE

R 6= ∅, n > 0 then
T view

A = TA ∪ (Srec
R (subject, object)

[Srec
R .object = SD.resource]
SD(resource))[Srec

R .subject]
whereSrec

R is the RA expression for reconstruction of the roleR from appro-
priate columns ofTmod

B tables

Srec
R (subject, object) =

⋃

B∈VD
AE
R

(

Tmod
B [resource,R.object]

)

wereD andE are concept constructions. Each atomic concept is also a con-
cept construction by definition. Here we assume that this is a lossless encoding
of all ABox information aboutR.

6. A concept construction can be an atomic conceptA. In this caseSA = TA. For
a non-atomic concept constructionC such that there is inT no definition with
right hand sideC andC is a subconstruction of a concept definition inT , then
we create a new RA expressionSC with the only attributeresourceso that:

• If C = D ⊓ E then
SC = (SD ∩ SE)

• If C = ∃R.D andR ∈ NNR or VD
AE

R = ∅ then
SC = (TR(subject, object)[TR.object = SD.resource]SD(resource))

[TR.subject]
• If C = ∃R.D andR ∈ NFR andVD

AE

R 6= ∅ then
SC = (Srec

R (subject, object)[Srec
R .object = SD.resource]SD(resource))

[Srec
R .subject]

7. To transform axioms inT , we add the following integrity constraint toI:

• if C ≡ D ∈ T andC,D are non-atomic concepts constructions, then
SC = SD ∈ I,

• if C ⊑ D ∈ T thenSC ⊆ SD ∈ I.

Note that for a functional role the attributeR.objectcan be added to more than one rela-
tion of the typeTmod

C . Then dataR(a, b), R(c, d) of such a roleR can be split up into
several relations with the attributeR.object, e.g. it can happen, thatTmod

C1
(a, . . . , b, . . .)

and Tmod
C2

(c, . . . , d, . . .). If VDR (and equivalentlyPDR) is empty (typically when
there are no concepts with ABox axioms witnessing non-empty intersection with the
subject attribute of the roleR), data inR is handled in same way as for non-functional
roles.
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Example 2.11According tothe previous examples and Algorithm 1 we acquire database
with this relations (we omit in the table theT in theTA, T

mod/view
A , TR notation) created

by the Step 1:
Org(resource), Person(resource), Dean(resource),

Univ(resource), Employee(resource), Student(resource),
Faculty(resource), FStuff(resource).

The Step2 creates following scheme:

headOf(subject, object)

There areno results of the Step 3. However the results of the Step 4 are:
Personmod (resource, hasName.object),

Univmod (resource, hasName.object),
Studentmod (resource, hasEmail.object),

Deanmod (resource, hasEmail.object).
Step 5creates relation schemeDeanview(resource) for which the following holds:
Deanview = Dean ∪

(

Person ∪ (headOf(subject, object)

[headOf.object = Faculty.resource]

(Faculty)[headOf.subject])
)

The right-hand side of the equality is a construction created in Step 6. Finally, Step 7
defines the following:
IT = {Faculty ⊆ Univ, Univ ⊆ Org,Dean ⊆ FStuff, FStuff ⊆ Employee,

Emplyee ⊆ Person, Student ⊆ Person}

In our work the computation of valid domain is done with respect toAE . We use nei-
therA

T⊑

D , AT:=

D norAT
E for it. Supposing computation of valid domains were done with

respect toAT
E , top concept would be only one valid domain per each role. It means that

the table representing top concept would have as many columns as the number of func-
tional role is. Or without considering top concept as a valid domain for every role, each
functional role would be transformed into database as attribute of all direct successors
whose at least one instance (with respect to wholeT ) participates on the role.

Suppose computation of valid domains were done with respect toAT:=

D , there
would be one or more tables to transfer only one role assertion. This situation seems
to cause redundancy. Imagine ifa was the instance ofA known as extensional fact
andB known as deducted fact and instancea took part in roleR as assertionR(a, b).
Both A and B would be valid domains of the roleR what would mean that either
〈a, b〉 ∈ Tmod

A [TA.resource,R.object] or 〈a, b〉 ∈ Tmod
B [TB .resource,R.object] or

both.

Lemma 2.12 For all Tmod
A (ΩA), Tmod

B (ΩB) ∈ R so thatA ⊑ B ∈ TE andA ≡ B 6∈
TE , as well asB ⊑ A 6∈ TE , the following equality holds:

(ΩA \ {resource}) ∩ (ΩB \ {resource}) = ∅

We created a relation scheme. Finally we can handle the data e. g. assertions from
ABox A. In fact, this data is translated into tuples of the associated database relations.

11



Algorithm 2 Suppose thatT , NC and NR are translated into database schemeD.
ABox A is transferred intoD by induction as follows:

1. If B(a) ∈ AE ∪ A
T⊑

D and alsoB ∈ NC, then〈a〉 ∈ TB .
2. If R(a, b) ∈ A andR ∈ NNR, then〈a, b〉 ∈ TR.

3. If R(a, b) ∈ A andR ∈ NFR, then one of the following items:

(a) if VD
AE

R = ∅ then

〈a, b〉 ∈ TR,

(b) if there existsA ∈ VD
AE

R so thatA(a) ∈ AE , then

〈a, b〉 ∈ Tmod
A [TA.resource,R.object],

(c) if there existsA ∈ PDR \ VD
AE

R so thatA(a) ∈ AE , then there exists a
maximal sequenceA = B1, B2, . . . , Bn ∈ NC so thatBn ∈ VD

AE

R and
Bi ⊑ Bi+1 ∈ TD for i = 1, . . . , n − 1 Then

〈a, b〉 ∈ Tmod
Bn

[TB .resource,R.object].

In fact, according to the rule 2 in Algorithm 1 we obtain in step 3b in Algorithm
2 a tuple〈a, x1, x2, . . . , xn〉, where somexi are possibly empty. This is expressed in
databases by introducing a specialnull value. Similarly, we can consider result of 3c.

Note also, that in order to have loss less transport of data from ontology into a
relational database we have to deal with the case whenVD

AE

R = ∅. This can cause
problems in querying, when one tuple of relationR is in TR another are inTmod

C .
One possibility is to assume that for allR ∈ NFR

{a : (∃b)R(a, b) ∈ AE} ⊆
⋃

{a : B(a) ∈ AE & B ∈ PD
AE

R } (1)

Assumption 1 guaranties that steps 3b and 3c of algorithm 2 suffice to cover all data
from a functional roleR. We do not discuss this further in this paper.

Example 2.13According to all facts mentioned in previous examples and steps 1 and 2
of the Algorithm 2 we obtain the following relational database storing our ontology:

Org = {〈F1〉, 〈F2〉, 〈F3〉, 〈U1〉}, Employee = {P2, D1},
Univ = {〈F1〉, 〈F2〉, 〈F3〉, 〈U1〉}, FStuff = {〈D1〉},

Faculty = {〈F1〉, 〈F2〉, 〈F3〉}, Dean = {〈D1〉},
P erson = {〈P1〉, 〈P2〉, 〈P3〉, 〈D1〉, 〈S1〉}, Student = {〈S1〉},
headOf = {〈D1, F1〉, 〈P2, F2〉, 〈P3, F3〉}

Using step 3b we modify just the following relations:
Univmod(resource, hasName.object) = {〈U1, Name5〉},

P ersonmod(resource, hasName.object) = {〈P1, Name1〉, 〈P3, Name3〉},
Studentmod(resource, hasEmail.object) = {〈S1, Email1〉}

Deanmod(resource, hasEmail.object) = {〈D1, Email2〉}
Finally we apply step 3c with the following changes:
Person(resource, hasName.object) = {〈P1, Name1〉, 〈P2, Name2〉,

〈P3, Name3〉, 〈S1, Name4〉}.

12



Let us mention that the relationDeanview looksas follows:

Deanview = {〈D1〉, 〈P2〉, 〈P3〉}.

ABox assertions correspond to relational algebra constructions given by the Table 3.

Table 3. Translation of DL Syntax to relational algebra.

# Name DL Syntax RA construction

1 Concept assertation C(a) 〈a〉 ∈ TC

2 Role assertation R(a, b) 〈a, b〉 ∈ TR

Theorem 2.14LetO be afinite knowledge base,A is a concept anda be an individual.
We have that

〈a〉 ∈ T ∗
A[resource] =⇒ O |= A(a).

Proof.
Assume〈a〉 ∈ T ∗

A[resource] butO 6|= A(a). It means there exists interpretationI for
which aI 6∈ AI . It is necessary to find out why individuala should be in relationT ∗

A.
Inserting the tuples into relations representing concepts is done in Algorithm 2 either
in steps 1, 3b or 3c. Hence there is only one potential insert where it could arise an
unsoundness, namely insert in the step 3c. Other cases contradict because in 1 and 3b
there is assumptionA(a) ∈ A and this is true if and only if for any interpretationI
aI ∈ AI holds.

Let us assume that statement of Theorem fails due to a data record obtained
in the step 3c of the algorithm 2. LetA be a concept such thatA = Bn and
∃B1, B2, . . . , Bn−1 ∈ PD

AE

R : B1 ⊑ B2 ⊑ . . . ⊑ Bn and〈a〉 ∈ T ∗
A[resource]. Then

in all interpretationI which are model ofO we haveaI ∈ AI .

3. Relational to SQL mapping

A relational databaseexpressed in SQL consists usually of definitions of basic relations
and views. Each relational scheme and its associated integrity constraints are represented
by a standaloneCREATE TABLE statement. One possibility how to approach the con-
structions obtained by Algorithm 1 in SQL is based on the strategy to assign oneCREATE
TABLE for each schemeTA(resource) andTR(subject, object), respectively. The same
will be hold for Tmod

A (resource,RA
1 .object, ..., RA

n .object). NULL values in its rows
for thoseRA

i .object attributes for whichA(a) holds anda 6∈ RA
i [subject]. The relations

coming from defined concepts will be modeled by views in the SQL database. We re-
mind that views in SQL are virtual relations defined by aSELECT statement inCREATE
VIEW definition. Sometimes views can be materialized, i.e. they look like basic tables in
the database. Obviously theSELECT in a CREATE VIEW definition can contain other
views, etc.
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We will use here a little different approach to express the rootSELECT in CREATE
VIEW directly withnestedSELECTs andINTERSECT operations.

A decision which method to use in practice depends on real data used in the ontology
and performance considerations.

For purposes of this report we will call the set of operations projection, equi-join,
intersection and union as arelational DL-algebra. Our next steps are directed to find-
ing rules for translation of expressions of this algebra to SQL language. Particularly for
each expressionE which has been generated by Algorithm 1 we show that there is one
SELECT-FROM-WHERE statement implementingE. To do this process as straightfor-
ward as possible we start with two lemmas that let us to modify the original expression
into expressions with more convenient properties. First we will propagate all inner∩s to
higher∩s in E.

Lemma 3.1 Every expression of relational DL-algebraE is equivalent to a set expres-
sion composed of∩ and operators and operands containing no occurrence of∩ and
∪.

Proof.
We prove the claim by induction on the number of intersections inE. The basis, zero∩s
or∪, is trivial. The only one place where∩ and∪ are nested in a relational subexpression
of E is TD(resource) in the right-side of an equi-join.

Let TD = TD1
♦ TD2

, where♦ is ∩ or ∪. SinceTDi
have fewer♦s thanTD, we

can suppose that they fulfill the statement. Then, due to the additivity of operators♦,

TR(subject, object)[TR.object = TD.resource]TD(resource)

can be replaced by equivalent expression

TR(subject, object)[TR.object = TD1
.resource]TD1

(resource)♦
TR(subject, object)[TR.object = TD2

.resource]TD2
(resource).

We have omitted projection in our consideration since it does not influence these set
transformations.

The second case concerns nested expressions given byTD(resource) looking like

(TR1
(subject, object)[TR1

.object = TC1
.resource]TC1

(resource))[TR1
.subject]

for C ∈ NC andR1 ∈ NR. We show how to replace the whole expressionE by a
sequence of equi-joins of all participated relations followed by a projection. Such ex-
pressions can be easily transformed to the SQL language.

Lemma 3.2 LetD = (R1(A,B)[R1.B = T1.C]T1(C))[R1.A]. Then

(R(A,B)[R.B = D.C]D(C))[A] ≡
((R(A,B)[R.B = R1.A]R1(A,B))[R1.B = T1.C]T1(C))[R.A]
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Proof.
After asubstitution forD we obtain
(R(A,B)[R.B = D.C](R1(A,B)[R1.B = T1.C]T1(C))[R1.A])[R.A] ≡
(R(A,B)[R.B = R1.A](R1(A,B)[R1.B = T1.C]T1(C))[R1.A])[R.A] ≡
((R(A,B)[R.B = R1.A]R1(A,B))[R1.B = T1.C]T1(C))[R.A]

Remark: the distributive laws for union and intersection

i. A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
ii. A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

We can adjust the our relational expressions into a standard form, i.e. either intersection
of unions or union of intersections of atomic relational expressionsEi, each of them
being composed from equi-joins and projections.

Theorem 3.3 (relational DL-algebra→ SQL transformation). LetE be an expression
of relational DL-algebra. Then there is an SQL-expressionS defining under the same
interpretationI the same relation.

Proof.
By Lemma 3.1 and 3.2 we can assume thatE is an intersection of unions. ThenE is
translated to SQL as an SQL-expression composed fromINTERSECT operators, simple
SELECTs, union ofSELECTs andTABLE R, whereR is a relation associated with an
atomic concept.

Each simpleSELECT arises from relational expressions considered in Lemma 3.2.
We will construct them as follows. Suppose the expressionE1 = (R(A,B)[R.B =
D.C]D(C))[A] whereD = (R1(A,B)[R1.B = T1.C]T1(C))[R1.A]. The resulted SQL
expression is obtained easily from the expression equivalent toE1 according to Lemma
3.2 as
SELECT R.A
FROM R, R1,T1
WHERE R.B=R1.A AND R1.B=T1.C

Obviously, the relational expression with equi-join can be further nested. By induc-
tion it is possible to prove that it means to add other equalities to theWHERE clause.

Example 3.4 Let tables PERSON(RESOURCE), HEAD_OF(SUBJECT,OBJECT),
andCLLG(RESOURCE) be defined by associatedCREATE TABLE statements. Abbre-
viating the respectiveresource, object, andsubject, we will to transform the
construction (here we assume thatTDean = ∅)
T view

Dean = TPerson ∩ (TheadOf (headOf.subject, headOf.object)
[headOf.object = Cllg.resource]

TCllg(Cllg.resource))
[headOf.subject],

for the conceptDeanas follows:
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CREATE VIEW DEAN (RESOURCE) AS

(TABLE PERSON

INTERSECT

SELECT HEAD_OF.SUBJ

FROM HEAD_OF, CLLG

WHERE HEAD_OF.OBJ = CLLG.RES)

To do the database scheme complete we need to transform integrity constraints into
SQL CONSTRAINT statements included inCREATE TABLE expression. Subset con-
tainment and equality of two setsC andD can be expressed by referential integrities
between two tables, ifC andD are inNC.

4. Ontologies vs. Conceptual Modelling

Now we mention some observations on different approaches to database modelling.
The approach to build a database dependent only on existence of a knowledge base is
completely different from that one in the world of usual transactional databases. Such
databases arise mostly from a conceptual scheme that says, e.g., that entitiesStudent

and Course participate in the relationshiptakesCourse. In any conceptual model
takesCourse(S1, C1) impliesStudent(S1) andCourse(C1). In the world of ontolo-
gies the assertionStudent(S1) holds if S1 is a person, i.e.Person(S1) should hold.
According to definition of theStudent concept, forStudent(S1) we can deduce that
Person(S1). But such a student need not be enrolled in any course. The same is usual
in transactional databases. On the other hand, we can havetakesCourse(S2, C1) in the
same ontology without assertion thatS2 is a student or even a person. AlsoC1 need not
be in the list of courses.

Consequently, any similarity of ontology construction to conceptual modeling is
only partial. Often we define new concepts representing an entity type via other con-
cepts and roles, i.e., via other entity types and relationship types (see, e.g.,Student via
takesCourse). It reminds so called reverse engineering in which from relationship types
participating entity types are recognized and defined. In fact, this knowledge is partial,
since the notionCourse only belongs toPR

A
takeCourse. Maybe yet something else can

be characterized by the roletakesCourse. These phenomena can be explained with the
help of notions of close world assumption (CWA) and open world assumption (OWA).
Theclose world assumptionimplies that everything we do not know is false, while the
open world assumptionstates that everything we do not know is undefined. The pres-
ence of OWA in our considerations results also in situation that usual principles known
from ISA-hierarchies do not work here. For example, attribute inheritance is generally
not guaranteed. The reason is that the existence of an entity attribute can be not deduced
only from extensional assertions using roles.
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5. Experiments

5.1. SystemSetup

To verify the real query evaluation cost we have designed and implemented the system
TORQue – Translation of Ontology into Relational Queries. The TORQue is an imple-
mentation oftheoretical ideas described in previous chapters.

In experiments we wanted to evaluate scalability of our system and compare it with
non-commercial system. As it was said we have had an experience with the system
Sesame, therefore we have chosen it. For this propose we used the TORQue in version
1.0 and the Sesame in version 2.2.1. We used MySQL version 5.0 as the underlying
RDBMS.

We have done the tests on desktop computer with1.83 GHz Intel Core2 CPU,2 GB
of RAM, 80 GB hard disk, Windows XP Professional OS, and Java 6.

5.1.1. OWL Datasets

Test data is extensional data created over Univ-Bench ontology [6]. The data, that is
generated by UBA generator, has synthetic origin. Each dataset can consist of one or
more OWL files. The datasets are calledLUBM. To identify the datasets LUBM we use
notation LUBMn, wheren is a number of universities contained in the dataset. In our
experiments we created 3 sets of the test data: LUBM1, LUBM5 and LUBM10, which
include OWL files for 1, 5 and 10 universities, respectively. The largest one has over 100
MB size of the OWL files with instances saved on hard disk.

5.2. Loading Time and Repositories

In this section we want discuss loading time of the different storages. In Table 4 we listed
data loading time for both systems, Torque as well as Sesame. For each dataset we show
number of files that belong to the dataset and their total size on disk. Also we present
number of triples of every dataset, loading time of the repository and repository size on
disk.

Table 4. Data loading parameters

Dataset Number Total Number of Load Time Repository

data of Files Size (MB) Triples (hh:mm:ss) Size (MB)

Sesame
LUBM1 15 8.1 103 397

00:02:20 19.1

TORQue 00:33:18 18.7

Sesame
LUBM5 93 50.5 646 128

00:49:37 117

TORQue 10:07:35 82.1

Sesame
LUBM10 189 103 1 316 993

03:07:02 240

TORQue 40:26:11 185.5

The TORQue system seems to be economical considering database sizeon the disk
that it takes. On the other hand, the loading time is much more worse than the loading
the Sesame repositories. We should notice that loading time of the database created by
TORQue consists of the time spent on computing things like potential domains and valid
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domains, time spent on communication with the database and time spenton commu-
nication with the Sesame. Communication with Sesame cost us a lot of time. For now
we ask the system Sesame everything about the ontology (names of the concepts, roles,
subsumption and equality assertions, concepts assertion, and role assertions).

Let us mention that Sesame offers repository based on an RDBMS but we decided
not to use this kind of repository. The reason is, that this repository does not provide
any reasoning tasks. We remind also that Sesame does not find answers to almost all test
queries. Even the memory repository is not usable in practice. So, our experiments use
only native Sesame repository.

5.3. Test Queries

Our set of test queries consists of the12 queries,10 becomes from LUBM benchmark
set, namely queries 1 – 8, 12 and 14. We preserve the numbering of the selected bench-
mark queries. The rest of queries are constructed by us (numbers 15 and 16). We have
decided to add these queries to our sample because this queries use functional proper-
ties. The LUBM queries are presented in SPARQL language [25], what is a standard
language recommended by W3C Consortium. However, we want to provide the tests of
Sesame also with language SeRQL [24], what was, for Sesame, the first supported query
language.

5.4. Query Response Time

The test system receives the test set of the queries (in SPARQL language) andid of the
repository that should be tested. It runs query by query from the test sample and repeats
themm times. The numberm is in this case10. For each query, each system, and each
dataset we compute average response time. Figure 4 shows the graphs with test results
for all datasets.

Each figure consists of two graphs. The graph on the left-hand side informs about
all our test queries. The right-hand side one concerns the queries with complete answer.
Order of the queries presented in all graphs is defined by the number of tuples in the
query answers.

To verify completeness of query answers we used results presented in [6]. The really
important feature of the system TORQue is that it computes the complete answers in all
cases. However, the system Sesame returns (independently of the query language) only
91% answer in case of the query 7, 83% for queries 6 and 8. Even for the query 12 it
does not find any answer though it should return some answer.

6. Conclusion

We have proposed a model of translation of the ontology to relational database and de-
veloped the system TORQue.

DBMSs with their wide scale of query optimization techniques offer us a lot of abil-
ities to improve our system. One of them is a technique which speeds up query evalu-
ation through indexing of some columns. It helps with relational joins. To further im-
prove the indexes there is an idea inspired with Sesame 2. All names of concepts, roles
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Figure 4. Test results for LUBM1, LUBM5, LUBM10.

and instances refer to numeric indexes instead of to their origin names of string type. In
databases it is more effective to join tables through numerical columns.

In the introduction we mentioned projects (described in [7,10]) which we are partic-
ipated in. As we mentioned, required information in the systems was static. There was
finite number of query types over the ontology. Therefore we could store ontology in-
formation into fixed index structure and the rest of application could work just with the
indexes, what is really fast. But if we want to modify object of our interest we have to
modify a configuration file (add or modify query that creates index). In future work we
would like to supersede this ontology information retrieval with the system described in
this work, i.e. the system TORQue.

To increase usability of our system, we want to implement SPARQL-compiler as
well. Hence the query language SPARQL is a standard ontology query language based
on RDF triples. Finally, we remind that relational databases offer additional operators to
operators mentioned in Table 1. Therefore we also plan to go behind theEL description
logic and to develop algorithms for translations of these extended constructions. Conse-
quently, providing experiments with a wider class of description logics will be possible.
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