
A Comparison of XML-based Temporal Models

Khadija Ali, Jaroslav Pokorný

1 Czech Technical University, Faculty of Electrical Engineering, Praha , Czech Republic
alik1@fel.cvut.cz

2 Charles University, Faculty of Mathematics and Physics, Praha , Czech Republic
jaroslav.pokorny@mff.cuni.cz

Abstract. Much research work has recently focused on the problem of repre-
senting historical information in XML. This paper describes a number of tem-
poral XML data models and provides their comparison according to the follow-
ing properties: time dimension (valid time, transaction time), support of tempo-
ral elements and attributes, querying possibilities, association to XML
Schema/DTD, and influence on XML syntax. We conclude that the approaches
of managing time information using XML mostly do not require changes of
current standards.

Keywords: XML, temporal XML data model, bitemporal XML data model,
versioning XML documents, transaction time, valid time, efficacy time, native
XML databases (NXDs).

1 Introduction

Recently, the amount of data available in XML [13] has been rapidly increasing. In
context of databases, XML is also a new database model serving as a powerful tool
for approaching semistructured data. Similarly to relational or object-relational mod-
els in the past, database practice with XML started to change also towards using time
in some applications, such as banking, inventory control, health-care, and geographi-
cal information systems. Much research work has recently focused on adding tempo-
ral features to XML, i.e. to take into account change, versioning, evolution and also
explicit temporal aspects of XML data, like, e.g., the problem of representing histori-
cal information in XML. XML documents are related to time in two aspects: they
contain temporal information and/or their contents evolve with time. Examples of the
latter case include normative texts, product catalogues, etc. We consider both aspects
in the temporal XML data models.

To manage temporal information in XML documents, a temporal XML data model
is required. Based on similar approaches well-known from the field of temporal rela-
tional databases [9], many researchers transformed old ideas into the world of hierar-
chical structures of XML documents. Technically, to develop an XML temporal data
model, it is necessary to extend a XML data model by a time dimension. The problem
is that there is more XML data models (e.g. Infoset [14], XPath data model [3],
XQuery data model [1], etc.) and more times (usually valid and transaction times).

2 Khadija Ali, Jaroslav Pokorný

This fact complicates a comparison of various temporal XML data models that occur
in literature.

In [9] the relational temporal data models are classified as two main categories:
temporally ungrouped models and temporally grouped data models. As opposed to the
former, a temporally grouped data model can be expressed by relations in non-first-
normal-form model or attribute time stamping, in which the domain of each attribute
is extended to include the temporal dimension. The hierarchical structure of XML
provides a natural environment for use of temporally grouped data models. We de-
scribe a number of temporally grouped XML data models and provide their compari-
son according to the following properties: time dimension (valid time, transaction
time), support of temporal elements and attributes, querying possibilities (particularly
in languages XPath and XQuery), association to XML Schema/DTD, and influence
on XML syntax.

The paper is organized as follows. Section 2 contains a brief overview of some
works which have made important contributions on adding temporal features to XML.
We describe an XML-based bitemporal data model (XBIT) and its application for
versioned documents. Then we describe a temporal XML data model which is able to
manage the dynamics of normative texts in time. We introduce also a valid-time
XPath data model. The model adds valid time support to XPath language. Then we
present a key-based approach for archiving data. The last model introduced is a mul-
tidimensional XML model. In Section 3 we summarize all the mentioned models. We
briefly analyze their characteristics and subsequently we express our point of view. In
Section 4, we describe shortly an ongoing work of a new XML-based temporal
model. Finally, in Section 5, we present our conclusions and future investigations.

2 Time in XML – an Overview

As usually, an XML data model should provide tools for describing structure of XML
data, integrity constraints, manipulation statements, and querying XML data. We
mostly omit integrity constraints and in manipulations we focus on promitive change
operators for elements and/or attributes: update, insert, and delete.

2.1 XBIT - an XML-based Bitemporal Data Model

The approach introduced in [11] is based on temporally-grouped data model. A tem-
poral XML document is represented by adding two extra attributes, namely vstart
and vend, representing the time interval for which an element is valid. vstart and
vend represent the inclusive valid time interval (vend can be set to the special sym-
bol now) to denote the ever-increasing current date. Each temporal element is as-
signed also two extra attributes; tstart and tend to represent the inclusive trans-
action time interval; tend can be set to UC (until changed).

Example 1: A temporal element title can be represented in XBIT in the follow-
ing way:

<title vstart=”1998-01-01” vend=”now”

A Comparison of XML-based Temporal Models 3

 tstart=”1997-09-01” tend=”UC”>Sr Engineer</title>

The expression says that title with the value Sr Engineer is valid from
1998-01-01 until now.This fact is recorded in the database in 1997-09-01.

The model can also support powerful temporal queries expressed in XQuery with-
out requiring the introduction of new constructs in the language; all the constructs
needed for temporal queries can be introduced as user-defined libraries. Modifications
in XBIT can be seen as the combination of modification on valid time and transaction
time history. XBIT will automatically coalesce on both valid time and transaction
time, for instance, the valid time intervals with the same title value that overlap or are
adjacent. Those intervals are merged by extending the earlier interval; this process is
repeated until maximal intervals are constructed. At this point, the non-maximal in-
tervals are removed. The used technique is general and can be applied to historical
representation of relational data and versions management in archives (see Section
2.2).

2.2 An XML–Based Model for Versioned Documents

An efficient technique for managing multiversion document histories [10] is used by
storing the successive versions of a document in an incremental fashion. Elements of
an XML document use again attributes vstart and vend representing the time
interval for which this elements version is valid. Elements containing attributes can be
supported by representing each attribute as a subelement denoted by a special flag
attribute isAttr. For instance, if the employee element contains the attribute
empno then this fact is represented as:

<empno isAttr=”yes” vstart=”1999-01-01” vend=”now”> e1
</empno>

Change operations on XML documents can be represented in the model for ele-
ments. Three primitive change operations are considered, delete, insert, and update.
The following is the effect of performing each operation:
Update. When the element a is updated at time t:

1. a new element with the same name a will be appended immediately after the
original one; the attributes vstart and vend of this new element are set to t and
now, respectively.

2. the vend attribute of the old element is set to t – 1.
Consider the element <a vstart=”2000-01-01”

vend=”now”>123, and suppose to change the value of a to 250 at
”2002-01-02”. Then we get the following elements:

123
250

Insert. When a new element is inserted at time t, this element is inserted into the
corresponding position in the document; the vstart attribute is set to t, and vend is set
to now.

4 Khadija Ali, Jaroslav Pokorný

Delete. When an element is removed at time t, the vend attribute is set to t -1. Sup-
pose to delete the element a at 2004-01-02. Then we get the following element:

250

The DTD of the versioned XML document can be automatically generated from
the original DTD. Two new attributes vstart and vend are added to each element;
an attribute of an element will be converted as a child element. For instance, the tem-
poral element title is represented in the DTD as

<!ELEMENT title (#PCDATA)>
<!ATTLIST title vstart CDATA #REQUIRED
 vend CDATA #REQUIRED>

Due to the temporally grouped features of the model, it is possible to express pow-
erful temporal queries in XQuery. For instance, the query “Find chapters in which the
title did not change until a new History section was added” can be expressed as

for $ch in document ("V-Document.xml")/document/chapter
let $title:= $ch/title[1]
let $sec:= $ch/section[. ="History"]
where not empty($title) and not empty($sec) and
 $title/@vend = $sec/@vstart
return $ch

2.3 An XML-Based Temporal Data Model for the Management of Versioned
Normative Texts

In this model [7], four dimensions (publication, validity, efficacy, and transaction
times) are used in the context of legal documents. A temporal element is chosen as a
basic unit of temporal pertinence. They are used to represent the evolution of norms in
time and their resulting versioning. Publication time is the time of publication of
norms in an official journal. Efficacy time usually corresponds to the validity of
norms, but sometimes the cancelled norm continues to be applicable to a limited
number of cases. Valid time represents the time the norm is in force (the time the
norm actually belongs to the regulations in the real world). Transaction time is the
time the norm is stored in the computer system.

An alternative XML encoding schema has been developed for normative text based
on an XML-schema which allows the introduction of time stamping metadata at each
level of the document structure which is a subject to change. For the management of
norms, three basic operators are defined; one for the reconstruction of a consistent
temporal version and the other two for the management of textual and temporal
changes. Querying uses combination of full text retrieval and XQuery extended by
some constructs to deal with time dimensions.

A Comparison of XML-based Temporal Models 5

2.4 A Valid Time XPath Data Model

In the valid time XPath data model [12] a list of disjoint intervals or instants that
represent the valid time is added to each node of the original XPath data model.
• Every node of the tree structure of an XML document is associated with the valid

time that represents when the node is valid, no node can exist at a valid time when
its parent node is not valid.

• The valid time of any node is a superset of the union of the valid times of all its
children as well as all its descendents. The valid time of the root node should be a
superset of the union of the valid times of all nodes in the document.

• The valid time of an edge is determined by the valid time of the nodes at the edge's
two ends (if both nodes are valid, an edge can exist). The valid time of the edge is
result of t1 � t2, where t1 and t2 are the valid times of the edge's two ends.
The XPath is extended with an axis to locate the valid time of a node. A valid time

axis is added to XPath to retrieve nodes in a view of the valid time for a node. The
axis returns a list of nodes relative to the context node. Each node in an XML docu-
ment has a corresponding valid time view containing its valid time information. Here,
a valid time list can be viewed as an XML document. Each time in the valid time list
is denoted as a <time> element. The content of the <time> is unique to the view.
Below we show the valid time view of an element in the commonly used Gregorian
calendar; "year", "month ", and "day" element nodes are nested under "begin" and
"end" of each view.

<validtime>
 <time>
 <begin>
 <day>31</day>
 <month>Jan</month>
 <year>1999</year>
 </begin>
 <end>
 <day>now</day>
 <month>now</month>
 <year>now</year>
 </end>
 </time>
</validtime>

Remind that any calendar can be used. The commonly used calendar is Gregorian
calendar; however there are other calendars that are widely used by people in different
regions.

The valid time axis selects the list of nodes that form a document-order traversal of
the valid time view. By this constraint, the nodes in the valid time axis are ordered
according to the document order traversal of the valid time view. The valid time axis
of a node contains the valid time information of the node as if it had originated from
an XML document (a document order refers to the standard document order as it is
specified in Infoset).

6 Khadija Ali, Jaroslav Pokorný

Since the <time> elements in the valid time view are ordered by the actual time
they represent, these <time> elements selected by the valid time axis are also in this
order.

Example 2: Below are some simple examples of using the valid time axis to query
within the default view of the valid time.
v/valid specifies the valid time axis of the node v.
v/valid::day selects all the day nodes in the axis.
v/valid::time[2] selects the second time node in the axis .

2.5 Key-Based Model for Archiving Data

In this archiving technique [2], a document is viewed as unordered set of XML ele-
ments. The elements can be uniquely identified and retrieved by their logical keys;
elements have timestamps only if they are different from the parent node.

Key-based approach is used for identifying the correspondence and changes be-
tween two given versions based on keys. In contrast to diff-based approach which (i)
keeps a record of changes – a "delta" - between every pairs of consecutive versions,
(ii) stores the latest version together with all forward completed deltas –changes be-
tween successive versions- that can allow one to get to an earlier version by inverting
deltas on the latest version, the Key-based approach can preserve semantic continuity
of each data element in the archive. An element may appear in many versions whose
occurrences are identified by using the key structure and store it only once in the
merged hierarchy.

A key is a pair (Q, {P1,…, Pk}) where Q and Pi, i ∈ [1, k], are path expressions in a
syntax similar to XPath. Informally, Q identifies a target set of nodes reachable from
some context node and this target set of nodes satisfies the key constraints given by
the paths, Pi, i ∈ [1, k].

Example 4: Consider the XML document

<DB>
 <A> 1 <C>1</C>
 <A> 1 <C>2</C>
</DB>

The document satisfies the key(/DB/A,{C})but it does not satisfy the key
(/DB/A,{B})since both A elements have the same key path value, i.e.,
1.

This archiving technique requires that all versions of the database must conform to
the same key structure and the same schema as well.

All the versions are merged into one hierarchy where an element appearing in mul-
tiple versions is stored only once along with a timestamp. The main idea behind
nested merge is:
• Recursively to merge nodes in D (incoming version) to nodes in A (the archive)

that have the same key value, starting from the root.

A Comparison of XML-based Temporal Models 7

• When a node y from D is merged with a node x from A, the time stamp of x is
augmented with i (the new version number).The sub-trees of nodes x and y are then
recursively merged together.

• Nodes in D that do not have corresponding nodes in A are simply added to A with
the new version number as its time stamp.

• Nodes in A that no longer exist in the current version D will have their timestamps
terminated appropriately, i.e., these nodes do not contain timestamp i.
Since the archive is in XML, the existing XML query languages such as XQuery

can be used to query such documents. The authors of [2] did not discuss the issue of
temporal queries in detail.

2.6 A Multidimensional XML Model (MXML)

In the approach [5], we represent multiple versioning not only with respect to time but
also to other context parameters such as language, degree of detail, etc.

In a multidimensional XML document, dimensions may be applied to elements and
attributes. A multidimensional element/attribute is an element/attribute whose con-
tents depend on one or more dimensions. The notion of world is fundamental in
MXML. A world represents an environment under which data in a multidimensional
document obtain a meaning. A world is determined by assigning values to a set of
dimensions.

Example 5: Consider the world w = {(time, 2005-12-14), (customer_type, student),
(edition, English)}. The dimensions names are time, customer_type, and edition. The
assigned values of these dimensions names are 2005-12-14, student, and English
respectively.

The multidimensional element is denoted by preceding the element’s name with
the special symbol “@”, and encloses one or more context elements. All context ele-
ments of a multidimensional element have the same name which is the name of the
multidimensional element. Consider the following MXML document:

<book>
 <@isbn>
 [edition = greek] <isbn>0-13-110370-9</isbn> [/]
 [edition = English] <isbn>0-13-110362-8</isbn> [/]
 </@isbn>
</book>

The @isbn is a multidimensional element dependent on the dimension edition.
It has two context elements having the same name isbn (without the special symbol
“@”). Context specifiers qualify the facets of multidimensional elements and attrib-
utes, called context elements/attributes, stating the sets of worlds under which each
facet may hold. [edition = greek]and [edition = English] are the
context specifiers of @isbn. [/] represents the end symbol of a context specifier.

Change operations (update, delete, insert) can be represented in MXML for both
elements and attributes. For instance, consider the element <p a1 ="9"> v1
</p> and suppose to delete the attribute a1 at time point t. Then we get the follow-
ing MXML element:

<p a1=[d in{start..t-1}]"9"[/]>v1</p>

8 Khadija Ali, Jaroslav Pokorný

where a dimension named d is used to represent time, start is a reserved word
representing the start time, t-1 represents the end time.

The history of the schema of an XML document can be represented easily, for in-
stance, deleting an element, or adding an attribute to an element at a specific time
point. The following XML schema description retain the element r as optional during
the interval {t..now}.

<xs:element name="r" type="xs:string"
 minOccurs=[d in {t..now}]"0"[/]/>

Consider the following XML document:

<p>
 <q>v1</q> <r>v2</r> <s>v3</s>
</p>

The schema for this document may be encoded in XML schema as follows:

<xs:element name="p">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="q" type="xs:string"/>
 <xs:element name="r" type="xs:string"/>
 <xs:element name="s" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Suppose to delete the element r at time point t. Then we get the following MXML
element:

<p>
 <q>v1</q>
 <@r>
 [d in {start..t-1}] <r>v2</r> [/]
 </@r>
 <s>v3</s>
</p>

After deleting the element <r>v2</r> at time t, it is necessary to modify the
document’s schema if we want the XML document resulting by applying the deletion
to become valid. This change can be represented by turning the element sequence of
the above XML schema into a multidimensional element with two facets:

<xs:element name="p">
 <xs:complexType>
 <@xs:sequence>
 [d in {start..t-1}]
 <xs:sequence>
 <xs:element name="q" type="xs:string"/>
 <xs:element name="r" type="xs:string"/>

A Comparison of XML-based Temporal Models 9

 <xs:element name="s" type="xs:string"/>
 </xs:sequence>
 [/]
 [d in {t..now}]
 <xs:sequence>
 <xs:element name="q" type="xs:string"/>
 <xs:element name="s" type="xs:string"/>
 </xs:sequence>
 [/]
 </@xs:sequence>
 </xs:complexType>
</xs:element>

3 Summary of XML-Based Temporal Data Models

So far, we have introduced some works which have made important contributions in
providing expressive and efficient means to model, store, and query XML-based
temporal data models. In the following subsections we provide a comparison of all
mentioned models according to the following properties: time dimension (valid time,
transaction time), support of temporal elements and attributes, querying possibilities,
association to XML Schema/DTD, and influence on XML syntax.
Time dimension. All the models are capable to represent changes in an XML docu-
ment by supporting temporal elements, and incorporating time dimensions. Two time
dimensions are usually considered: valid time and transaction time. There are several
other temporal dimensions that have been also mentioned in the literature in relation
to XML. In [7] a publication time and efficiency time in the context of legal docu-
ments are proposed.
Temporal elements and attributes. Time dimensions may be applied to elements
and attributes. All the models are capable to support temporal elements. In [5] and
[10] the temporal attributes are supported. In our point of view, supporting temporal
attributes adds an advantage to the model. In [5] versions of an element are explicitly
associated as being facets of the same (multidimensional) element. Grouping facets
together allows the formulation of cross-world queries, which relate facets that hold
under different worlds [6].
Influence on XML syntax. Temporal information is supported in XML much better
than relational tables. This property is attributed to the hierarchical structure of XML
which is compatible perfectly with the structure of temporal data. Only in [5] the
syntax of XML is extended in order to incorporate not only time dimensions but also
other dimensions such as language, degree of detail, etc. So the approach in [5] is
more general than other approaches as it allows the treatment of multiple dimensions
in a uniform manner.
Querying possibilities. In our point of view, the model’s power depends also on
supporting powerful temporal queries. In [10] and [11] powerful temporal queries
expressed in XQuery without requiring the introduction of new constructs in the lan-
guage are supported. In [12] a valid time support is added to XPath. This support

10 Khadija Ali, Jaroslav Pokorný

results in an extended data model and query language. In [7] querying uses combina-
tion of full text retrieval and XQuery extended by some constructs to deal with time
dimensions. The other models in [5] and [2] did not discuss the issue of temporal
queries; in [2] elements have timestamps if they are different from the parent nodes.
This fact complicates the task of writing queries in XPath/XQuery; consider the fol-
lowing XML representation of an archive containing versions 1 and 2.

<T t="1-2">
 <db>
 <employee>
 <id>1</id>
 <name>Anas</name>
 <address>
 <city>Prague</city>
 <street>Krouzova 18</street>
 </address>
 <salary><T t="1">22k</T>
 <T t="2">30k</T></salary>
 </employee>
 ...
 </db>
</T>

Note that T is a special element represents element's versions by a special attribute
t. For instance, the tenth line says that the value of salary is 22k and 30k in the
first and second version respectively. The salary of Anas in the second version can be
expressed easily in XQuery (because salary elements have their own timestamps):

//employee[name="Anas"]/salary/T[@t="2"]

But where Anas was living in the second version can not be expressed easily in
XQuery. It requires to check timestamps of db element since city, its parent (ad-
dress), and parent of its parent (employee) do not have timestamps.
Association to XML Schema/DTD. A significant advantage will be added to the
model if it is not only representing the history of an XML document but also the his-
tory of its corresponding XML schema or DTD as well. In [5], [7], and [10] the tem-
poral XML schema/DTD is supported by extending the existing XML schema/DTD.
All the mentioned models are summarized in Table 1.

4 3D_XML: a three-Dimensional XML-based model
In this Section we describe shortly an ongoing work of a new XML-based temporal
model. Our model is a three-dimensional XML-based model (3D_XML in short) for
representing and querying histories of XML documents. The proposed model incorpo-
rates three time dimensions, valid time, transaction time, and efficacy time without
extending the syntax of XML. An important issue of each data model is its implemen-
tation. Native XML databases NXDs represent a suitable storage platform when com-
plex time dependent data has to be manipulated and stored, so we chose to implement
temporal queries directly in NXDs (particularly eXist). 3D_XML is equipped with a

A Comparison of XML-based Temporal Models 11

set of temporal constructs; valid/efficient times relationships constructs, interval com-
parison operators, snapshot data construct, etc. We use XQuery to express complex
temporal queries, but the expression of these queries is greatly simplified by a suitable
library of built-in temporal functions; the preliminary experimental results on query
performance are encouraging.

5 Conclusions
In this paper, we showed that an effective temporal information system should pro-
vide (i) expressive temporal data model, (ii) powerful language for temporal queries
and snapshot queries as well. We conclude that XML provides a flexible mechanism
to represent complex temporal data. Its query language XQuery is natively extensible
and Turing-complete [8], and thus any extensions needed for temporal queries can be
defined in the language itself. This property distinguishes XML temporal querying
from that one in relational temporal languages, e.g. TSQL. So, any syntax extension
of XQuery towards a temporalness, e.g. τXQuery [4], makes only queries easier to
write. The most usual bitemporal representation does not require changes of current
XML standards.

Table 1. Features summary of XML-based temporal models. (“-“ means that the associated
feature is not discussed in the original model; Y and N denote Yes and No, respectively.

Model

Time
dimension

Supports
temporal
elements

Supports
temporal
attributes

Querying Extends
XML
schema/
DTD

Extends
XML
syntax

XBIT [11]

Valid/
transaction
time

Y N XQuery - N

Versioned
Documents
[10]

Valid/
transaction
time

Y Y XQuery Y N

Versioned
normative
texts [7]

Valid/
transaction/
publication/
efficacy time

Y N XQuery
is
extended

Y N

Valid time
XPath data
model [12]

Valid time Y N XPath
is
extended

-

N

Key-based
model for
archiving
data [2]

Valid time Y N -
-

N

MXML [5]

Valid/
transaction
time

Y Y - Y Y

XML can be even an option for implementations of temporal databases (or multi-

dimensional databases) on a top of a native XML DBMS. Our work shows that there

12 Khadija Ali, Jaroslav Pokorný

are a lot of important topics for forthcoming research. Many research issues remain
open at the implementation level, including, e.g., the use of nested relations on the top
of an object-relational DBMS, reflecting temporal features into an associated XML
query language, etc. The future work is directed to extend 3D_XML model by adding
more temporal constructs in order to support more powerful temporal queries. Sup-
port of updates will be also a real area of future investigations.

Acknowledgements. The research was in part supported by grant 1ET100300419 of
the Information Society Program - Thematic Program II of the National Research
Program of the Czech Republic.

References

1. Boag, S., Chamberlin, D., Fernández, M. F., Florescu, D., Robie, J. Siméon, J.: XQuery
1.0: An XML Query Language, W3C Working Draft, 04 April 2005. Available:
http://www.w3.org/TR/xquery/

2. Buneman, P., Khanna, S., Tajima, K., and Tan, W.: Archiving scientific data. In: Proc. of
ACM SIGMOD Int. Conference (2002) 1-12

3. Clark, J., DeRose, S.: XML Path Language (XPath) Version 1.0, W3C Recommendation,
16 November 1999. Available: http://www.w3.org/TR/xpath/.

4. Geo, D., Snodgrass, R.: Temporal slicing in the evaluation of XML queries. In: Proc. of
VLDB, Berlin, Germany (2003) 632-643

5. Gergatsoulis, M. and Stavrakas, Y.: Representing Changes in XML Documents using
Dimensions. In Proc. of 1st Int. XML Database Symposium (2003) 208-221

6. Gergatsoulis, M., Stavrakas, Y., Doulkeridis, C., and Zafeiris, V. Representing and query-
ing histories of semistructured databases using multidimensional OEM. Inf. Syst., Vol. 29,
No. 6. Elsevier Science (2004) 461-482,

7. Grandi, G., Mandreoli, F., Tiberio, P.: Temporal Modelling and Management of Norma-
tive Documents in XML Format, Data and Knowledge Engineering, 54:3, Elsevier Sci-
ence (2005) 227-254

8. Kepser, S.: A Simple Proof of the Turing-Completeness of XSLT and XQuery. In: Proc.
of Extreme Markup Languages, Montréal, Québec (2004)

9. Tansel, A., Clifford, J., Gadia, S., Jajodia, S., Segev, A., Snodgrass, R.T.: Temporal Data-
bases: Theory, Design and Implementation, Benjamin/Cummings Publishing Company,
California (1993) 496-507

10. Wang, F. and Zaniolo, C.: Temporal Queries in XML Document Archives and Web
Warehouses. In Proc. of 10th Int. Symposium on Temporal Representation and Reasoning
(2003) 47-55

11. Wang, F. and Zaniolo, C.: XBIT: An XML-based Bitemporal Data Model. In: Proc. of
23rd Int. Conference on Conceptual Modeling, Shanghai, China (2004), 810-824

12. Zhang, S. and Dyreson, C.: Adding Valid Time to XPath. In: Proc. of 2nd int. Workshop on
Database and Network Information Systems, Aizu, Japan (2002) 29-42

13. W3C: Extensible Markup Language (XML) 1.1. (Third Edition), W3C Recommendation
04 February 2004, Available: http://www.w3.org/TR/xml11/

14. W3C : XML Information Set (Second Edition). W3C Recommendation 04 February 2004.
Available: http://www.w3.org/TR/xml-infoset/

