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Abstract 

A large amount of heterogeneous information is now available in enterprises. Some their data sources are 
repositories of XML data or they are viewed as XML data independently on their inner implementation. In this 
paper, we study the foundations of XML data warehouses. We adapt the traditional star schema with explicit 
dimension hierarchies for XML environment. We propose the notion of XML-referential integrity for handling 
XML-dimension hierarchies. For querying XML data warehouses, we introduce an operation semijoin based on 
approximate matching XML data and discuss its effective evaluation. 

1 Introduction 
A large amount of heterogeneous information is now available in enterprises. Such data stores may be classical 
formatted databases but also data collections coming from e-mail communication, e-business, or from inner 
digital documents that are produced by applications in enterprise.  

A data warehouse (DW) is an integrated repository of data generated from many sources and used by the entire 
enterprise. The dimensional model (DM) is a logical representation of a business process whose main features are 
user understandability, query performance and usefulness for reporting, issue resolution, and predictive 
modelling.  As the viable technique in DW environment, DM is widely accepted [Ki+98]. A usual approach to 
DM is based on dimension and fact tables grouped into a structure called a star schema.  

In a real environment of the enterprise, it is not too hard to imagine that some its data sources are repositories of 
XML data or that they are viewed as XML data independently on their inner implementation. An increasing 
interest appears to conceive XML data as database data [Bo01] or, particularly, as DW data. In [Po01] we tried to 
build a DW over XML data, i.e. we supposed that dimensional data is XML data. The notion of DM was modified 
and accommodated substantially and a star schema structure with explicit hierarchies [Po99] was used as a basic 
data structure in the new approach to XML-based DW. We assumed XML data equipped by Document Type 
Definitions (DTD). Then, on the schema level, a particular dimension is modelled as a sequence of DTDs that are 
logically associated by so called XML-referential integrity. Obviously, facts may be modelled as XML data as 
well.  

XML data is traditionally divided into two categories: document centric and data centric. The former has only 
few, interspersed mark-ups, the latter is solely created and interpreted by some application logic. We suppose 
rather data centric XML data for our DW. However, the information in an XML DW is never complete. It follows 
from the possibilities of XML data specification via regular expressions allowed by DTDs. Consequently, only 
partial (or approximate) matching of XML data is appropriate for testing if the referential integrity is satisfied by 
two XML collections. 

Having such a theoretical framework for XML-based DW, a natural question is arising: how to query such data in 
practice. In other words, usual approaches to querying stars should be reformulated. We design a basic algorithm 
for this purpose. It uses a semijoin operation accommodated for XML data.    
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The paper is organized as follows. Section 2 shortly introduces the main concepts of DM with tables and states 
some restrictions chosen for the approach in the paper. In Section 3 we give a brief overview over XML and 
present a tree model for XML data and associated DTD. Section 4 defines notions needed for characterization of 
XML collections, for specifying XML-referential integrity, and for establishing dimensions over XML data. We 
define XML-star schemes with explicit dimension hierarchies and dimensional XML-databases. We also design 
an algorithm which makes it possible to extract fact data from a dimensional XML-database, considering a simple 
query language over XML-star schema. We complete this section by a discussion of some decisions chosen in the 
approach. Finally, we summarize the approach and point out further research issues. 

2 Dimensional modelling with tables 

Informally, a DM-schema is a description of dimension and fact tables. An associated diagram is called DM-
diagram. A variant of this approach is called a star schema, i.e. the case with one fact table surrounded by 
dimension tables. Each dimension table has a single-part primary key that corresponds exactly to one of the 
components of the multi-part key in the fact table. Attributes of dimension tables (dimension attributes) are used 
as a source of constraints usable in DW queries. A fact is a focus of interest for the enterprise. It is modelled by 
values of non-key attributes in the fact table that functionally depend on the set of key attributes. Each fact is 
�measured� by values of a tuple of dimension values.  

2.1 Dimension hierarchies 

On the conceptual level, particular members of each dimension hierarchy are sets of entities that can be described 
as entity types. Although more complex hierarchies are distinguished in literature, we keep to simple hierarchies, 
whose members compose a path in a directed graph (see Figure 1). Consequently, we can model such hierarchies 
by a chain of tables connected by logical references (foreign keys). 

 
 
 

Figure 1: Dimension hierarchy as a chain of entity types 

The notions can be formalized following [Po99]. We consider dimension table schemes Di(Ωi) , i=1,�,n, n≥1, and 
a fact table schema F(Ω), where Ωi and Ω are sets of attributes. One attribute from Ωi is called the key of Di table 
and is denoted KDi. The key of F is ∪ i=1..n KDi

1. Other (non-key) attributes of F are usually called facts. We call 
such fact table schema F specified w.r.t. dimension table schemes Di(Ωi) , i=1,�,n. Extensions of table schemes 
are sets of rows similarly as in relational databases. We call them tables. 

Definition 1 (Dimension Hierarchy): Let D be a set of dimension table schemes. Then a (simple) dimension 
hierarchy N  is a pair <H, CC>, where H is specified as 

(a) H ⊆  D × D  or { D} , D ∈  D,  

(b) H is an acyclic path,      

and CC = { CCij (Di, Dj) ∈  H} . Each CCij is defined syntactically as follows:  

(c) if KDj is the key of Dj, then KDj is also an attribute of  Di.   

Ds in H are called members of N.  We write usually N: D1 →�→ Dk. From the condition (b) we can observe that 
KDj in Di is a foreign key in the same sense as in the logical connection of F to a dimension table. Condition (a) 
implies the existence of a unique root member of H. The root plays a significant role. Actually, facts in F table are 
usually directly dependent on data stored in root tables.  

                                                           
1 No dependencies are supposed among dimensions. 

Office District County State
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We use upper letters D, F, ... for table schemes and D∗ , F∗ , ... for tables. Let Di
∗  and Dj

∗  be tables. The cardinality 
constraint CCij is satisfied by these tables when for each row u from Di

∗  there is only one row v in Dj
∗ , such that 

u.KDj = v.KDj. Let N: D1 →�→ Dk be a dimension hierarchy and D1
∗ ,�, Dk

∗  tables. The tables are admissible for 
N if they satisfy all cardinality constraints from CC. 

2.2 Stars with explicit dimension hierarchies 

We will use explicit hierarchies in star schemes [Po99]. This approach, known also as snowflakes, is useful for 
querying a database equipped by such schema.  

Definition 2 (Star Schema with Explicit Dimension Hierarchies): Let N be a non-empty set of dimension 
hierarchies, DN the set of their hierarchy roots, and F a fact table schema specified w.r.t. DN.  A star schema with 
explicit dimension hierarchies is a pair <N, F>.  

A fragment of a DM-diagram is depicted in Figure 2. It follows from definition F that the cardinality constraint is 
defined between F and each root table of N, for each N∈ N.  

A dimensional database S∗  over a star schema with explicit hierarchies S is a set of dimension tables and a fact 
table. For each N ∈ N the associated dimension tables must be admissible for N and the cardinality constraint must 
be satisfied by F and the root table of N.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 2: Fragment of DM-diagram for a star schema with explicit dimension hierarchies 

The crow�s feet notation expresses that rows of the fact table and of its any dimension table are in many-to-one 
relationship2. Moreover, dimensions are independent of facts, facts can not exist without dimensions. CCs also 
imply an expected observation that each KD is a foreign key in F, e.g. there is a referential integrity between F 
and each N root as well as between two adjacent members of N.  

3 Basics for XML 

The data in XML [W3C98] is grouped into elements by tags. Figure 3 shows a simple XML document. XML 
elements may contain attributes. These attributes characterize the elements. There is no common agreement when 
to use elements and when to use attributes. One pragmatic rule says that attributes are useful for expressing 
metadata about data in elements. An unordered set of attributes can be placed in the start-tag of the element. 

                                                           
2 Real world DWs include also many-to-many relationships between a dimension and a fact table [So+01]. We do not suppose them in this 
paper. 
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A DTD specifies how elements can be nested. Subelements nesting is specified by regular expressions. An XML 
document valid w.r.t a DTD can be the root in any element specified in the DTD. An example of DTD is in Figure 
4. The document in Figure 3 is valid w.r.t. this DTD. 

 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 

Applications of XML require appropriate models both of XML data and DTDs. For example, XML-graphs 
[De+99] are well-known as a tool for describing semantics of XML-based query languages. Tree- and graph-
oriented models are used also for DTDs (e.g. [LC00], [PV00]). For the sake of simplicity, most of the formal 
models neglect differences between attributes and subelements and the ordering of elements. 

In [Po01] we modified types of labelled ordered tree objects [PV00]. Suppose a finite alphabet Σ of tags. A 
labelled ordered tree object (loto) over Σ is a finite tree such that each node has an associated tag from Σ and the 
set of children of a given node is totally ordered. For example, the loto corresponding to the XML document in 
Figure 3 is in Figure 5. A loto type definition (ltd) over Σ consists of a root type in Σ and a mapping associating a 
language Lm over Σ with each m ∈  Σ. For the root the mapping assigns the root element of the modelled DTD. 
The empty language is denoted ε. Notice that all these languages are regular in XML. Lotos can be associated 
with a ltd. Informally, a loto satisfies an ltd over Σ if its root has the type of ltd's root and for each of its nodes m 
the sequence of tags associated with children of m is a word of Lm. A set of lotos satisfying the ltd is denoted 
T(ltd). Observe that ltds do not contain PCDATA elements. In this model we do not take data in leaves of lotos 
into account. An example of ltd is in Figure 6 (ε languages are omitted). For example, for product the language 
Lproduct contains sequences (words) (name, description, class, dealer) and (name, description, class).  

 

 

 

 

 

 

 

Figure 5: Loto corresponding to XML data in Figure 3 

<catalogue> 
<product pid = �PA312�> 

<name> Canon 246/V </name>  
<description> A thing �<description> 
<class> camera </class> 

  <dealer did = �K2OP1�>  
<d_name> J. Smith </d_name> 
<address > 

<locality> Kings Buildings,  Edinburgh  
</locality> 
<ZIP> E12 8QQ </ZIP> 

</address> 
<dealer> 

</product> 
<product pid = �PA108�> 

<name> Sony III </name>  
<description> A tool �<description> 
<class> CD player </class> 

</product> 
</catalogue> 

Figure 3: XML document describing a catalogue 

<!DOCTYPE catalogue[ 
<!ELEMENT catalogue(product)*>  
<!ELEMENT product(name, description, class, dealer?)> 
<!ATTLIST product pid ID #REQUIRED> 
<!ELEMENT dealer (d_name, contact?, address+)> 
<!ATTLIST dealer did ID #REQUIRED> 
<!ELEMENT name PCDATA> 
<!ELEMENT d_name PCDATA> 
<!ELEMENT description  PCDATA> 
<!ELEMENT address(locality, ZIP)> 
<!ELEMENT locality PCDATA > 
<!ELEMENT ZIP PCDATA > 
<!ELEMENT contact(fax phone) 
<!ELEMENT fax PCDATA > 
<!ELEMENT phone PCDATA > 
]> 

Figure 4: DTD catalogue 

name  description class dealer 

catalogue 

product product 

d_name address 

locality ZIP 

   name  description class  

root: catalogue; 
catalogue:product*; 
product:(name, description, class, dealer?); 
dealer:(d_name, contact?, address+); 
address(locality, ZIP?); 
contact(fax phone); 

Figure 6: Ltd for DTD catalogue  
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A key feature of our approach is the usage of XML views of XML data. XML views help us to see different data 
in the same way. They can be evaluated by standard view mechanisms, and used for integrity checking and query 
processing in XML DWs. For purposes of this paper, a view V over a collection C is given by a view query in a 
query language3 for XML data. By materialization of V in C we mean a set of XML data, denoted V(C), which is 
obtainable by evaluating V on C.  In particular, V(C) may be empty. In other words, V is a partial function defined 
on a set of C states, when we assume the collection C dynamic. 

4 Re-building a dimension hierarchy from XML data 

We suppose XML collections C1, �, Cn, n ≥ 1, and their respective DTDs, DTD1� DTDn, n ≥ 1. DTDC denotes 
the DTD of C. A collection C contains valid XML data rooting in a DTDC element. The collections may be 
independent in some sense, i.e. the same information can be represented in two documents with different DTDs in 
multiple ways, similarly as in distributed databases. Each collection can be a source for one or more dimension 
members of one or more dimensions. The overall architecture of XML-star schema is drawn in Figure 7. 

 

 

 

 

 

 

 

 

 
Figure 7: XML-star schema 

The design of a dimension hierarchy means to explore dimension members and then logical associations among 
them. Three tasks are to be solved (see table 1).  

 task method result 

1 finding  the data in C which is essential for a 
dimension member D 

design (informally from DTDs 
and/or with a conceptual schema) 

DTDD 
specification 

2 choice of information (D-core) characterizing, 
perhaps uniquely, most of documents in D  

design (informally from DTDs 
and/or with a conceptual schema) 

view specification of D-core by an 
XML query language 

finding DTD specification of D-core 

DTDD-core  

 

VD-core  

DTDD-core 

3 forming the notion of  the XML-referential 
integrity based on C-cores between collections 
C1 and C2 

view specification of C2-core in C1 
by an XML query language 

V(C1→C2)-core 

Table 1: Development of XML-dimension hierarchy 

                                                           
3 The same can be described more formally, independent on any query language. In practice, a query language is the simplest choice. 
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DiK 
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4.1 How to describe a dimension member 

In task 1, we only restrict the source DTD to a DTDD that is more feasible for manipulation. We use so-called 
subDTD of the given DTD. This subDTD is DTD and describes XML data sufficient for the dimension member D 
specification. An extension of D, D∗ , on C contains XML data valid w.r.t. DTDD and having the same root 
element tag given in DOCTYPE clause DTDD. For example, DTD dealer in Figure 8 is a subDTD of DTD 
catalogue in Figure 3. For example, the addresses that are not dealer addresses are not in Dealer∗ . Observe that 
elements of subDTD dealer are also elements of catalogue. Obviously, a more general approach might be 
possible, i.e. to restrict regular expressions in the element definitions and construct a structurally different DTDD 
that is meaningful for defining a dimension member and is not subDTD of DTDC in our sense.  

 

 

 

 

 

 

4.2 Characterization of a dimension member 

In task 2, we actually solve the problem of keys for XML data. In principle, the problem is associated with 
hierarchical keys [Bu01]. First, we can forget ID attributes as possible adepts for such keys. ID attributes are not 
scoped. Moreover nobody can ensure their uniqueness in the environment of more XML collections. Similarly, 
attributes like SSN, InvoiceNo, etc. need not be also reliable. Moreover, XML data is repeating usually in the 
collection. Another problem concerns non-completeness of XML data. For example, the pair (name, address) of 
a dealer can serve as a key for dealers. But, due to the regular expressions used in DTD dealer, some dealer 
addresses contain ZIP data only optionally. Thus, our characterizations should meet weaker requirements that 
those for keys in relational databases. They should 

• distinguish any two XML documents in D as best as possible, 

• be suitably simple, 

• be XML data, 

• be valid w.r.t. a DTD. 

In [Bu01], a key specification is a pair (Q, {P1,�,Pn}), where  Q is a path expression and {P1,�,Pn} is a set of 
simple path expressions4. The path expression Q identifies a set of nodes, which refer to as the target set, on which 
the key constraint is to hold. Paths Pi specify sets of nodes. Consider the following key specification: 
  (product, {name, description}) 

The target set is given by product element. If two products have the same name, then they must distinguish in 
their description. 

Our approach is similar but not identical. We "cut of" paths Q via the subDTD concept, i.e. Q is empty (ε). We 
also do not use only simple paths. For example, for books such a key consists of ISBN, but probably (title, 
author∗ ) is sufficient. In notation of [Bu01] we would expressed the key as (ε, {title, author∗ }). Further, key 

                                                           
4 Simple paths are merely sequences of elements tags. 

<!DOCTYPE dealer[ 
<!ELEMENT dealer(d_name, contact?, address+)> 
<!ELEMENT d_name PCDATA> 
<!ELEMENT address(locality, ZIP?)> 
<!ELEMENT locality PCDATA > 
<!ELEMENT ZIP PCDATA > 
<!ELEMENT contact(fax phone) 
<!ELEMENT fax PCDATA > 
<!ELEMENT phone PCDATA >] 

Figure 8: SubDTD1 for dealer 

<!DOCTYPE dealer[ 
<!ELEMENT dealer(d_name, address+)> 
<!ELEMENT d_name PCDATA> 
<!ELEMENT address(locality, ZIP)> 
<!ELEMENT locality PCDATA > 
<!ELEMENT ZIP PCDATA >] 

Figure 9: SubDTD2 for dealer 
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specifications of [Bu01] are directly on XML data and not on the schema level, in the database terminology. 
There is an approach to keys specified on the DTD level [FL01]. However, its authors consider keys based only 
on XML attributes. 

The characterization of D in our approach is called core of D, shortly D-core. We do not use the notion of key, 
because vagueness of above requirements. On the extension level we talk about core elements. Core elements 
must satisfy the following condition: 

• Each document from D generates one core element at most.     /weak identifiability/ 

It is on the designer responsibility to ensure this integrity constraint. Unfortunately, it is not always possible to 
require the function to be total and injective. The rigidity of these properties inherited from the notion of primary 
key is here lost due to the incompleteness of XML data in D and its possible duplicates. Thus we speak only about 
a weak identifiability of D.  

In [Po01] we have shown how 

• to define the D-core data as a view V over D∗ , and  

• to find its DTDC-core.  

D-core should be expressible by a DTD5. We use DTDD-core to denote such a DTD. XML data extracted from D 
and valid w.r.t. DTDD-core is called D-core data. We denote this data set by T(DTDD-core).  

For example, only one fax or one phone number is sufficient to identify a dealer. Then the associated view can be 
expressed in XML-QL language [De+99] as follows. 

WHERE <dealer> <contact> $e </contact>  
    </dealer> IN �http://kocour.cuni.cz/�� 
CONSTRUCT  <dealer_core> $e </dealer_core> 

It provides �heterogeneous� core elements, with a fax or a phone for each dealer, who has the contact non-empty. 
The only user-defined tag used in queries will be dealer_core. The associated DTD is  

 

 

 

 

4.3 XML-referential integrity 

The idea how to define the constraint XML-referential integrity for collections C1 and C2 is to connect logically 
those documents d1 ∈  C1 and d2 ∈  C2 that match on the core data described by DTDC2-core. In other words, d1 
contains data, which is the same (in some sense), as the core data of d2. C2-core plays for DTDC1 a similar role as a 
foreign key in a relational database.  

We specify a view, we denote it V(C1→C2)-core, that generates XML data from C1 of the same structure as the data 
valid with respect to DTDC2-Core. We could also specify DTD(C1→C2)-core. Note that since DTDC1 distinguishes from 
DTDC2, and VC2-core and V(C1→C2)-core are different view queries, DTDC2-core and DTD(C1→C2)-core would be also 
different in general. On the other hand, we do not need to construct DTD(C1→C2)-core explicitly for specification of 
the XML-referential integrity. Any checking referential integrity is based on data from V(C1→C2)-core(C1). Given 
V(C1→C2)-core and DTDC2-core, it is decidable whether lotos associated with data from  V(C1→C2)-core(C1) are also lotos 
from T(ltdC2-core).  

                                                           
5 In [Po01] we discuss that it is not always guaranteed that the data valid w.r.t. DTDC-core is exactly the data in materialization of V.  

<!DOCTYPE dealer_core[ 
<!ELEMENT dealer_core (fax phone)> 
<!ELEMENT fax PCDATA > 
<!ELEMENT phone PCDATA >] 

Figure 9: DTDDealer-core  
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The problem of checking a referential integrity can be mapped to the problem of embedding a pattern tree in the 
tree determined by VC2-core(d2). Obviously, unlike lotos the content of leaves must already be considered. We 
prefer partial matching of trees only and denote the relation by symbol ≤:. Certainly, if d1≤:d2 and d2≤:d1 then 
d1=d2. This equality is based on the fact that associated trees distinguish only in ordering of their elements.  

There are more reasons why we do not prefer an exact matching. For example, different orders of elements in d1 
and d2 can be supposed or VC1→C2-core(C1) data often occurs only partially in its pattern in C2. A justification for the 
choice follows from the intuition that the dimension member Di

∗  contains more information about an entity e than 
the linkage data of e in elements of Di-1

∗ . 

Definition 3 (XML-Referential Integrity): Let C1 and C2 be collections with DTDC1 and DTDC2 respectively. Let 
VC1-core and VC2-core be views defining C1- and C2-core data, respectively. Then an XML-referential integrity based 
on C-cores is satisfied by C1 and C2 iff  

∀  d1 ∈  C1 ∃  d2 ∈  C2 (V(C1→C2)-core(d1) ≤: VC2-core(d2))  

Observe, that the matching is automatically true if V(C1→C2)-core(d1) is empty. Thus, the definition behaves 
according to the notion of referential integrity given for relational databases in the SQL language [ISO99]. For 
some d1 there is no document d2 having a link through C2-core. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10: XML-referential integrity 

For collections C1 and C2, we denote the statement XML-referential integrity based on C-cores by  

C1 ⊆ : C2 

Note that comparing the XML-referential integrity to the relational referential integrity, there may be more d2 
documents satisfying the condition from Definition 3. The partial (unordered) tree embedding problem, generally 
NP-complete, has an effective solution in practice [SN00]. The principle of the XML-referential integrity and its 
checking is shown in Figure 10. 

5. XML-star schema with explicit hierarchies 

The notion of XML-star schema with explicit dimension hierarchies is formulated according to [Po01] as follows.  
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Definition 4 (XML-Dimension Hierarchy): Let C1,�, Cn, n ≥1,  be a set of  XML collections with their 
respective DTDs DTD1,�,DTDn. Let D be a set of DTDs whose each member is a subDTD of a DTDi, i ∈  <1,n>, 
DTDDi-core  describes its Di-core. Then a (simple) XML-dimension hierarchy N is specified as  

(a) N ⊆  D × D or { D} , D ∈  D,  

(b) N is an acyclic path.      

(c) If (Di, Di+1) ∈  H, then Dj  ⊆ :  Di+1.    

Dimensional data for N: D1 →�→ DK, is given by the union of D∗
i, i = 1,�,K, where for  (Di

*, Di+1
*) the 

statement Dj  ⊆ :  Di+1 is satisfied. 

For the sake of simplicity, we represent fact data similarly to rows of a fact table, i.e. the resulted XML data is 
composed from homogenous elements each dimensional component of which will be in accordance with core data 
of the root of the associated dimension N. We say that DTDF of such fact data is specified w.r.t. a set of hierarchy 
roots. Fact data is not discussed here. 

Definition 5 (XML-Star Schema with Explicit Dimension Hierarchies): Let N be a non-empty set of XML-
dimension hierarchies, DN the set of their hierarchy roots, and F a DTDF specified w.r.t. DN. Then an XML-star 
schema with explicit dimension hierarchies is a pair <N, F>. 

A dimensional XML-database S∗  over an XML-star schema with explicit hierarchies S is a collection of 
dimensional data for N, for all N ∈  N, and XML fact data F∗  valid w.r.t. DTDF. F∗  satisfies the constraint F ⊆ : D 
for each D ∈  DF.  

5.1 Querying a dimensional XML-database 

We will suppose a simple query language whose queries are expressed by restrictions on members of dimension 
hierarchies. For a D, we denote such restriction ϕ and write in relation algebra style D(ϕ). In general the 
restriction can be by any predicate (possibly empty) on the element content according to the respective DTDD. 
Typical are range expressions besides equality expressions. For example, path expressions as they are used in 
XQL language [Ro+98] are just enough to illustrate our approach. For example, the expression 

Dealer(dealer[contact/phone = �21914265�]) 

restricts dealer elements to that ones that  have the subelement <phone> 21914265</phone>. The next 
operation we need is an XML semijoin. This operation, we call it C-seminjoin, applied to two collections of XML 
data C1 and C2 extracts XML data from C1, which successfully matches data from C2. The matching is done by 
matching the data from T(DTD(C1→C2)-core) and T(DTDC2-core). The matching condition is given by predicate ≤:. In 
relational environment, we would do the semijoin over a foreign key and the associated primary key of two 
relations.  

The basic idea how to evaluate a query over a dimensional XML-database is to navigate each dimension hierarchy 
N from its last member with non-empty ϕ to the root of N.  For the sake of simplicity, we will suppose that the 
member is the last member of N.  

Algorithm: Evaluation of a query over a dimensional XML database 

Input: an XML-star schema with explicit dimension hierarchies S, S∗ , a query q 

Output: a subcollection of F∗  satisfying q 
1. for i:=1 to N do  

restricted2:= DKi(ϕKi);          //start with the last member of N and restrict it 
j:=Ki-1; 
while j ≠ 0 do 
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restricted1:= Dj
*(ϕj);          //continue with its left neighbour and restrict it 

restricted2:= C-semijoin(restricted1, restricted2);  //restrict Dj
* by semijoin 

j:= j-1; 
end while 
rooti: = restricted2  

end for         //each rooti contains dimensional data necessary for processing F∗  
  2.  result:= (�(C-semijoin(F, root1),�), rootN); //result contains a subcollection of F∗  obtained by  
                  //subsequent applications of the C-semijoin operation  

We describe the semantics of C-semoijoin in the procedural manner. Let C1 and C2 be XML collections. Then the 
result of C-semoijoin(C1, C2) is obtainable by the following steps: 

1. core2:=VC2-core(C2)                //materialize VC2-core on C2 

2. C-semijoin := {d d ∈  C1 ∧  ∃  d΄∈  core2 (V(C1 → C2)-core (d) <: d΄)}   //matching cores 

Obviously, various optimization techniques can make a real query evaluation more feasible. Indexing methods for 
XML data can significantly reduce the scan required for selections or naive nested loops implementation for 
semijoins. The existence of an index on elements important for D-cores is a simple example of such strategy. 

5.2 Discussion 

This section contains a brief list of remarks to choices of alternatives used in our approach:  

(a) The definition of D-cores we have adopted here is quite weak. It mirrors the fact that we need not 
uniqueness of keys as in relational databases. Our choice is in accordance to the semistructured nature of 
XML data contained in our DWs. In some applications of data centric DWs we can design D-cores that are 
based on real foreign and primary keys. This situation occurs if XML data originate from relational 
databases. 

(b) Consider the principle of our approach to XML-referential integrity. In contrast to (a), even the embedding 
a pattern tree in a tree can be too restrictive for some applications. Return, e.g., to (title, author∗ ) for 
books. Suppose that it contributes to DTDDi-core and DTD(D(i-1)→Di)-core of dimension members Di and Di-1, 
respectively. For two sets of authors A and A΄ of respective documents d ∈  Di-1 and d΄∈  Di, the non-empty 
A ∩ A΄ can be sufficient for a successful matching. In our approach we require A ⊆  A΄. 

(c) The choice of what language we use to specify restrictions on dimension hierarchies is important to the 
expressive power of the approach. Path expressions from XQL fulfil reasonable minimal requirement for 
such a language. 

6 Conclusions 

We have investigated the approach to data warehousing based on XML data. Specifically, we have focused on the 
possibility to create XML DWs with a star architecture and explicit dimension hierarchies. We have shown that in 
contrast to the simple foreign key-primary key linkage of dimension members, a form of approximate matching 
must be used in XML environment. Furthermore, we have shown that querying such DW in a usual way is 
possible. We can use partially recent XML query languages for this purpose and a new query operation C-
semijoin, which is based on an approximate matching predicate. In future development, various possibilities of 
such approximations should be studied. Certainly, their choice will depend on the application requirements. 

An important question is how to design D-cores. Starting from XML data and its DTDs, we develop, in fact, the 
DW from the bottom-up starting on the representation level. It is the same as to design dimensions from a set of 
relational schemes. Without doubts, to have a conceptual view on XML data seems to be useful at least for 
specifying referential integrities in XML collections. In future we would like to show how the dimensional design 



 

                                                                                                11 
 
 

for DW could be carried out transforming XML metadata (DTDs, XML schemes) into equivalent conceptual 
schemes. First steps already exist to this goal (e.g. [Go+01]).  

References 

[Bo01] Bourret, R.: XML and Databases. Available at http://www.rpbourret.com/xml/XMLAndDatabases.htm. 
[Bu+01] Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.-Ch.: Keys for XML. In: Proceedings of WWW10, May 1-5, Hong-Kong, 

ACM Press, 2001 
[De+99] Deutsch, D., Fernandez, M.F., Florescu D., Levy, M. A., Suciu D.: A Query Language for XML. WWW8/Computer Networks 31 

(11-16): 1155-1169, 1999. 
[FL01] Fan, W., Libkin, L.: On XML Integrity Constraints in the Presence of DTDs. In: Proc. ACM SIGACT-SIGMOD-SIGART Symp. 

on Principles of Database Systems, 2001, pp. 114-125.  
[Go+01] Golfarelli, M., Rizzi, S., Vrdoljak, B.: Data warehouse design from XML sources. In: Proceedings of ACM Fourth International 

Workshop on Data Warehousing and OLAP (DOLAP 2001), J. Hammer Ed., ACM Press, 2001, Atlanta, pp. 40-47. 
[ISO99] ISO/IEC 9075:1999: Information Technology --- Database Languages --- SQL. Part 2: Foundations. 1999. 
[Ki+98] Kimball, R., Reeves, L., Ross, M., Thorthwaite, W.: The Data Warehouse Lifecycle Toolkit. New York: John Wiley & Sons, Inc., 

1998. 
[LC00] Lee, D., Chu, W.W.: Constraint-preserving transformation from XML Document Type Definition to Relational Schema. In: Proc. 

of 19the ER Conf., Salt Lake City, 2000. 
[Ma+01] Mani, M., Lee, D., Munz, R.: Semantic Data Modelling using XML Schemes. In: Proceedings  of E-R Conf., Yokohama, 2001. 
[PV00]  Papakonstantinou, Y., Vianu, V.: DTD Inference for Views of XML Data, Proc. ACM SIGACT-SIGMOD-SIGART Symp. on 

Principles of Database Systems 2000.  
[Po99]  Pokorny, J. �Data Warehouses: a Modelling Perspective.� In: Evolution and Challenges in System Development (Eds. 

W.G.Wojtkowski, S. Wrycza, J. Zupancic), Kluwer Academic/Plenum Press Publ., 1999. 
[Po01]  Pokorny, J.: Modelling Stars Using XML. In: Proceedings of ACM Fourth International Workshop on Data Warehousing and 

OLAP (DOLAP 2001), J. Hammer Ed., ACM Press, 2001, Atlanta, pp. 24-31. 
[Ro+98] Robie, J.,  Lapp, J., Schach, D.: XML Query Language (XQL). http://www.w3.org/TandS/QL/QL98/pp/xql.html 
[SN00] Schlieder, T., Naumann, F.: Approximate Tree Embedding for Querying XML Data. ACM SIGIR Workshop on XML and IR, 

Athens, 2000. 
[So+01] Song, I.-Y., Rowen, W., Medsker, C., Ewen, E.: An Analysis of Many-to-Many Relationship Between Facts and Dimension Tables 

in Dimensional Modeling. In: Proceedings of the Int. Workshop on Design and Management if Data Warehouses (DMDW 2001), 
Interlaken, 2001, pp. 6-5 - 6-13. 

[W3C98] Extensible Markup Language (XML) 1.0. http://www.w3.org/TR/REC-xml, 1998. 
[W3C01] XQuery 1.0: An XML Query Language. W3C Working Draft 20 December 2001http://www.w3.org/TR/2001/WD-xquery-

20011220/ 

 


